
Transverse intersections between invariant manifolds of doubly hyperbolic

invariant tori, via the Poincaré–Mel′nikov method
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Abstract

We consider a perturbation of an integrable Hamiltonian system having an equilibrium point of elliptic–
hyperbolic type, having a homoclinic orbit. More precisely, we consider an (n+2)-degree-of-freedom near integrable
Hamiltonian with n centres and 2 saddles, and assume that the homoclinic orbit is preserved under the perturbation.
On the centre manifold near the equilibrium, there is a Cantorian family of hyperbolic KAM tori, and we study
the homoclinic intersections between the stable and unstable manifolds associated to such tori. We establish that,
in general, the manifolds intersect along transverse homoclinic orbits. In a more concrete model, such homoclinic
orbits can be detected, in a first approximation, from nondegenerate critical points of a Mel′nikov potential. We
provide bounds for the number of transverse homoclinic orbits using that, in general, the potential will be a Morse
function (which gives a lower bound) and can be approximated by a trigonometric polynomial (which gives an
upper bound).

1 Introduction and setup

We consider an analytic perturbed Hamiltonian

H = H(0) + εH(1), (1)

with n+ 2 degrees of freedom, and ε as a small parameter, having an equilibrium point with n centres and 2 saddles,
i.e. the equilibrium point has 2n elliptic directions and 4 hyperbolic directions. Under suitable conditions, applying
KAM theorem on the centre manifold we have a Cantorian family of n-dimensional invariant tori, with stable and
unstable invariant manifolds, both (n+ 2)-dimensional. Assuming that the equilibrium point has a homoclinic orbit,
our aim is to give conditions for the existence of transverse intersections (i.e. transverse homoclinic orbits) between
the stable and unstable manifolds of a given invariant torus.

In this paper, we present the main ideas underlying this problem and, under some hypotheses (see below), we show
that transverse intersections can be detected as nondegenerate critical points of a periodic function of n angles called
the Mel′nikov potential. This generalizes the case of 2 centres and 1 saddle, previously studied in [KLDG05]. Although
the expression (12) of the Mel′nikov potential is analogous to the one obtained there, increasing the number of saddles
requires a somewhat more complicated approach, that takes into account the additional hyperbolic directions.
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In order to give a more precise description and present our hypotheses, we consider symplectic coordinates

(x, y, q, p) = (x1, . . . , xn, y1, . . . , yn, q1, q2, p1, p2) ∈ R2n+4,

where the coordinates (x, y) and (q, p) correspond to the elliptic and hyperbolic directions, respectively. Often, we
shall replace (x, y) by the symplectic polar coordinates (ϕ, ξ) (angles and actions), defined by

xj =
√

2ξj sinϕj , yj =
√

2ξj cosϕj , j = 1, . . . , n, (2)

where ξj = (x 2
j + y 2

j )/2.

The Hamiltonian equations associated to (1) are

ẋ = ∂yH(x, y, q, p),
ẏ = −∂xH(x, y, q, p),

q̇ = ∂pH(x, y, q, p),
ṗ = −∂qH(x, y, q, p).

Let us describe in more detail the Hamiltonian considered, and present the organization of the paper. We assume
for H the following hypotheses:

(A) In the unperturbed Hamiltonian, the centre and saddle parts can be separated :

H(0)(x, y, q, p) = F (x, y) + P (q, p). (3)

(B) The n-d.o.f. Hamiltonian F is an n-centre and it is integrable, depending only on the actions:

F (x, y) = f(ξ) = 〈ω, ξ〉+
1
2
〈Ωξ, ξ〉+O3(ξ). (4)

Thus, the origin of F is an elliptic equilibrium point, with the frequency vector ω = (ω1, . . . , ωn) (or the
characteristic exponents ±iω1, . . . ,±iωn). We assume nonresonance up to order four, 〈k, ω〉 6= 0 for all 0 <

|k|1 ≤ 4, and one of the nondegeneracy conditions: det Ω 6= 0 or det
(

Ω ω
ω> 0

)
6= 0.

(C) The 2-d.o.f. Hamiltonian P is an integrable 2-saddle, with real and simple characteristic exponents ±λ1 = ±1
and ±λ2 = ±λ,with λ1 > λ2 > 0. Thus, the origin of P is a hyperbolic equilibrium point. We assume that
the additional first integral K is such that the respective quadratic parts P (2), K(2) are independent functions
(excluding the origin). Besides, we assume that P has a homoclinic orbit or loop γ, biasymptotic to the origin
along the strong stable/unstable directions, i.e. associated to the exponents ±λ1.

(D) The perturbation H(1) is such that the Hamiltonian H = H(0) + εH(1) has the origin as an equilibrium point,
with a loop γε inherited from γ, i.e. tangent to the strong stable/unstable directions of the origin. Besides, we
assume that ∂qH(1) = ∂pH

(1) = 0 for q = p = 0.

Let us see what these hypotheses imply. First, we see from (B) that all orbits of F lie in n-dimensional invariant
tori TI,0 = {ξ = I}, for any fixed I = (I1, . . . , In). Each torus has inner dynamics ϕ̇ = ω̃(I), with the frequency vector

ω̃(I) = ∂ξf(I) = ω + ΩI +O2(I). (5)

The additional conditions in (B) are required in order to apply KAM theorem to a perturbation of F (see below).

Concerning (C), one can carry out a symplectic linear change (û, v̂) 7→ (q, p) such that the quadratic part P (2)(q, p)
becomes P̂ (2)(û, v̂) = λ1û1v̂1 + λ2û2v̂2. For the first integral K(q, p), its quadratic part takes an analogous form:
K̂(2)(û, v̂) = µ1û1v̂1 + µ2û2v̂2 (see [LU98, §2.1]). Then, the independence condition is λ1µ2 − λ2µ1 6= 0. Under this
condition, we can apply Vey’s result [Vey78], which establishes that there exists a symplectic transformation close to
the identity,

(û, v̂) = φ(u, v) = (u, v) +O2(u, v),
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analytic (convergent) in a neighbourhood of the origin, such that both the transformed Hamiltonian P̃ = P̂ ◦ φ and
the additional integral K̃ = K̂ ◦ φ are analytic functions of the products

η1 := u1v1, η2 := u2v2.

In particular, this yields
P̃ (u, v) = λ1η1 + λ2η2 + Ξ(η1, η2) = η1 + λη2 + Ξ(η1, η2) (6)

with Ξ(η1, η2) = O2(η1, η2), in a neighbourhood the origin (see also [Ito89], and [LU98, §2.2] for an account of related
results). In the normal form variables, the 2-dimensional unstable manifold W u

0 is given locally by v1 = v2 = 0, with
Lyapunov exponents λ1, λ2, and the 2-dimensional stable manifold W s

0 is given locally by u1 = u2 = 0, with Lyapunov
exponents −λ1, −λ2. The loop γ, contained in both manifolds, is given locally by η2 = u2v2 = 0. It is asymptotic to
the origin along the directions associated to the exponents ±λ1, which are the strong ones.

We see from (A–C) that the unperturbed Hamiltonian H(0) is completely integrable, and the following simple
facts are easily verified:

∗ There is a loop {0} × γ, biasymptotic to the origin, and we denote it again as γ.

