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Applied Physics Department, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain

Received 12 July 2004; revised 14 October 2004; accepted 24 November 2004; published 8 March 2005.

[1] The dynamics of small-amplitude perturbations of an otherwise rectilinear coastline
due to the wave-driven alongshore sediment transport is examined at large time and
length scales (years and kilometers). A linear stability analysis is performed by using an
extended one-line shoreline model with two main improvements: (1) the curvature of the
coastline features is accounted for and (2) the coastline features are assumed to extend
offshore as a bathymetric perturbation up to a finite distance. For high incidence angles,
instability is found in accordance with Ashton et al. (2001). However, it is seen that
instability is inhibited by high waves with long periods and gently sloping shorefaces so
that in this case the coastline may be stable for any angle. Similarly, there is no instability
if the bathymetric perturbation is confined very close to the coast. It is found that the
traditional linearized one-line model (Larson et al., 1987) tends to overpredict the coastline
diffusivity. The overprediction is small for the conditions leading to a stable coastline and
for moderate incidence angles but can be very dramatic for the conditions favoring
instability. An interesting finding is that high-angle waves instability has a dominant
wavelength at the linear regime, which is in the order of 4–15 km, one to two orders of
magnitude larger than the length scale of surf zone rhythmic features. Intriguingly, this is
roughly the same range of the wavelength of some observed shoreline sand waves and, in
particular, those observed along the Dutch coast. A model application to this coast is
presented.
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1. Introduction

[2] In spite of the complexity of 3D nearshore morpho-
dynamics, the so-called one-line modeling has had some
success in understanding and predicting the dynamics of
sandy coastlines at large space and timescales [Pelnard-
Considère, 1956; Horikawa, 1988; Komar, 1998]. This is a
severe simplification and consists in averaging on the
vertical and the cross-shore directions so that the morpho-
dynamical active region collapses in a single line which
represents the coastline. The changes in coastline position
are then given by convergence/divergence of the total
alongshore sediment transport rate Q which is determined
just by the wave forcing without account of surf zone
hydrodynamics (water inertia, mass conservation, etc.).
Cross-shore sediment transport is usually not explicitly
considered. It is however always implicit to ensure the
sediment redistribution that is necessary to reach the equi-
librium beach profile after the changes which are driven by
alongshore transport. Despite all those simplifications, the
one-line modeling has been used for years, specially by
coastal engineers and has proven to have reasonable skill for
coastline evolution prediction at large time- and space scales

(years and kilometers) [Larson et al., 1987; Larson and
Kraus, 1991].
[3] The sediment transport rate Q at each position along

the coast depends on the angle between wave fronts in deep
water and the local coastline orientation, a1 [Komar, 1998;
Horikawa, 1988] (see Figure 1). The transport rate rises
from zero at normal wave incidence up to a maximum for
a1 ’ ac and drops to zero again for a1 = 90�. It was
shown by Ashton et al. [2001; see also Murray et al., 2001]
that the existence of such a maximum, which occurs for
ac ’ 42�, renders a rectilinear coastline unstable when the
incidence angle is larger than ac. To this end, Ashton et al.
[2001] used a nonlinear cellular model based on the one-line
concept. They found that if a1 > ac any small perturbation
of the rectilinear coastline grows. Nonlinear effects make
the largest perturbations eventually dominate so that large-
scale coastline patterns resembling shoreline sand waves,
capes and spits emerge. In general, their wavelength is not
fixed but grows with time.
[4] On the other hand, the existence of the ‘‘high-angle

waves instability’’ has some implications for the traditional
one-line coastline modeling whose linearized governing
equation is a diffusion equation [Pelnard-Considère,
1956]. For small amplitude perturbations, the formulation
of Ashton et al. [2001] leads to a diffusion equation too.
However, the diffusivity in the traditional approach is
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always positive while the coastline instability implies a
negative diffusivity. Falqués [2003] pointed out that the
discrepancy lies on the fact that the traditional one-line
model neglects the changes in wave height and angle at
breaking caused by the changes in coastline orientation.
This was found to be the cause of a significant over-
prediction of coastline diffusivity. However, both Ashton
et al. [2001] and Falqués [2003] use two important sim-
plifications: (1) any change of the coastline has its counter-
part into the bathymetric lines up to deep water and (2) the
modified bathymetric lines are rectilinear and parallel.
[5] The purpose of the present contribution is to take

further the analysis of coastline instability and diffusivity
initiated by those two papers by relaxing these hypotheses.
In nature, the changes in the coastline are certainly linked to
changes in the nearshore bathymetry but these changes
extend only up to a finite distance from the shore. Further-
more, the departure from the initially rectilinear coast is an
undulated shoreline so that the associated depth contours are
not rectilinear and parallel. However, for morphological
features with a very large alongshore length scale the
curvature of the bathymetric lines will be very small so
that the waves will feel almost rectilinear depth contours. In
addition, it is relatively reasonable in this case to assume
that the topographic perturbation may extend rather far
offshore. Therefore it is expected that the results of both
papers will hold for very large features. The main aim was
to check whether that expectation is true and to which
extend. However, by relaxing the rectilinear and parallel
depth contours assumption and by introducing a finite
offshore extend of the topographic perturbation new and
interesting phenomena that were not foreseen in those two
papers are now found. Formally, the procedure is to make a
linear stability analysis of the rectilinear coastline with
respect to small amplitude alongshore undulations. The
complex growth rates provide the coastline diffusivity (in
case of stability), a description of the high-angle waves
instability (HAWI) and the alongshore propagation of
shoreline sand waves.
[6] The new model is described in section 2 but some

details of the perturbed wave transformation are left for
Appendix A. The Assumptions on the reference topography
of the rectilinear coast and on the perturbed bathymetry are
explained in section 3. The overall results regarding coast-

line diffusivity and instability are presented in section 4.
Section 5 is devoted to the dominant wavelength for high-
angle wave instability. The physics underlying the model
results is discussed in section 6. An application of the model
to the Dutch coast is presented in section 7. Finally, an
overview, concluding remarks and discussion of limitations
of the model is presented in section 8.