∗ There is an n-parameter set of n-dimensional hyperbolic tori TI,0 × {0}, that we denote again as TI,0. Such tori
are contained in the 2n-dimensional centre manifold Wc = R2n × {0}.

∗ Each torus TI,0 has (n+ 2)-dimensional stable and unstable manifolds Ws,u
I,0 = TI,0 ×W s,u

0 , which intersect non-
transversely along the homoclinic cylinder TI,0×γ. Such manifoldsWs,u

I,0 are contained in the (2n+2)-dimensional
centre-stable and centre-unstable manifolds Wcs,cu

0 = R2n ×W s,u
0 .

The conditions in (D) concern the perturbation H(1). We are assuming that the origin is kept as an equilibrium
point, and that Wc is kept as the centre manifold (due to that ∂qH1 = ∂pH1 = 0 for q = p = 0). This allows us to fix
ideas, although it is not strictly necessary (see also [KLDG05]).

The inner flow on Wc is given by a perturbed Hamiltonian Fε(x, y) = F (x, y) + εH(1)(x, y, 0, 0). The conditions
in (B) are the usual for KAM theorem near an elliptic equilibrium point (see for instance [Pös82]), and imply that for
ε small enough the Hamiltonian Fε(x, y) has a Cantorian (n-parametric) set of n-dimensional invariant tori around
this point. More precisely, there is a symplectic change of coordinates (θ, I) 7→ (x, y), depending on ε, such that
Fε(x, y) = fε(θ, I) satisfies that ∂θfε vanishes on a Cantorian set D of I, of positive measure near the origin of F .
The new coordinates (θ, I) can be taken O(ε)-close to the symplectic polar coordinates (ϕ, ξ) defined in (2). The set
D corresponds to the actions I such that their frequencies (5) satisfy a Diophantine condition. For I ∈ D, the set
TI,ε = {I = const} is an n-dimensional invariant torus, with a frequency vector ω̃ε(I) = ∂Ifε.

The tori TI,ε are of hyperbolic type when considered in the full phase space, with stable and unstable manifolds
Ws,u
I,ε that remain close to the unperturbed onesWs,u

I,0. Nevertheless, in general the perturbed manifolds do not intersect
anymore along a non-transverse “cylinder” (i.e. a set homeomorphic to Tn × R). We are going to show in Section 2
that, under the hypothesis that the loop γ is preserved, they intersect generically along a finite number of transverse
homoclinic orbits.

The preservation of the loop γ is necessary for the existence of homoclinic orbits asymptotic to the KAM tori TI,ε
that are very close to the origin (i.e. for |I| very small). Indeed, if the perturbed stable and unstable branches of the
loop, γs,u

ε , do not coincide, the stable and unstable manifolds of such tori, Ws,u
I,ε do not intersect since they remain

very close to γs,u
ε (however, for tori TI,ε not so close to the origin, i.e. for |I| larger, there may be intersections, as

shown in [KLDG05]).

In Section 2, where we assume Hypotheses (A–D), we study the homoclinic intersections for the perturbed Hamil-
tonian. We use the global map Sε : Nu

± −→ Nu
±, defined by the flow of the Hamiltonian H, between the (2n + 3)-

dimensional sections
Nu
± = {u1 = ±d} , N s

± = {v1 = ±d} , (7)

where the choice of the signs depends on the sections intersected by the loop γ. On these sections we have coordi-
nates (ϕ, ξ, v1, u2, v2) and (ϕ, ξ, u1, u2, v2) respectively (we use the symplectic polar coordinates (2) instead of (x, y)),
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but alternatively we can consider coordinates (ϕ, ξ, c, u2, v2) in both sections, where c is the energy level. For the
unperturbed global map S0, on a given energy level c we can consider the (2n + 2)-dimensional reduced sections
N s,u
± (c) = N s,u

± ∩
{
H(0) = c

}
, both with symplectic coordinates (x, y, u2, v2), and the restriction S0 : Nu

±(c)→ Nu
±(c)

is a symplectic map. Then, the map Sε is a perturbation of S0, and can be described by a generating function
Rε(ϕ, ξ̄, ū2, v2).

The traces of the (n + 2)-dimensional invariant manifolds Ws,u
I,ε in the sections (7) are (n + 1)-dimensional, and

defined by
Au
I,ε =Wu

I,ε ∩Nu
±, As

I,ε =Ws
I,ε ∩N s

±. (8)

Such traces are contained in the same energy level c, and can be seen as cylinders (homeomorphic to Tn × R),
parameterized by (ϕ, u2) and (ϕ, v2) respectively. The intersections between the invariant manifolds Ws,u

I,ε are given
by intersections between the sets Sε(Au

I,ε) and As
I,ε, which can be studied in terms of the generating function Rε,

providing a generic condition for the existence of transverse homoclinic orbits (Theorem 1).

For the effective detection of transverse intersections in concrete Hamiltonians, it is standard to apply the Poincaré–
Mel ′nikov method. In view of the computations required by this method, it is hard to develop it in a general setting.
For this reason, in Sections 3 and 4 we replace (C–D) by the following specific hypotheses:

(C2) The 2-d.o.f. Hamiltonian P is a product of 2 pendulums:

P (q, p) = P1(q1, p1) + P2(q2, p2), (9)

Pj(qj , pj) =
p 2
j

2
+ λ 2

j (cos qj − 1) =
p 2
j

2
− 2λ 2

j sin2 qj
2
, j = 1, 2 (10)

(recall that λ1 = 1 and λ2 = λ, with 1 > λ).

(D2) The perturbation H(1) has the form

H(1)(x, y, q1, q2, p1, p2) = (cos q1 − ν)h(x, y, q2, p2),

with h = O2(x, y, q2, p2), and we may consider the cases ν = 1 or ν = 0.

We are considering in (C2) a very concrete model for the hyperbolic part. It is integrable, with K = P1 or K = P2

as the second first integral. For this model, let us show that an accurate description of its loops can be given. It
is well-known that each pendulum Pj(qj , pj) has 2 separatrices, which are homoclinic orbits connecting the origin of
Pj to itself. Choosing one separatrix of each pendulum, we obtain 4 one-parameter families of homoclinic orbits of
the Hamiltonian P (q, p). The parameter of each family is the initial condition of one of the separatrices, which can
be chosen freely. Additionally, there are 4 particular homoclinic orbits obtained from one separatrix of a pendulum
and the origin of the other pendulum. The difference between these 4 orbits and the orbits of the 4 families lies in
their different topology: in the configuration space T2, they describe cycles belonging to different homotopy classes.
Among the 4 particular homoclinic orbits, notice that 2 of them are tangent at the origin to the strong stable/unstable
directions (the pendulum P1), and the other 2 ones are tangent to the weak stable/unstable directions (the pendulum
P2). Below, we take as our loop γ one of the ‘strong’ ones. Clearly, if we consider the stable and unstable manifolds
W s,u

0 in a neighbourhood of the loop, they intersect transversely along the loop (inside the corresponding 3-dimensional
energy level). The situation is different for a loop belonging to one of the 4 families, since the manifolds W s,u

0 coincide
in a neighbourhood of such a loop.

We stress that an analogous model to (9–10), with a higher number of degrees of freedom, has been considered in
[RT06]. Another related work is [GS95], where the orbit considered is one from the 4 families of homoclinic orbits, but
adding to P1 + P2 an interacting term such that one specific orbit is preserved and becomes transverse. In fact, the
existence of families of homoclinic orbits and the particular ones, is a more general property of 2-d.o.f. Hamiltonians
having a 2-saddle (see [LU98, ch. 6] for a complete exposition).

The loop we consider is the one with p1 > 0 and q2 = p2 = 0, and is given by the trajectory

γ : (qh
1 (t), qh

2 (t), ph
1(t), ph

2(t)) =
(

4 arctan(et), 0,
2

cosh t
, 0
)
. (11)
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According to the results quoted about Hypothesis (C), the local normal form (6) can be considered for the Hamilto-
nian (9–10). In this case, this is a simple consequence of a well-known Moser’s theorem [Mos56] on the convergence
of the Birkhoff normal form for a 1-d.o.f. Hamiltonian near a hyperbolic equilibrium point. Indeed, this theorem can
be applied separately to each pendulum Pj(qj , pj), which can be written in the form P̃j(ηj) = λjηj + Ξj(ηj), and we
have Ξ(η1, η2) = Ξ1(η1) + Ξ2(η2) in (6).

Alternatively, we can write the 2-d.o.f. Hamiltonian (9) keeping the original coordinates (q1, p1) for the first pen-
dulum, and using the normal form coordinates (u2, v2) for the second pendulum, obtaining the expression P1(q1, p1) +
P̃2(η2). Then the unstable manifold W u

0 is given by the equations P1(q1, p1) = 0, v2 = 0, and the stable manifold W s
0

is given by P1(q1, p1) = 0, u2 = 0. These invariant manifolds are local, but may be continued along a neighbourhood of
the whole homoclinic orbit γ. It becomes also transparent that they intersect transversely along this orbit. Although
this is a trivial fact, it may be surprising because the Hamiltonian (9) is clearly integrable. Besides, if we consider the
invariant manifolds globally, they coincide since they are obtained as products of the separatrices of each pendulum.
But in the case of invariant manifolds of a hyperbolic point, such a coincidence is not a contradiction with their local
transversality, as noticed in [Dev78].

Finally, we have imposed in (D2) a simplifying hypothesis for the perturbation H(1), similar to the case dealt
with in [KLDG05]. It is easy to check that this hypothesis implies that, for ε 6= 0, both the loop γ and the centre
manifold Wc are kept invariant. In the case ν = 0, we have a Cantor family TI,ε of preserved KAM tori TI,ε close to
the unperturbed ones, as described above. In the case ν = 1, even the inner flow of Wc is kept invariant, and this
implies that its invariant tori are all preserved, TI,ε = TI,0, with the same frequencies.

For such preserved tori, using the Mel′nikov potential we show, in both cases ν = 1 and ν = 0, that the perturbed
stable and unstable manifolds Ws,u

I,ε intersect along a finite number of transverse homoclinic orbits. The intersections
will be associated to nondegenerate critical points of the Mel′nikov potential (Theorem 2). To give a definition of
it, we consider unperturbed trajectories on both the invariant torus TI,0 and the homoclinic cylinder TI,0 × γ. Such
trajectories are defined in Section 3: a trajectory on TI,0 is denoted ζ∗I,0(t; θ) where θ ∈ Tn corresponds to the initial
phase of a trajectory, and a trajectory on TI,0 × γ, that is asymptotic for t → ±∞ to the previous trajectory on the
torus, is denoted ζI,0(t; θ). Then, we define the Mel ′nikov potential as the following function on Tn:

LI(θ) = −
∫ ∞
−∞

(
H(1)(ζI,0(t; θ))−H(1)(ζ∗I,0(t; θ))

)
dt. (12)

In Section 4 we compute the Mel′nikov potential and show that it can be approximated by a trigonometric polynomial
that will be, generically, a Morse function. In this way, we can obtain (Theorem 3) a lower bound and an upper bound
for the number of critical points and, consequently, transverse homoclinic orbits to a given torus.

2 Study of the homoclinic orbits through the global map

First, we consider H(0). According to Hypotheses (A–C) the unperturbed Hamiltonian casts H(0)(x, y, q, p) =
F (x, y) +P (p, q), where F (x, y) is an integrable n-d.o.f, so it depends only on the actions ξ and, on the other hand, P
is a two saddle with characteristic exponents ±1 and ±λ with 1 > λ > 0. Therefore, in appropriate coordinates (q, p)
for the hyperbolic part H(0) can be expanded in the form

H(0)(x, y, q, p) = f(ξ) + q1p1 + λq2p2 +O3(q, p)

with f(ξ) as given in (4), hypothesis (B). Because of the hypothesis (C), linear independence of the quadratic parts of
P , P (2), and K(2) of the additional integral K, we can apply the results of Vey in [Vey78] (see also [Ito89, theorem 1.3]),
on the convergence of the Birkhoff normal form for locally integrable Hamiltonian systems; and hence conclude that
there exists, defined in a neighbourhood of the origin, a near-identity analytic (convergent) Birkhoff transformation
of type

(q, p) := φ(u, v) = (u, v) +O2(u, v), (13)

being (q, p) = (q1, q2, p1, p2), (u, v) = (u1, u2, v2, v2) such that φ(0, 0) = (0, 0) and both the transformed Hamiltonian
P̃ (u, v) = P ◦φ(u, v) and the additional integral K̃(u, v) = K◦φ(u, v) are analytic functions of the products η1 := u1v1,
η2 := u2v2. In particular, this yields,

P̃ (u, v) = η1 + λη2 + Ξ(η1, η2)
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with Ξ(η1, η2) = O2(η1, η2), in a neighbourhood the origin and η1, η2 are first integrals of the Hamiltonian P̃ .

Thus, we proceed now to investigate the unperturbed global map S0 : Nu
+(c) → N s

±(c). For this, we shall use
Birkhoff local coordinates (13) and replace the coordinates (x, y) by the polar symplectic ones (ϕ, ξ). For a fixed level
set c, of the Hamiltonian H(0), the equation

f(ξ) + η1 + λη2 + Ξ(η1, η2) = c, (14)

is identically satisfied in a neighbourhood of TI̊,0(c) × γ, with ξ = I̊ such that f(I̊) = c. Therefore, by the implicit
function theorem η1 can be put as a function, κ, of ξ, η2 in a neigbourhood of the point (ξ, η1, η2) = (I̊ , 0, 0). Hence,
for a fixed c one can take (ξ, ϕ, u2, v2) as coordinates on the Nu

+(c). Indeed, since on this section u1 = d and then
v1 = κ(ξ, η2; c)/d. Let us fix a point (ξ, ϕ, q2, p2) ∈ Nu

+(c) and denote as T = τ̂(ξ, q2, p2; c) the time needed to reach
Ns
±(c). The global map S0 : Nu

+(c)→ N s
±(c) is defined by the flow of the vector field XH(0) in a (global) neighbourhood

of the loop γ. On the one hand ξi, i = 1, . . . , n are global integrals of H(0), so their values are preserved by S0; and
on the other, due to the hypothesis (C), the local integrals η1, η2 are smooth functions of the (global) integrals P,K
in a vicinity of the origin and therefore, their values are preserved by S0 as well. This has been used in setting (18),
see also [KLDG05, Sect. 2].