2. Extended One--Line Formulation

2.1. Governing Equations

[7] A cartesian coordinate system is assumed, x seaward
in the cross-shore direction, y running alongshore and z
upward along the vertical. The aim is a description of the
dynamics of the small departures of the coastline with
respect to its rectilinear trend given by the y axis. We will
here extend the traditional one-line formulation according to
which the dynamics of the coastline is described by the
sediment conservation:

�D
@xs
@t

¼ � @Q

@y
; ð1Þ

where Q is the total sediment transport rate (m3s�1) in the
y direction, t is time and the perturbed coastline is given
by x = xs(y, t) [Pelnard-Considère, 1956; Horikawa, 1988;
Komar, 1998]. The average active water depth �D is of the
order of the depth of closure, Dc, and a precise definition
of it will be given in section 2.2. We will consider here the
widely used CERC formula [Komar, 1998; Horikawa,
1988] for the sediment transport rate:

Q ¼ mH5=2
b sin 2abð Þ � 2r

b
cos abð Þ @Hb

@y

� �
; ð2Þ

where Hb is the (rms) wave height and ab is the
angle between wave fronts and coastline at breaking (see
Figure 1). The constant in front of it is of order m � 0.1–
0.2 m1/2 s�1 and b is the beach slope at the shoreline.
According to Horikawa [1988] the nondimensional con-
stant r ranges between 0.5 and 1.5. The value r = 1 has
been used for our modeling. Other expressions could be
worked out but as long as the qualitative trends with
respect to Hb and ab are similar no essential differences
are expected in the results.
[8] The computation of sediment transport with equation

(2) requires the previous knowledge of Hb(y, t) and ab(y, t).
These two quantities must be computed performing wave
transformation from deep water and at this point the
essential differences between the various approaches arise.
The traditional formulation set up by Pelnard-Considère
[1956] just ignores the perturbation in wave transformation
caused by the coastline changes. This is equivalent to keep
the bathymetric contours being parallel to the unperturbed
rectilinear coastline even if changes in coastline position
occur. The formulation used by Ashton et al. [2001] and
Falqués [2003] assumes that if the coastline orientation
changes the bathymetric contours change too, becoming
parallel to the new coastline. There are however two
important simplifications: the bathymetric changes extend
up to deep water and wave transformation is made by
assuming parallel depth contours which is inconsistent with

Figure 1. Sketch of the geometry and the variables. The
angle between the wave fronts and the local shoreline is a =
q � f.
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the wavy shape of the perturbed coastline. The present
model addresses these two limitations by considering a
finite offshore extend of the bathymetric perturbations and
by performing wave transformation on curvilinear depth
contours. How the new model deals with wave transforma-
tion up to breaking is described below.
[9] The wave direction is measured by the angle between

the wave rays and the �x axis, represented by �q and
defined by

kx ¼ �k cos q x; yð Þ ky ¼ k sin q x; yð Þ; ð3Þ

where k is the wave number vector (see Figure 1). If
the angle between the coastline and the y axis is
arctan(@xs/@y) = f, the angle between wave fronts and
bathymetric contours at breaking will be �ab = � qb(y, t) +
f(y, t). Wave transformation from deep water is done by
solving the wave front conservation and energy conservation
equations

r	 k ¼ 0 ð4aÞ

r 
 H2cg
� �

¼ 0 ð4bÞ

together with the dispersion relation [Mei, 1989; Horikawa,
1988]

w2 ¼ gk tanh kDð Þ ð5Þ

and boundary conditions in deep water, x = x1,

H x1; y; tð Þ ¼ H1 y; tð Þ q x1; y; tð Þ ¼ q1 y; tð Þ: ð6Þ

A single monochromatic wave train with H = Hrms and T =
Tp is considered here. The group velocity and the frequency
are cg and w, D is the water depth and g is gravity. Thus the
governing equations of the morphodynamic system are
equations (1), (4), and (5), with the boundary conditions (6)
and sediment flux, equation (2).

2.2. Dynamics of Small Departures From a Rectilinear
Coastline

[10] We will now derive the equation governing the
dynamics of small perturbations of the rectilinear coastline,
x = xs(y, t). Formally, the procedure is a linear stability
analysis. Thus a basic reference state corresponding to the
rectilinear coastline must be first found. Given an along-
shore uniform topography D = D0(x) with D0(0) = 0, and a
steady and uniform deep water wave input, H1(y, t) =
const., q1(y, t) = const., a steady and alongshore uniform
solution of our system is immediately found. The wave
number k0(x) is readily computed from equation (5). The
alongshore uniformity allows to cast equation (4a) into the
Snell law which, together with equation (4b), read

d

dx
k0 sin q0ð Þð Þ ¼ 0

d

dx
cg cos q0ð ÞH2

0

� �
¼ 0; ð7Þ

from where the wave incidence angle, q0(x), and wave
height, H0(x), are found. Since Hb and ab are alongshore

uniform, so is the sediment transport Q and the steady and
rectilinear coastline xs(y, t) = 0 is a solution of equation (1).
Therefore

xs ¼ 0 ; k ¼ k0 xð Þ ; q ¼ q0 xð Þ ; H ¼ H0 xð Þ ð8Þ

is a solution of the system and will hereinafter be considered
as the basic reference state.
[11] We now consider a small deviation of the rectilinear

coastline given by xs(y, t). Associated to it we will assume a
topographic perturbation with total water depth given by