Next, we look at the equations for the flow of P̃ (u, v),

u̇1 = (1 + Λ1(η1, η2))u1, v̇1 = −(1 + Λ1(η1, η2))v1,

u̇2 = (λ+ Λ2(η1, η2))u2, v̇2 = −(λ+ Λ2(η1, η2))v2,
(15)

where Λ1(η1, η2) = ∂η1Ξ(η1, η2), Λ2(η1, η2) = ∂η2Ξ(η1, η2).

The system above accounts for the flow of the unperturbed Hamiltonian on the hyperbolic directions, locally around
the origin, and the explicit representation of its solutions are

u1 = u1 exp{(1 + Λ1(η1, η2))t} v1 = v1 exp{−(1 + Λ1(η1, η2))t}
u2 = u2 exp{(λ+ Λ2(η1, η2))t} v2 = v2 exp{−(λ+ Λ2(η1, η2))t} (16)

Let us denote now by I(0), Θ(0) and Q(0)
i ,P(0)

i , i = 1, 2 the components of the solutions of H(0) in the elliptic and
in the hyperbolic directions respectively, when the initial conditions are taken on Nu

+(c). Therefore, the (unperturbed)
map S0 can be written as:

S0 :


ϕ

ξ

q2

p2

 7→


ϕ

ξ

q2

p2

 =


Θ(0)(τ̂(ξ, q2, p2; c), ξ, q2, p2; c)
I(0)(τ̂(ξ, q2, p2; c), ξ, q2, p2; c)

Q(0)
2 (τ̂(ξ, q2, p2; c), ξ, q2, p2; c)

P(0)
2 (τ̂(ξ, q2, p2; c), ξ, q2, p2; c)

 =


Df(ξ)τ̂(ξ, q2, p2; c) + ϕ

ξ

Q(0)
2 (τ̂(ξ, q2, p2; c), ξ, q2, p2; c)

P(0)
2 (τ̂(ξ, q2, p2; c), ξ, q2, p2; c)

 . (17)

We stress that the first two components can be written explicitly, for the unperturbed Hamiltonian H(0) is separable in
the elliptic and hyperbolic directions. Here, it has been taken into account the form of the Birkhoff transformation (13),
that u1 = d on Nu

+(c), v1 = ±d on Ns
±(c) and that η2 = u2v2 = u2v2. On the other hand, we note that close to

TI̊,0(c)× γ (with ξ = I̊ ∈ f−1(c), u2 = v2 = 0), τ̂(I̊ , 0, 0; c) = T0, the time taken for the homoclinic orbit γ starting at
Nu

+(c) to meet Ns
±(c).

To construct S0 thought of as a Poincaré map between two different transversal sections, namely Nu
+(c) and Ns

±(c),
we put together (16) and (17):

S0 :


ϕ

ξ

u2

v2

 7→


ϕ

ξ

u2

v2

 =


Df(ξ)τ(ξ, u2, v2; c) + ϕ

ξ

u2 exp{(λ+ Λ2(η1, η2))τ(ξ, u2, v2; c)}
v2 exp{−(λ+ Λ2(η1, η2))τ(ξ, u2, v2; c)}

 (18)
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where τ(ξ, u2, v2; c) = τ̂(ξ, φ−1(u2, v2); c). Using the last two equations (18), we define the functions G1, G2 of
ξ, u2, v2, u2, v2:

G1(ξ, u2, v2, u2, v2; c) := ū2 − u2 exp{(λ+ Λ2(η1, η2))τ(ξ, u2, v2; c)} (19)

G2(ξ, u2, v2, u2, v2; c) := v̄2 − v2 exp{−(λ+ Λ2(η1, η2))τ(ξ, u2, v2; c)}. (20)

Therefore, from the equations G1(ξ, u2, v2, u2, v2; c) = 0 and G2(ξ, u2, v2, u2, v2; c) = 0, u2, v̄2, can be casted as
functions of ū2, v2, in a neighbourhood of (ξ, u2, v2, u2, v2) = (I̊ , 0, 0, 0, 0), with I̊ ∈ f−1(c). To check this, one first
obtains the corresponding Jacobian is then given by

∂(G1, G2)
∂(u2, v̄2)

(I̊ , 0, 0, 0, 0; c) =

∣∣∣∣∣ − exp{λT0} 0

0 1

∣∣∣∣∣ (21)

which is different from zero since T0 is a constant. Therefore, for a fixed c, there exists in a neighbourhood of
(ξ, u2, v2, u2, v2) = (I̊ , 0, 0, 0, 0) with ξ = I̊ ∈ f−1(c) (and hence in a neighbourhood of TI̊,0(c)× γ, I̊ ∈ f−1(c)), where
two functions u2, v̄2 display as functions of ξ, ū2, v2, respectively: u2 = U0(ξ, ū2, v2; c), v̄2 = V0(ξ, ū2, v2; c). In this
way, the global map for the unperturbed Hamiltonian, H(0) can be expressed through the form

S̃0 :


ϕ

ξ

u2

v̄2

 7→


Df
(
ξ
)
τ̃
(
ξ, ū2, v2; c

)
+ ϕ

ξ

U0 (ξ, ū2, v2; c)

V0 (ξ, ū2, v2; c)

 , (22)

where τ̃
(
ξ, ū2, v2; c

)
:= τ

(
ξ,U0 (ξ, ū2, v2; c) , v2; c

)
, c held fixed. Furthermore as the above is a symplectic map defined

in a connected set, the 1-form: $ = u2dv2 + v2du2 + ϕdξ + ξdϕ must be closed. Hence, there exists a generating
function, R0

(
ϕ, ξ, ū2, v2; c

)
, such that

ϕ =
∂R0

∂ξ

(
ϕ, ξ, ū2, v2; c

)
= ϕ+Df

(
ξ
)
τ̃
(
ξ, u2, v2; c

)
, ξ =

∂R0

∂ϕ

(
ϕ, ξ, ū2, v2; c

)
= ξ,

u2 =
∂R0

∂v2

(
ϕ, ξ, ū2, v2; c

)
= U0

(
ξ, ū2, v2; c

)
, v̄2 =

∂R0

∂u2

(
ϕ, ξ, ū2, v2; c

)
= V0

(
ξ, ū2, v2; c

)
.

(23)

Then, the perturbed global map S̃ε has the generating function

Rε
(
ϕ, ξ, ū2, v2; c

)
= R0

(
ϕ, ξ, ū2, v2; c

)
+ εR1

(
ϕ, ξ, ū2, v2, ε; c

)
. (24)

We can change the coordinates in such a way that the traces As,u
I,ε of the torus TI,ε on Nu

+(c) and Ns
±(c) have the

representations As
I,ε = {ξ̄ = I, ū2 = 0} and Au

I,ε = {ξ = I, v2 = 0} (see [KLDG05] for details). A homoclinic orbit
biasymptotic to the torus TI,ε is given by an intersection between Sε(Au

I,ε) and As
I,ε. To find such intersections we

have to solve the system of equations,

ϕ =
∂Rε

∂ξ
(ϕ, I, 0, 0; c), I =

∂Rε
∂ϕ

(ϕ, I, 0, 0; c), ū2 =
∂Rε
∂v2

(ϕ, I, 0, 0; c), v2 =
∂Rε
∂ū2

(ϕ, I, 0, 0; c). (25)

In fact, the intersection can be detected from the second equation above, namely, taken into account (23) we can write:

0 =
∂R1

∂ϕ
(ϕ, I, 0, 0, ε; c), (26)

If we find a simple solution ϕ∗0(I; c) of (26) for ε = 0, then the implicit function theorem can be applied to obtain a
perturbed solution ϕ∗ε(I; c) of (25) for ε small enough. Substituting it into other equations of (25), we obtain the other
coordinates of the solution. In this way, the function R1 allows us to establish the main result of this section.