D x; y; tð Þ ¼ D0 xð Þ � h x; y; tð Þ ¼ D0 xð Þ � b f xð Þ xs y; tð Þ; ð9Þ

with a shape function f(x) that verifies f(0) = 1 and f(xc) = 0,
where xc is the offshore distance where the depth of closure
is reached, D0(xc) = Dc. The assumption of a fixed cross-
shore shape of the bathymetric perturbation is one of the
important assumptions of the model and is fully consistent
with the one-line coastline modeling concept. However, the
present extension can be seen as 1.5-D since the 1-D
morphodynamics induces bathymetric changes in 2DH that
feedback into the waves which, in turn, govern coastline
changes.
[12] Now, the one-line concept that all the sediment

deficit or excess on a cross-shore section is spent on
shoreline changes,

Z xc

0

h x; y; tð Þ dx ¼ �Dxs y; tð Þ; ð10Þ

provides, by comparing with equation (9), a definition of
the average active water depth:

�D ¼ b
Z xc

0

f xð Þ dx: ð11Þ

Notice that this makes our formulation consistent regarding
sediment conservation in 2DH.
[13] The departure from rectilinear and parallel depth

contours defined by equation (9) induces a perturbation
on the wave transformation:

k ¼ k0 xð Þ þ k 0 x; y; tð Þ; q ¼ q0 xð Þ þ q0 x; y; tð Þ; H ¼ H0 xð Þ
þ H 0 x; y; tð Þ; ð12Þ

which is calculated in Appendix A. Once the perturbed
wave transformation is known, the quantities defined at the
breaking line which are needed to compute sediment
transport can be evaluated. The position of the breaker line
in the basic state is given by H0(xb

0) = gbD0(xb
0). The same

expression applied to the perturbed water depth and wave
height at the perturbed breaker line,

H x0b þ x0b
� �

¼ gbD x0b þ x0b
� �

; ð13Þ

allows to determine its position from

x0b ¼
H 0 x0b; y; t
� �

þ gbh x0b; y; t
� �

gb
dD0

dx
x0b
� �

� dH0

dx
x0b
� � : ð14Þ
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The perturbations in wave angle and wave height at the
perturbed breaking line,

q0b y; tð Þ ¼ q x0b þ x0b; y; t
� �

� q0 x0b
� �

H 0
b y; tð Þ ¼ H x0b þ x0b; y; t

� �
� H0 x0b

� �
; ð15Þ

are then computed as

q0b ¼ q0 x0b; y; t
� �

þ dq0
dx

x0b
� �

x0b H 0
b ¼ H 0 x0b; y; t

� �
þ dH0

dx
x0b
� �

x0b:

ð16Þ

[14] Finally, owing to the linearized relationship

ab ¼ qb � f ’ qb �
@xs
@y

; ð17Þ

the morphodynamic governing equation

@xs
@t

¼
2m H0

b

� �5=2
�D

@2xs

@y2
� @q0b

@y

� �
cos 2q0b
� ��

� 5

4H0
b

@H 0
b

@y
sin 2q0b
� �

þ r

b
cos q0b
� � @2H 0

b

@y2

�
ð18Þ

readily follows from the linearized equations (1) and (2). It
is immediately seen that this equation reduces to the
classical one-line equation

@xs
@t

¼ �cla
@2xs

@y2
; ð19Þ

with

�cla ¼
2m
�D

H0
b

� �5=2
cos 2q0b
� �

ð20Þ

if the perturbations in wave angle and wave height are
neglected [Falqués, 2003]: q0b = 0, H0

b = 0. Notice that the
governing equation, in contrast with equation (19), is non
local. This means that @xs(t)/@t at a particular location y = y1
can not be determined only from xs(t) and its y derivatives at
y = y1. This is because @xs(y, t)/@t depends on the evaluation
of q0b, H

0
b and the latter quantities depend on the integration

of q0(x, y, t), H0(x, y, t) in all the nearshore domain which in
turn depends on the values of xs(y, t) for all y through the
perturbed bathymetry.
[15] The difficulty of a nonlocal governing equation can

be easily overcome by considering that any initial pertur-
bation can be expanded in Fourier modes so that the
behavior of the individual wave-like disturbances permits
to reconstruct the dynamics of arbitrary perturbations
because of the linearity of equation (18). Therefore we will
hereinafter consider perturbations of the form

xs y; tð Þ ¼ aestþimy þ c:c:; ð21Þ

with the associated perturbation in the bathymetry

D ¼ D0 xð Þ � ĥ xð Þestþimy þ c:c:; ð22Þ

where the bathymetric perturbation is given by ĥ(x) = baf(x).
Similar expressions are assumed for the wave quantities (see
Appendix A). By inserting these expressions in equation
(18) the growth rate s can be computed as

s ¼ �2m
m
�D

H0
b

� �5=2
mþ i

q̂0b
a

 !
cos 2q0b
� �(

þ rm

b
cos q0b
� �

þ 5i

4H0
b

sin 2q0b
� �� �

Ĥ 0
b

a

)
: ð23Þ

The imaginary part of the growth rate, si, provides the
alongshore celerity of each wave-like disturbance:

V mð Þ ¼ � si mð Þ
m

: ð24Þ

The sign of the real part of the growth rate, sr, indicates
whether the perturbation will grow (instability) or decay
(stability). In case of stability, by comparison with equation
(19), the ‘‘diffusivity’’ felt by each wave-like solution will be

� mð Þ ¼ � sr mð Þ
m2

: ð25Þ

Notice that even though the governing equation is not an
advection-diffusion one, a wavelength-dependent celerity
and diffusivity can still be defined by equations (24) and (25).