Theorem 1 For a given torus TI,ε, let c = f(I) and assume that R1(ϕ, I, 0, 0, 0; c) is a Morse function on Tn. Then,
for ε small enough there exist at least 2n+1 homoclinic orbits to TI,ε.
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Remarks.

1. In general, for a function of n angles the minimum number of intersections is 2n, unless there are some symmetries
as in our case owing to assumption (D). More precisely, this is discussed in Section 4.

2. A related result was obtained in [LMS03] using a different technique, that leads to a system of equations similar
to (25). In that paper, some topological techniques were used in order to show the existence of intersections,
since a gradient form is not as transparent as in (26).

3. To arrive at (26), we had to assume ε 6= 0 since we divided by ε. Indeed, for ε = 0 there is a degeneracy in the
second equation of (25): in this case ϕ ∈ Tn can be chosen freely and we have a whole homoclinic cylinder (as
described in Section 1).

3 The Mel′nikov potential

The arguments given in the previous section show that the existence of (transverse) homoclinic orbits seems to be,
in principle, quite general. But it looks rather hard to apply those arguments to a given Hamiltonian. In order to
detect the effective existence of transverse homoclinic orbits in a concrete case, and to obtain a first approximation for
such orbits, the standard procedure is the Poincaré–Mel ′nikov method. This method provides the (vector) Mel′nikov
function as an approximation to the distance between the stable and unstable manifolds Ws,u

I,ε of a given torus TI,ε. A
transverse homoclinic orbit corresponds to a simple zero of this function. Besides, the Hamiltonian character of the
equations allows us to look for nondegenerate critical points of the (scalar) Mel′nikov potential, whose gradient is the
Mel′nikov function (see [DG00]).

For the sake of simplicity in the formulation of the method, we restrict ourselves to the case of an unperturbed
Hamiltonian H(0) and a perturbation H(1), satisfying the hypotheses (A,B,C2,D2) described in Section 1.

It will be convenient to use the coordinates ζ = (ϕ, ξ, q1, p1, u2, v2). In this way, we replace (x, y) by the symplectic
polar coordinates (ϕ, ξ) introduced in (2); the reason for this is that the actions ξ = (ξ1, . . . , ξn), which are first
integrals of H(0), allow us to provide a first approximation for the distance. On the other hand, for the pendulum
P1 we keep the global coordinates (q1, p1) because we take into account the whole loop γ. For the pendulum P2 we
replace (q2, p2) by the local coordinates (u2, v2), since we only need to consider a neighbourhood of the loop γ in its
transverse directions.

Recall that the unperturbed stable and unstable manifolds Ws,u
I,0 intersect along the homoclinic cylinder TI,0 × γ,

which is an (n+ 1)-dimensional manifold, and that they are both contained in a (2n+ 3)-dimensional energy level. To
measure the distance between the perturbed manifoldsWs,u

I,ε , we consider (2n+3)−(n+1) = n+2 directions, transverse
to the homoclinic cylinder. The usual approach in the Poincaré–Mel′nikov method (see for instance [DG00]), is to
consider a certain number first integrals of H(0) (as many as possible), independent on the energy level, and such that
their gradients are transverse to the unperturbed intersection. We have ξ1, . . . , ξn, P1 as suitable first integrals, but
only n of them are independent, say ξ1, . . . , ξn. The distance along the directions provided by such first integrals will
be O(ε). The second pendulum P2 = g2(u2v2) is another first integral, but it is degenerate on the homoclinic cylinder.
To complete the set of n + 2 directions, we are going to consider the coordinates u2, v2, although they are not first
integrals and the distance along the associated directions will be O(1).

Let us describe the parameterizations to be used. We consider a fixed Diophantine torus TI,ε in the centre manifold
Wc, with actions I = (I1, . . . , In). This torus can be parameterized by θ = (θ1, . . . , θn) ∈ Tn in the coordinates provided
by KAM theorem (see Section 1). Let Z∗ = Z∗I,ε(θ) be the parameterization of the torus TI,ε in the coordinates ζ,
and let us denote I∗ = (I∗1 , . . . , I∗n) the ξ-components of Z∗.

Recall from (8) that we denote Au
I,ε, As

I,ε the traces of the invariant manifoldsWu
I,ε,Ws

I,ε on the transverse sections
Nu = Nu

+, N s = N s
± respectively. The transverse sections N s,u have been defined in (7) by a number d, which can be

chosen small enough (not depending on ε) in such a way that the traces are contained in the domain of validity of (6).
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As we showed, such traces can be considered as cylinders (homeomorphic to Tn × R), which makes a difference with
the case of 1 saddle, where such traces are just tori (homeomorphic to Tn, see [KLDG05]).

For the trace Au
I,ε, we consider a parameterization Zu = Zu

I,ε(θ, û2), with the parameters θ ∈ Tn and small û2 ∈ R
(as in the unperturbed trace Au

I,0). The angles θ can be taken in such a way that the trajectory starting at a point
Zu
I,ε(θ, û2) is asymptotic for t→ −∞ to the trajectory starting at Z∗I,ε(θ). Similarly, for the trace As

I,ε we consider a
parameterization Zs = Zs

I,ε(θ, v̂2), where the the trajectory starting at this point is asymptotic for t→∞ to the one
starting at Z∗I,ε(θ). For the parameterizations Zs,u of the traces, we consider their ξ-components Is,u = (Is,u

1 , . . . , Is,u
n ),

and we are also interested in their (u2, v2)-components U s,u
2 , Vs,u

2 . (It is clear, for the parameterization Z∗ of the torus,
that we have U∗2 = V∗2 = 0.)

Now, we consider the image of Au
I,ε through the global map Sε : Nu → N s, and denote Z̄u = Z̄u

I,ε(θ, û2) the
parameterization of Sε(Au

I,ε) inherited from Au
I,ε, i.e. Z̄u is the point where the trajectory starting at a point Zu

intersects N s. As before, we denote Īu = (Īu
1 , . . . , Īu

n), Ūu
2 , V̄u

2 the (ξ, u2, v2)-components of the point Z̄u.

Our aim is to detect the transversality between the cylinders Sε(Au
I,ε) and As

I,ε. To study this, we are going to
take the distance, along the (ξ, u2, v2)-directions, between two points Z̄u, Zs belonging to those cylinders. In order to
measure the distance correctly, the phase θ in the parameters of each point has to be chosen carefully.

First, we provide a suitable description of the trajectories in the unperturbed case ε = 0. A trajectory of H(0) on
Wu
I,0 is given, in the coordinates (ϕ, ξ, q1, p1, u2, v2), by

ζu
I,0(t; θ, û2) = (θ + tω̃I , I, q

h
1 (t), q̇h

1 (t), u(0)
2 (t; û2), 0), (27)

where we denote ω̃I = ω̃(I) as defined in (5), the function qh
1 (t) was introduced in (11), and we use the notation

(u(0)
2 (t; û2), 0) for the trajectory of g2(u2v2) starting at (û2, 0) (this trajectory tends to (0, 0) as t → −∞ with

exponential rate). Analogously, a trajectory on Ws
I,0 is given by

ζs
I,0(t; θ, v̂2) = (θ + tω̃I , I, q

h
1 (t), q̇h

1 (t), 0, v(0)
2 (t; v̂2)), (28)

where (0, v(0)
2 (t; v̂2)) denotes the trajectory of g2(u2v2) starting at (0, v̂2) (it tends to (0, 0) as t→∞ with exponential

rate).