3. Coastal Topography

[16] In order to proceed further with an investigation of
coastline diffusivity and HAWI, it is necessary to prescribe
certain topography in the basic state and certain shape
function for the topographic perturbation.

3.1. Equilibrium Topography

[17] The equilibrium beach profile is taken as a Dean
profile type:

D0 xð Þ ¼ b xþ x0ð Þ2=3� x
2=3
0


 �
; ð26Þ

which has been modified to avoid an infinite slope at the
shoreline. The constants b and x0 are determined in order to
have a prescribed slope b at the coastline and a prescribed
distance xc from the coastline to the location of the depth of
closure, Dc. Thus b and x0 are solution of

2

3
b x

�1=3
0 ¼ b b xc þ x0ð Þ2=3� x

2=3
0


 �
¼ Dc: ð27Þ

3.2. Submerged Topography of the Sand Wave

[18] Regarding the topographic perturbation associated to
the sand wave, different choices are possible, specially in
account of the lack of detailed observations of the sub-
merged part of the sand waves. Looking at the short-term
dynamics (hours to days) an excess or deficit of sand in the
surf zone can trigger a complex dynamics involving sand
bars and rhythmic topography. However, in the long term
(months to years) it is expected that the cross-shore beach
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profile will tend to some sort of equilibrium profile. Thus a
sand wave crest or horn would be associated to an offshore
shift of the equilibrium profile at the corresponding cross-
shore section while a bay will be associated to an onshore
shift of the profile. This assumption is strictly consistent
with the traditional one-line modeling concept and would
imply a bathymetric perturbation with a shape function

f xð Þ ¼ 1

b
dD0 xð Þ
dx

: ð28Þ

This perturbation decreases offshore as does the slope in the
equilibrium profile but it extends up to deep water and
would imply bathymetric changes beyond the depth of
closure, Dc, which is not realistic. On the other hand, the
equilibrium profile concept is based on alongshore
uniformity and steadiness while the sand wave is in fact
dynamic and alongshore non uniform by definition. These
two facts make the strict application of the shift of the
equilibrium profile, equation (28), unadvisable. Thus we
will use instead the bathymetric perturbation given by

f xð Þ ¼ e�x=L � e�xc=L

1� e�xc=L
; ð29Þ

which vanishes at the depth of closure and where L controls
the offshore decay of the bathymetric disturbance. A small L
defines a bathymetric perturbation confined next to the
coast while large values are associated with a perturbation
decaying almost linearly from the coastline up to the depth
of closure, xc. There is freedom in the model to choose any
value of L and its influence on the diffusivity and the high-
angle wave instability has been investigated. However, if we
admit that there is a tendency for the cross-shore profile to
adjust to the shifted equilibrium profile, L should not be far
away from the value that causes the curves given by
equations (28) and (29) to match close to the coast. This
gives an indication of the realistic range of that parameter.

4. Coastline Diffusivity and Instability

4.1. Scaling and Parameter Setting

[19] In addition to the three nondimensional parameters
q1, b and gb, the model has seven independent parameters
which are lengths. These are first the offshore distance
where deep water wave characteristics are given, x1, and
the wave height and wavelength at that position, H1, 2p/
k1. Furthermore, there is the depth of closure, Dc, at a
distance xc from the shore. Finally, we should mention the L
distance and the wavelength of the sand waves, l.
[20] Since the wave period can be related to k1 through

g, there is only one independent timescale which is related
to the morphodynamics. It is given by the coefficient m in
the sediment transport rate and, in view of equation (23), a
natural choice for it is

Tm ¼
�D

mm2
H0

b

� ��5=2
: ð30Þ

[21] Thus because of the scale invariance, if all the
distances are multiplied by a certain factor r, everything

remains unchanged but with a timescale multiplied by r1/2.
It is therefore convenient to use a basic length scale and
keep it unchanged for the numerical experiments. It has
been found that the best choice is the depth of closure, Dc.
This allows defining six nondimensional parameters as the
ratios of the other six distances to Dc. However, based on
the physics and/or practical reasons, some combinations of
them will be sometimes used instead. For instance, the main
ratio of lengths for the model runs is s = k1H1 which is a
measure of the wave steepness in deep water. It is an
indicator of the type of waves, small values corresponding
to swell and large values to sea. It comes into play because
it is roughly proportional to kbDb so that it is a measure of
the strength of the topographic effects on the waves prop-
agating from deep water up to breaking. Although we run
the model giving the value of H1, the corresponding
relevant nondimensional parameter is Db/Dc which is
roughly proportional to H1/Dc and gives the width of the
surf zone relative to xc. Since for fixed H1 it depends on the
angle, the values used in the text are always values for q1 =
0. The rest of nondimensional parameters will be defined as
necessary in the text.
[22] The depth of closure has been fixed to Dc = 10 m

and the outer boundary where deep water wave character-
istics are prescribed has been fixed to x1 = 2 	 104 m.
Small changes around the latter value did not have any
significant change on the results. The breaking index has
been set to gb = 0.8. The diffusivity has been scaled with its
traditional evaluation, �cla, given by equation (20). Several
values of s have been investigated but we will show results
only for s = 0.03, 0.2 and 0.4 ranging from swell to sea. For
a wave height in deep water of H1 = 1 m, the
corresponding wave periods were T = 13, 4.5 and 3.2 s.,
respectively. The wave incidence angle ranged from q1 = 0�
to 89� and the wavelength of the coastline waves has been
explored from l = 1000 m up to 2 	 104 m. The default
values of the topographic parameters have been chosen as
roughly representative of the Dutch coast, b = 0.01 and the
depth of closure of Dc = 10 m occurring at an offshore

Figure 2. Wave angle at breaking, qb, as a function of the
angle, q1, and wave steepness parameter, s = k1H1, given
at x1 = 2 	 105 m, with D1 = 57 m.
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distance xc = 1750 m. An L = 700 m value is used unless
stated otherwise.

4.2. General Results

[23] In a first series of experiments, computations have
been carried out in order to investigate the diffusivity
affecting the various wave-like perturbations as a function
of wavelength l = 2p/m, wave incidence angle q1, wave
steepness s and Db/Dc parameter. The influence of the wave
incidence angle at breaking, qb, can be tracked through the
dependence on q1 by using Figure 2 where qb is shown as a
function of q1 and s. In agreement with Falqués [2003], it
is found that the scaled diffusivity, �/�cla, is typically smaller
than 1 which means that the traditional evaluation of the
diffusivity systematically overpredicts it. In general terms,
the scaled diffusivity increases with increasing Db/Dc and

with decreasing wave steepness s and wave angle q1. The
diffusivity does not depend on wavelength for long waves
but it increases for decreasing wavelength within the short
wave range (l � 2–4 km) and, occasionally, it can even be
slightly larger than 1. As it can be seen in Figure 3, for large
waves, i.e., large Db/Dc, the ratio is rather close to 1,
specially for swell and for moderate incidence angle. For
instance, for Db/Dc = 0.613 and moderate angle, �/�cla is
about 0.8–1. Thus for large swell waves the classical
diffusivity evaluation is rather good and there is no HAWI.
This can be seen, for instance, in case of s = 0.03 where
the diffusivity is always positive. Computations not shown
here, indicate that for very high waves, for instance, H1 =
5 m and s = 0.1 (Db/Dc = 0.826), there is no HAWI and the
classical prediction of the diffusivity is very good even for
quite oblique wave incidence (errors smaller than 5% for q1

Figure 3. Ratio between the diffusivity and its classical evaluation, �/�cla, as a function of wave
incidence angle in deep water, q1, and the wavelength of the coastline feature, l, for various wave
steepnesses s and for various wave heights in deep water, H1. (top) Corresponding to s = 0.03. (middle)
Corresponding to s = 0.2. (bottom) Corresponding to s = 0.4. (left) Corresponding to H1 = 0.5 m. (right)
Corresponding to H1 = 3 m. The thick line is the zero-diffusivity contour line, indicating the threshold
for the high-angle waves instability (HAWI).
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up to 60�). This is specially so for relatively large wave
periods.
[24] By decreasing wave height the ratio decreases. This

is more prominent for sea waves than for swell and the
decrease becomes more pronounced for large incidence
angle. For small Db/Dc the ratio becomes more dependent
on l, specially for relatively short features, l � 2000–
4000 m. In this range, i.e., quite oblique and relatively small
sea waves, the picture becomes more complex and the
classical evaluation of the diffusivity is no longer valid. As

it can be seen in Figure 3, the overprediction by the classical
formulation can easily be a factor 10 since it increaseswithout
bound by approaching the HAWI threshold. Whether HAWI
occurs or not depends on q1, s andDb/Dc. This can be seen in
Figure 3 and also in Figure 4, where the critical angle for the
onset of instability is plotted as a function of s and Db/Dc.
Interestingly, the critical angle for the most unstable case is
about 42�, the one predicted by Ashton et al. [2001]. How-
ever, turning to more stable situations with higher waves and
longer periods, the critical angle increases and at some point
there is no longer HAWI for any angle.
[25] For the sake of brevity the influence of changing L is

not discussed in detail here. It turns out that decreasing
(increasing) L is somewhat similar to increasing (decreas-
ing) Db/Dc. For small L, that is for a bathymetric perturba-
tion hardly extending offshore, the ratio �/�cla is close to 1
and there is no HAWI. By increasing L, that ratio decreases
and the coastline may become unstable. Further increase up
to values comparable to xc do not have any effect since the
shape function f(x) tend to a straight line for L ! 1.
[26] The present results can also be compared to the

extension of the classical approach by Falqués [2003]
where the dependence of qb and Hb on f was accounted
for. In principle, it seems that the present model and that
extension should coincide for large l and L. However, this
is the case only for sea waves. In case of swell, the earlier
results reproduce only the trend with the angle but not the
magnitude of �/�cla for large L.

4.3. Influence of the Equilibrium Topography

[27] In order to asses the influence of the equilibrium
topography, moderately steep sea waves with s = 0.2 and
with H1 = 1 m (Db/Dc = 0.13) were used. For each beach
profile, L was chosen so as to match the equilibrium profile

Figure 4. Critical angle in deep water for HAWI as a
function of wave steepness s and Db/Dc.