Clearly, the trajectories (27–28) are asymptotic (with exponential estimates), for t→ −∞ and t→∞ respectively,
to the following trajectory on the unperturbed torus:

ζ∗I,0(t; θ) = (θ + tω̃I , I, 0, 0).

Notice also that the unperturbed trajectories with û2 = v̂2 = 0 coincide:

ζI,0(t; θ) := ζu
I,0(t; θ, 0) = ζs

I,0(t; θ, 0),

becoming homoclinic trajectories, biasymptotic for t → ±∞ to the same trajectory ζ∗I,0(t; θ). The union of such
trajectories ζI,0(t; θ) over θ ∈ Tn fills the unperturbed homoclinic cylinder Tn × γ. (We point out that this is due to
the fact that our unperturbed Hamiltonian H(0) in (3) is separable or “uncoupled”; in a more general situation the
coincidence of the asymptotics for t→ ±∞ does not take place, giving rise to a more complicated expression for the
Mel′nikov potential; see [DG00].)

The trajectories (27–28) satisfy, for t = 0, the initial conditions ζu
I,0(0; θ, û2) = (θ, I, π, 0, û2, 0) and ζs

I,0(0; θ, v̂2) =
(θ, I, π, 0, 0, v̂2). Let T1, T2 > 0 be such that ζu

I,0(−T1; θ, û2) ∈ Nu, ζs
I,0(T2; θ, v̂2) ∈ N s. We have T1, T2 ∼ ln(1/d),

where d is the number that defines the sections N s,u in (7).

For the perturbed Hamiltonian, ε 6= 0, we are going to detect transverse intersections by comparing the (ξ, u2, v2)-
components of two points Z̄u and Zs, both belonging to the section N s. The values of T1, T2 are taken into account
in order to choose the phases of the points to be compared:

Z̄u
I,ε(θ − T1ω̃I , u

(0)
2 (−T1; û2)) and Zs

I,ε(θ + T2ω̃I , v
(0)
2 (T2; v̂2)).
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(notice that they coincide for ε = 0, û2 = v̂2 = 0, and any θ ∈ Tn). With that choice of the parameters, the transverse
intersections will be given by simple zeros (θ∗, û∗2, v̂

∗
2) of the set of differences

Īu(· · ·)− Is(· · ·), Ūu
2 (· · ·)− U s

2(· · ·), V̄u
2 (· · ·)− Vs

2(· · ·). (29)

Theorem 2 Let θ∗0 be a nondegenerate critical point of the Mel ′nikov potential LI(θ), defined in (12). Then, for ε
small enough there exists a transverse homoclinic orbit, given by a simple zero of the differences (29), of the form
(θ∗, û∗2, v̂

∗
2) = (θ∗0 , 0, 0) +O(ε),

Proof. We use that the trajectories on the invariant manifoldsWs,u
I,ε are close to the unperturbed trajectories onWs,u

I,0.
For any θ ∈ Tn, and small û2, v̂2, let us consider the trajectories

ζu(t) := ζu
I,ε(t; θ, û2), ζs(t) := ζs

I,ε(t; θ, v̂2) (30)

satisfying the initial conditions

ζu(−T1) = Zu
I,ε(θ − T1ω̃I , u

(0)
2 (−T1; û2)), ζs(T2) = Zs

I,ε(θ + T2ω̃I , v
(0)
2 (T2; v̂2)). (31)

The trajectory ζu(t) is O(ε)-close to ζu
0 (t) := ζu

I,0(t; θ, û2) for t ≤ −T1. In an analogous way, the trajectory ζs(t)
is O(ε)-close to ζs

0(t) := ζs
I,0(t; θ, v̂2) for t ≥ T2. Both trajectories (30) are asymptotic, for t → −∞ and t → ∞

respectively, to the trajectory ζ∗(t) := ζ∗I,ε(t; θ) on the torus TI,ε, starting at ζ∗(T2) = Z∗I,ε(θ + T2ω̃I); this trajectory
is O(ε)-close to ζ∗0 (t) := ζ∗I,0(t; θ) for all t.

The estimate of ζu(t) as O(ε)-close to ζ0(t) can also be extended to the interval −T1 ≤ t ≤ T2, whose length is
∼ ln(1/d), not depending on ε (see [KLDG05] for more details). Using this estimate, and the fact that the trajectory
ζu(t) intersects N s transversely, we deduce that Z̄u = ζu(T2 +O(ε)) and, for the actions, Īu = ξu(T2) +O(ε2) since
ξ̇ = O(ε).

Let us expand in ε the (ξ, u2, v2)-components of the trajectories ζu(t) and ζs(t); these expansions are valid for
t ≤ T2 and t ≥ T2 respectively:

ξu(t) = I + εξu,(1)(t) +O(ε2),

uu
2(t) = u

(0)
2 (t) +O(ε),

vu
2 (t) = O(ε),

ξs(t) = I + εξs,(1)(t) +O(ε2),
us

2(t) = O(ε),

vs
2(t) = v

(0)
2 (t) +O(ε).

where we have written down only the terms that will be necessary. To simplify the notation, we have hidden the
dependence on the parameters: ξu,(1)(t) := ξ

u,(1)
I (t; θ, û2), ξs,(1)(t) := ξ

s,(1)
I (t; θ, v̂2), u(0)

2 (t) := u
(0)
2 (t; û2), v(0)

2 (t) :=
v

(0)
2 (t; v̂2). Notice that the unperturbed terms in the expansions have been taken from (27–28). Recall that the

unperturbed actions ξj are all constant (= Ij), because they are first integrals of the unperturbed Hamiltonian H(0),
whereas the “hyperbolic” coordinates u2, v2 are not first integrals.

The differences (29) are given by

Īu(· · ·)− Is(· · ·) = ξu(T2)− ξs(T2) +O(ε2) = ε
(
ξu,(1)(T2)− ξs,(1)(T2)

)
+O(ε2),

Ūu
2 (· · ·)− U s

2(· · ·) = uu
2(T2)− us

2(T2) +O(ε) = u
(0)
2 (T2) +O(ε),

V̄u
2 (· · ·)− Vs

2(· · ·) = vu
2 (T2)− vs

2(T2) +O(ε) = −v(0)
2 (T2) +O(ε).

We see from the implicit function theorem that, in the two equations Ūu
2 − U s

2 = V̄u
2 − Vs

2 = 0, we can solve

û2 = ũ2(θ; I, ε) = O(ε), v̂2 = ṽ2(θ; I, ε) = O(ε).