Figure 5. Ratio between the diffusivity and its classical evaluation, �/�cla, as a function of wave
incidence angle in deep water, q1, and the wavelength of the coastline feature, l, for a wave steepness s =
0.2 and for various equilibrium topographies. The thick line is the zero-diffusivity contour line, indicating
the threshold for HAWI. (a) b = 0.005, xc = 4498 m, and L = 682 m. (b) b = 0.01, xc = 1750 m, and L =
698 m. (c) b = 0.02, xc = 716 m, and L = 1084 m. (d) b = 0.01, xc = 2390 m, and L = 293 m. (e) b = 0.01,
xc = 1395 m, and L = 3103 m.
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shift close to the coastline (see end of section 3.2). Three
types of tests have been performed. In the first one, the
equilibrium profile has been simply moved up or down, just
by dividing or multiplying D0(x) by a factor 2. This is done

by considering the three cases: b = 0.01, xc = 1750 m, b =
0.005, xc = 4498 m and b = 0.02, xc = 716 m. As it can be
seen in Figure 5 (top), a shallow profile gives a higher
coastline diffusivity and inhibits high-angle wave instabil-

Figure 6. Instability curves (real growth rate versus wavelength) for b = 0.01 and xc = 1750 m. (left) s =
0.4. (right) s = 0.2.

Figure 7. Ratio lM/Xb as a function of (left) s and as a function of (right) Db/Dc for various wave
angles, q1 = 50�, 60�, 70�, and 80�, and for gb = 0.8. The plots on the left are for H1 = 0.5, 1, and 2 m,
from top to bottom; the plots on the right are for s = 0.2, 0.3, and 0.4, from top to bottom.
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ity. In the second case listed above there is no instability at
all even for very oblique waves. In contrast, deeper profiles
favor coastline instability.
[28] In the second type of experiments we looked at the

effect of an offshore shallower or deeper profile while
keeping the same slope at the shoreline. Thus b = 0.01,
xc = 2390 m and b = 0.01, xc = 1395 m were considered.
This is shown in Figure 5 (bottom). Again, the same effect
is found, shallower profiles render the coastline more stable
to high-angle waves. Finally, the shoreline slope was
changed, b = 0.008 or b = 0.012, while keeping constant
the offshore distance of the depth of closure, xc = 1750 m.
In this case, there was no significant influence on the
diffusivity and instability. In summary, it seems that the
diffusivity and instability of the coastline is very sensitive to
the water depth at the shoreface but not too much to the
shoreline slope. For a given wave height and wave period,
coastline diffusivity is smaller on deeper than on shallower
shorefaces so that deeper shorefaces are more conducive to
coastline instability.

5. Dominant Wavelength for High--Angle Wave
Instability

[29] It has been shown in section 4 that the diffusivity
may become negative for certain parameter values (see
Figures 3 and 5) rending the rectilinear coastline unstable.
We will focus in this section on the interesting finding that
the instability depends on the wavelength of the coastline
undulations, l. As it can be seen in those figures, for any
angle leading to instability the diffusivity becomes positive
if the wavelength is decreased enough. Thus small coastline
undulations do not grow. This, in turn, has the important
consequence that for each parameter setting the instability
has a preferred (dominant) wavelength in the linear regime
as it can be seen in Figure 6. This is an essential charac-
teristic of high-angle instability not predicted by the sim-
plified model of Ashton et al. [2001]. Figure 6 also shows
the typical magnitude of the real growth rate of the
instability which turn to be in the order 10�8 s�1. In
other words, the typical growth times are in the order of
1–10 years. This long timescale is consistent with the
whole long-term modeling concept of the present paper.
[30] The dominant wavelength for HAWI is typically in

the range of 4–15 km, that is, one to two orders of
magnitude larger than the typical wavelength of rhythmic
surf zone bars. In order to investigate its relationship with
the fundamental length scales of the problem we first
considered a plane sloping coast instead of the Dean-type
profile defined in section 3.1. This was useful in a first
instance to exclude parameter dependencies that could mask
the main trends. In this case, by changing H1 and b, the
dominant wavelength lM was fairly proportional to the
width of the surf zone, Xb. This suggested that the ratio
lM/Xb is a good parameter to investigate also in case of
more realistic bathymetries like the Dean-type profile.
[31] In case of non planar topography the wave height

H1 also plays an important role and the relevant nondi-
mensional parameter is Db/Dc. This is seen for the Dean-
type profile in Figure 7 (left panels) where lM/Xb is shown
as a function of wave steepness for H1 = 0.5, 1 and 2 m. It
turns out that lM/Xb typically ranges between 40 and 150

and it is seen that it tends to increase for decreasing wave
height and for decreasing s. Notice that s/gb = 2pH1/(lwgb)
is related to Db/lw and hence gives an indication of the
strength of the topographic effects on the waves of wave-
length lw propagating from deep water up to breaking. This
also implies that the sand wave wavelength increases with
increasing water wave wavelength. The right panels display
lM/Xb against Db/Dc for s = 0.2, 0.3 and 0.4. Similar trends
are observed: an increase of lM/Xb for decreasing Db/Dc and
for decreasing s. The ratio lM/Xb tends to increase with
increasing angle although this tendency is reversed for low
angles close to the instability threshold q1 � 50�.
[32] As a result of our numerical study it turns out that the

dominant sand wave wavelength can be expressed as the
following nondimensional relationship:

lM

Xb

¼ L q1;
s

gb
;
Db

Dc

� �
: ð31Þ

There is also some influence of bc/b, where bc = Dc/xc is the
mean slope of the shoreface, when this parameter drops
below bc/b ’ 0.5. In this case, lM/Xb decreases with
decreasing bc/b.

6. Physical Interpretation

6.1. High--Angle Wave Instability: Simple Approach

[33] Both the traditional one-line approach and the for-
mulation of Ashton et al. [2001] actually neglect the
curvature of the coastline and handle the coastline undu-
lations as small stretches of rectilinear coast with different
orientations given by the angle f = arctan (@xs/@y). Before
proceeding with the new formulation we can gain some
insight by looking again at that simple approach. By
assuming rectilinear and parallel depth contours, H0

b and q0b
can be computed as a function of f. Then, by applying the
chain rule to equation (18) and assuming small f, the
following equation is readily obtained:

@xs
@t

¼ 2m
H0

b

� �5=2
�D

1� @q0b
@f

� �
cos 2q0b
� ��

� 5

4H0
b

@H 0
b

@f
sin 2q0b
� ��


 @
2xs

@y2
þ 2m cos q0b

� � r H0
b

� �5=2
b�D

@H 0
b

@f
@3xs

@y3
: ð32Þ

It is immediately seen that if the dependence of wave angle
and wave height on the angle of the coastline, f, is
neglected, this equation becomes the classical one equation
(19) with a positive diffusivity unless qb � 45�. Owing to
the reduction of wave angle by topographic refraction
when approaching the shore, the wave angle at breaking
is typically smaller than 45� [see Falqués, 2003, Figures 1
and 2. Thus without those dependencies on f, HAWI would
not be any relevant for the dynamics of natural coastlines.
However, by rotating the coastline toward the wave fronts
(i.e., by increasing f) the refraction is reduced (i.e., q0b
increases) and the wave height at breaking is increased (less
wave energy spreading due to divergence of wave rays).
Thus both @q0b/@f and @H0

b/@f are positive with the result
that the term within the brackets in equation (32) changes
sign below qb = 45� and hence the high-angle instability
occurs for realistic wave conditions as was first found by
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Ashton et al. [2001]. These dependencies are therefore
essential for HAWI.
[34] The counterpart of the last statement in the new

formulation follows by looking at the expression for the
growth rate which derives from equation (23):

sr ¼ 2m2 m
�D

H0
b

� �5=2
cos 2q0b
� � q̂0bi

am
þ 5Ĥ 0

bi

4amH0
b

tan 2q0b
� �

� 1

 !

� 2m2 mr
b�D

H0
b

� �5=2
cos 2q0b
� � Ĥ 0

br

a
: ð33Þ

Since the maximum in wave energy is located closer to
the crests of the sand wave than the bays, H0

br > 0 and it
becomes clear that instability (sr > 0) is associated to q̂0bi > 0
and Ĥ 0

bi > 0.

6.2. Physics of the Instability

[35] Although the discussion based on the analysis of the
various terms in the growth rate expression, equation (33),
already provides the link between hydrodynamics and
morphodynamics, a simple discussion based on gradients
in sediment transport as by Ashton et al. [2001] would be
desirable at this point. However, if the bathymetric contours
are not rectilinear and parallel, the sediment transport rate is
no longer a function of the local shoreline orientation since
it depends on wave transformation on the whole domain
(and, in particular, on l). Thus the simple analysis based on
the curve Q = Q(qb � f), presented in that paper is not
possible anymore. Yet rephrasing the discussion we already
based on q0b and H0

b now in terms of gradients of Q is
possible and enlightening.
[36] The perturbation of the sediment transport rate equa-

tion (2) gives

Q0 ¼ 2maH5=2
b cos 2q0b

q0b
a
þ 5H 0

b

4aH0
b

tan 2q0b

�
�im� irm

H 0
b

ba
cos q0b
cos 2q0b

!

¼ Q0
r þ iQ0

i; ð34Þ

with the im term coming from the change in orientation of
the coastline. The growth or decay and the possible
migration of the sand waves is determined by the position
of the maximum accretion points with respect to the
adjacent crests and this maximum is located just l/4
downdrift of the maximum in Q. Then, the maximum in Q
is located at the crests in case of Q0

r > 0, Q0
i = 0 and l/4

updrift of the crests for Q0
r = 0, Q0

i > 0. In the general case,
the four possible combinations of signs of Q0

r and Q0
i alone

will determine in which quadrant of wavelength the
maximum is located.
[37] Without perturbations in wave angle and wave

height, q0b = 0, H0
b = 0, the sediment transport rate is

Q0
r = 0, Q0

i < 0 so that the maximum transport occurs at a
distance l/4 downdrift of the horns and the maximum
accretion occurs exactly at the bays. This is exactly what
happens with the classical approach, any perturbation
being eroded without alongshore migration. This situation
changes when the other two terms are considered. The
perturbations q0b, H0

b have real and imaginary parts. The
resulting real part turns out to be positive so that Q0

r > 0.
This means that the maximum Q will be near the crest,

�l/4 < y < l/4, and hence, the sand wave will migrate
downdrift, no matter it grows or decays. Now, for long
sand waves, the imaginary parts of q0b, H0

b are positive,
making Q0

i > 0 and tending therefore to produce a
maximum transport at a distance l/4 updrift of the horns,
just opposite to the term coming from the change in
orientation of the coastline. However, for small L and
small angles their magnitudes are small and the i term
dominates with the result that Q0

i < 0, the maximum in Q
is in �l/4 < y < 0 and hence, the sand wave decays
while it migrates. By increasing both L and q1 the effect