Replacing such solutions into the equation Īu−Is = 0, the transverse intersections are given, in a first approximation,
by the simple zeros of the (vector) Mel ′nikov function

MI(θ) = ξ
u,(1)
I (T2; θ, 0)− ξs,(1)

I (T2; θ, 0).
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A standard argument shows that the function MI(θ) can be expressed in terms of the perturbation H1. To deduce
the formula, we consider the trajectories ζs,u(t) = ζs,u

I,ε(t; θ, 0) defined in (30–31), with û2 = v̂2 = 0. We see from the
Hamiltonian equations for H = H(0) + εH(1) that ξ̇u = −ε∂ϕH(ζu) and, expanding this equality in ε and taking the
term of degree 1, we obtain: ξ̇u,(1) = −∂ϕH(1)(ζu

0 ), and similarly for ξs,(1). Since we consider û2 = v̂2 = 0, we have
ζu
0 = ζs

0 = ζ0. Then, we can obtain ξu,(1)(T2) and ξu,(1)(T2) as simple integrals, taken over the intervals t ≤ T2 and
t ≥ T2 respectively. In general these integrals are not absolutely convergent, but this difficulty can be overcome using
that both trajectories ζs,u(t) are asymptotic, with an exponential bound, to the trajectory ζ∗(t) on the torus TI,ε (see
[DG00]). As before, we can expand in ε this trajectory, and we obtain absolutely convergent integrals:

ξu,(1)(T2)− ξ∗,(1)(T2) = −ε
∫ T2

−∞

(
∂ϕH

(1)(ζ0(t))− ∂ϕH(1)(ζ∗0 (t))
)

dt,

ξs,(1)(T2)− ξ∗,(1)(T2) = ε

∫ ∞
T2

(
∂ϕH

(1)(ζ0(t))− ∂ϕH(1)(ζ∗0 (t))
)

dt.

Substracting the two integrals we obtain the Mel′nikov function MI(θ) as a single integral, which is clearly the gradient
of the Mel′nikov potential LI(θ) defined in (12). Each nondegenate critical point θ∗ of LI(θ) gives rise, for ε small
enough, to a simple zero (θ∗, û∗2, v̂

∗
2) of the differences (29).

Remark. The difficulty about the absolute convergence does not take place if we consider ν = 1 in Hypothesis (D2).
Indeed, in this case the perturbation H(1) vanishes on the unperturbed tori TI,0, and we have a simpler expression for
the Mel′nikov potential in (12).

4 On the number of transverse homoclinic orbits

As we showed in Section 3, the nondegenerate critical points θ∗ of the Mel′nikov potential LI(θ) give rise to transverse
homoclinic orbits of the torus TI,ε for ε small enough. We are going to show that, under Hypothesis(D2) on the
perturbation H(1), the Mel′nikov potential (12) can easily be computed and, generically, it will be a Morse function
on Tn, In such a case, we also provide lower and upper bounds for the number of critical points.

Let ĥ(ϕ, ξ, u2, v2) denote the function h, expressed in the coordinates ζ used in Section 3. Using that cos qh1 (t)−1 =
−2/ cosh2 t, we get from Hypothesis (D2) the following expression for the Mel′nikov potential:

LI(θ) = 2
∫ ∞
−∞

ĥ(θ + tω̃I , I, 0, 0)
cosh2 t

dt (32)

(not depending on the value of ν). To compute this integral, it is standard to consider the Fourier expansion in θ. For
any k ∈ Zn, we have∫ ∞

−∞

cos 〈k, θ + tω̃I〉
cosh2 t

dt = J〈k,eωI〉 cos 〈k, θ〉 ,
∫ ∞
−∞

sin 〈k, θ + tω̃I〉
cosh2 t

dt = J〈k,eωI〉 sin 〈k, θ〉 , (33)

where, by residue theory,

Ja =
∫ ∞
−∞

cos at
cosh2 t

dt =
πa

sinh(πa/2)
, a 6= 0; J0 = 2.

Let us consider the expansion of h in homogeneous polynomials, h(x, y, 0, 0) =
∑
m≥2

h(m)(x, y), starting at order 2 by

our hypotheses. Let us write each homogeneous part in symplectic the symplectic polar coordinates (2): h(m)(x, y) =
ĥ(m)(ϕ, ξ); this is a trigonometric polynomial of degree ≤ m in ϕ, with coefficients being homogeneous polynomials of
degree m in

√
ξ1, . . . ,

√
ξn. By the previous formulas, we see that we can consider an expansion of the same type for

the Mel′nikov potential, LI(θ) =
∑
m≥2

L
(m)
I (θ), with each L̂(m)(θ) being a trigonometric polynomial of degree ≤ m in

θ, with coefficients being homogeneous polynomials of degree m in
√
I1, . . . ,

√
In.
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This says that, for small |I|, the Mel′nikov potential LI(θ) is dominated by the terms in L(2)
I (θ). For a given action

I, this is a trigonometric polynomial of degree ≤ 2 in θ.

The argument will be an extension of the one given in [KLDG05] for the case of only 2 angles. Let us consider the
terms of order 2 in h, grouped in the following way:

h(2)(x, y) =
∑

1≤j≤l≤n

(ajlxjxl + bjlxjyl + cjlyjxl + djlyjyl)

(for j = l, we consider cjj = 0). In the symplectic polar coordinates, this function becomes

ĥ(2)(ϕ, ξ) =
∑

1≤j≤n

ξj((djj − ajj) cos 2ϕj + bjj sin 2ϕj + (ajj + djj))

+
∑

1≤j<l≤n

√
ξjξl((djl − ajl) cos(ϕj + ϕl) + (bjl + cjl) sin(ϕj + ϕl)

+ (ajl + djl) cos(ϕj − ϕl) + (bjl − cjl) sin(ϕj − ϕl)).

Using the formulas (32–33), we can compute the part of order 2 of the Mel′nikov potential:

L
(2)
I (θ) = 2

∑
1≤j≤n

Ij((djj − ajj)J2ωj
cos 2θj + bjjJ2ωj

sin 2θj + (ajj + djj)J0)

+2
∑

1≤j<l≤n

√
IjIl((djl − ajl)Jωj+ωl

cos(θj + θl) + (bjl + cjl)Jωj+ωl
sin(θj + θl)

+ (ajl + djl)Jωj−ωl
cos(θj − θl) + (bjl − cjl)Jωj−ωl

sin(θj − θl)), (34)

where we have replaced 〈k, ω̃I〉 by 〈k, ω〉, since the part depending on I goes to the terms L(m)
I (θ) with m > 2.

For any fixed I = (I1, . . . , In), we have to study for nondegenerate critical points of L(2)
I (θ). We have a homogeneous

trigonometric polynomial of degree 2 (plus constant terms (ajj + djj)J0 that do not need to take into account). This
homogeneous polynomial is of generic type if we assume that I1, . . . , In > 0. Its critical points depend on I1, . . . , In,
but they are constant along the rays Ij/In = const, j = 1, . . . , n − 1. Generically, a homogeneous trigonometric
polynomial of degree 2 is a Morse function, i.e. its critical points are all nondegenerate. We are going to provide lower
and upper bounds for the number of critical points. Such nondegenerate critical points constitute an approximation
for the critical points of the whole Mel′nikov potential LI(θ), and are in correspondence with transverse homoclinic
orbits.

Theorem 3 Let B be the set of actions I such that L(2)
I (θ) is a Morse function of θ ∈ Tn. Then, for I in an open

subset of B, and ε small enough, the torus TI,ε has transverse homoclinic orbits, whose number is even, between 2n+1

and 22n.

Proof. For a Morse function on Tn, a well-known result from Morse theory [Mil63] says that there are at least
2n critical points. However, in the case under consideration, the function K(θ) := L

(2)
I (θ) (a homogeneous trigonometric

polynomial of degree 2 plus a constant) has a symmetry, which implies that the minimum number of critical points
will be higher. Namely, we see from (34)

that the map on Tn defined by

S : (θ1, . . . , θn) 7−→ (θ1 + π, . . . , θn + π) (35)

satisfies K ◦ S = K. In view of this, we carry out the linear change on Tn defined by

ψj = θj − θj+1, j = 1, . . . , n− 1, ψn = θn
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(it is one-to-one, since it is defined by a matrix with determinant = 1), and consider our function expressed in the
new coordinates: K(θ) = K̃(ψ). Then, the symmetry S becomes

S̃ : (ψ1, . . . , ψn−1, ψn) 7−→ (ψ1, . . . , ψn−1, ψn + π),

i.e. only one coordinate is concerned. Thus, the function K̃(ψ) is 2π-periodic in ψ1 . . . , ψn−1, but π-periodic in ψn. In
other words, we have two copies of a “reduced” function, and we have at least 2n · 2 = 2n+1 critical points.

In order to provide an upper bound for the number of critical points, we use algebraic arguments. In fact, we are
going to obtain a somewhat more general result: if a homogeneous trigonometric polynomial K(θ), of degree m, is a
Morse function on Tn, then it has at most (2m)n critical points. To prove this, we consider the system of n equations

∂θj
K(θ1, . . . , θn) = 0, j = 1, . . . , n,

whose solutions are the critical points. The left hand sides are homogeneous trigonometric polynomials of degree m
(with zero mean, i.e. no constant terms). Let us denote xj = sin θj , yj = cos θj (we can imagine this as coming
back to the original coordinates of the n centres). Then, the previous equations turn into n polynomial equations,
homogeneous of degree m. Adding the identities sin2 θj + cos2 θj − 1 = 0, we obtain a system of 2n equations:

Pj(x1, y1, . . . , xn, yn) = 0, x2
j + y2

j − 1 = 0, j = 1, . . . , n,

Introducing homogeneous coordinates xj = Xj/Z, yj = Yj/Z, the system of equations becomes

Pj(X1, Y1, . . . , Xn, Yn) = 0, Qj(Xj , Yj , Z) = X2
j + Y 2

j − Z2 = 0, j = 1, . . . , n. (36)

Applying Bézout’s theorem [Sha94, p. 236] to this system, one can establish that the number of solutions is either
infinite, or equal to the product of the degrees of the equations: (2m)n. This number includes both real and complex
solutions (counted with multiplicity), as well as solutions at infinity. Notice that all real solutions correspond to the
critical points of K(θ), since solutions at infinity (Z = 0), if they occur, are all complex. To exclude the possibility
of an infinite number of solutions, notice that in such a case some pair of polynomials in (36) would have a common
factor. It is clear that Qj , Ql, j 6= l, have no common factor. Also, since the variable Z does not come into Pj , no
common factors exist between Pj and Ql, for any j, l. Finally, suppose that Pj , Pl, j 6= l, have a common factor:
Pj = RjF , Pl = RlF . Since these polynomials have real coefficients, we may assume that F is a real common factor
(if they have a complex common factor G, then F = GḠ would be a real common factor). Then, real solutions with
F = 0 would not be isolated, contradicting the nondegeneracy of the critical points. Otherwise, if there are not real
solutions with F = 0, we could replace Pj , Pl by Rj , Rl in the system (36), obtaining in this way a new system with
the same real solutions, but no common factors. For this new system, the number of solutions provided by Bézout’s
theorem would be finite.

In this way, we have an upper bound for the number of critical points. In our case m = 2, this upper bound
is (2m)n = 22n. Recall that we also have a lower bound 2n+1. Among the solutions of the system (36), we have
to exclude complex solutions, and solutions at infinity (which are also complex). Since complex solutions come in
conjugated pairs, we have an even number of critical points.

Once we have established the possible number of critical points of L(2)
I (θ) = K(θ), we have to extend this result to

the whole Mel′nikov potential LI(θ). Recall that the coefficients of L(2)
I (θ) are homogeneous polynomials of degree 2

in
√
I1, . . . ,

√
In. This says that, if we consider the dependence of the critical points on I = (I1, . . . , In), they are

constant along the rays Ij/In = rj , j = 1, . . . , n− 1, and the concrete rays where the Morse condition is not fulfilled
have to be excluded. For |I| small enough, we can see LI(θ) = L

(2)
I (θ) + O(|I|3/2) as a perturbation and it will be

also a Morse function, whose critical points tend to constant along each ray Ij/In = rj , as |I| → 0. In this case, we
have to exclude a small neighbourhood of the rays Ij/In = rj where the Morse condition fails, and consider the union
of the remaining rays. Finally, to obtain the set B of the theorem we have to select the actions I with Diophantine
frequencies ω̃I . For the surviving perturbed tori TI,ε, we have as many transverse homoclinic orbits as the number of
critical points of the Mel′nikov potential.

Remarks.

1. The case n = 1 (i.e. only 1 centre) is much simpler and one directly obtains from the expression of L(2)
I (θ) that

the number of transverse homoclinic orbits is exactly 4.
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2. For the case n = 2, a constructive proof, but much longer, was provided in [KLDG05], obtaining either 8, 12 or
16 transverse homoclinic orbits.

3. For any value of n, we established that the number of critical points is even, using that the complex solutions
of (36) come in conjugated pairs. In fact, the complex solutions not at infinity come in groups of 4, due to
the conjugacy and to the symmetry (35), though this symmetry does not apply to the (complex) solutions at
infinity. However, in general such solutions at infinity will not occur (they have to satisfy Z = 0 as an additional
equation to (36)), and the number of critical points would be a multiple of 4.
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tonian systems. J. Nonlinear Sci., 10(4):433–476, 2000.

[GS95] V.G. Gelfreich and D.K. Sharomov. Examples of Hamiltonian systems with transversal homoclinic orbits. Phys.
Lett. A, 197(2):139–146, 1995.

[Ito89] Hidekazu Ito. Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv., 64(3):412–461,
1989.

[KLDG05] Oksana Koltsova, Lev Lerman, Amadeu Delshams, and Pere Gutiérrez. Homoclinic orbits to invariant tori near a
homoclinic orbit to center-center-saddle equilibrium. Phys. D, 201(3-4):268–290, 2005.

[LMS03] P. Lochak, J.-P. Marco, and D. Sauzin. On the splitting of invariant manifolds in multidimensional near-integrable
Hamiltonian systems. Mem. Amer. Math. Soc., 163(775):viii+145, 2003.

[LU98] L. M. Lerman and Ya. L. Umanskiy. Four-dimensional integrable Hamiltonian systems with simple singular points
(topological aspects), volume 176 of Translations of Mathematical Monographs. American Mathematical Society,
Providence, RI, 1998. Trans. from the Russian manuscript by A. Kononenko and A. Semenovich.

[Mil63] J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No.
51. Princeton University Press, Princeton, N.J., 1963.

[Mos56] Jürgen Moser. The analytic invariants of an area-preserving mapping near a hyperbolic fixed point. Comm. Pure
Appl. Math., 9:673–692, 1956.
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