Figure 8. Model run in the ‘‘long sand wave limit.’’ (left)
Wave fronts. (center) Perturbation in wave angle, q0; positive
values are indicated by continuous lines, and negative
values are indicated by dashed lines. The bathymetry is
indicated by light shading and dark shading for shallow and
deep, respectively. (right) Perturbation in wave height, H0;
positive values are indicated by continuous lines,
and negative values are indicated by dashed lines. Variable
l = 5 	 103 m, q1 = 70�, s = 0.3, L = 700 m, and H1 = 1 m.
The cross-shore distances have been magnified by a factor
2, with the result that the angle between shore and wave
fronts on the left panel is larger than the actual one. The
wave fronts very close to the shoreline may look somewhat
unrealistic due to the arbitrary amplitude of the linearized
solution that has been chosen. This does not affect the
model results since only the wave direction up to the
breaking point is needed.
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of q0b, H0
b eventually dominates and the maximum in Q

shifts to 0 < y < l/4 making the sand wave grow.

6.3. Stabilization of Short Waves

[38] The stabilization of short waves can also be
understood in terms of sediment transport gradients.
Figure 8 shows the wave perturbed fronts along with
the contour lines of q0(x, y) and H0(x, y) for relatively
long sand waves (l = 5000 m). Likewise, Figure 9
displays the same information for very short sand waves
with l = 100 m. It is seen in both cases how the
maximum refraction (i.e., minimum q0) occurs at the lee
of the sand wave, consistently with qbi > 0. However, it
also becomes apparent that the wave focusing at the lee is
much stronger in case of short sand waves than in case of
long sand waves. As a result, in case of short waves there
is a strong convergence of wave energy downdrift of the
horns so that the maximum in wave height shifts from
somewhat updrift of the crest (long waves) to about l/4
downdrift of the crest (short waves). The imaginary part
of H0

b becomes therefore negative and overwhelms the
imaginary part of q0b (see equation (33).) Thus the joint
effect of both terms plus the i term causes Q0

i < 0
(equation (34)) and the maximum Q shifts again down-
drift of the crests, the coastline being therefore stable.

6.4. High Waves Versus Mild Waves

[39] The instability is favored by small values of Db/Dc,
that is by relatively small waves with respect to the highest
waves in the wave climate which are associated to the depth
of closure (He � Dc/1.6 [Komar, 1998]). This is because the
bathymetric perturbation extends up to the depth of closure.
Then, small waves are affected by this topographic pertur-
bation during a long way up to breaking. In contrast, large
waves break very soon after reaching the depth of closure

and are hardly affected by the bathymetric perturbation. Our
results suggest that instability develops for relatively mild
waves and is damped out during severe storms. The same
reasoning explaining the influence of the Db/Dc parameter
explains also the role of L. For very small L, the bathymetric
perturbation is confined close to the coast so that the waves
hardly feel it before breaking. There is therefore no HAWI
in this case.

6.5. Influence of the Topography

[40] The instability also depends on the equilibrium
topographic profile, steeper shorefaces being more condu-
cive to instability than gently sloping ones. This has the
following explanation. On a gentler shoreface, a shift of the
equilibrium profile (see equation (28)) produces a smaller
topographic perturbation for a given amplitude of the sand
wave than on a steeper one. Even though the topographic
perturbation in both cases is gradually reduced in the model
to vanish at the depth of closure (equation (29)), still it is
true that the offshore extension of the topographic pertur-
bation is much smaller with respect to xc in case of a gentle
slope. As a result, in case of steeper shoreface the waves
start to feel the topographic perturbation immediately after
arriving at the depth of closure while in case of gentler
shoreface they still keep on refracting and shoaling on the
unperturbed topography a long way before starting to feel
the perturbed topography. Therefore the perturbed quantities
q0b, H0

b are smaller in the latter case and the instability
weaker.

7. Application to the Dutch Coast

[41] Given the long time- and length scales of the
processes described by the model, a quantitative verification
against field data is difficult. In this respect, the Dutch coast

Figure 9. Model run in the ‘‘short sand wave limit.’’ The bathymetry is indicated by light shading and
dark shading for shallow and deep, respectively. (top left) Wave fronts. (top right) Perturbation in wave
angle, q0. (bottom left) Perturbation in wave height, H0. Variable l = 100 m, and the rest of the parameters
are as in Figure 8. Same comments on wave fronts and positive/negative values as in Figure 8.
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offers however a long sandy coastline whose position has
been monitored during the last 150 years. With various
techniques, Bakker [1968], Verhagen [1989], Guillen et al.
[1999], and Ruessink and Jeuken [2002] have detected, after
removing the mean trends, the propagation of waves on the
coastline position along this coast. According to Ruessink
and Jeuken [2002], the wavelength is about 3.5–10 km and
the amplitudes are small, ranging from a = 20 to 50 m. The
celerity ranges between 0 and 0.2 km/yr. Looking at
Ruessink and Jeuken [2002, Figures 1, 3, and 6], it becomes
apparent that on the southern part (Delta coast) there is a
clear northward propagation at about 0.07 km/yr. On the
central coast (Holland) this becomes unclear: most of the
waves seem to stop, but some of them seem to go on
northward whereas some of them seem to propagate south-
ward. It depends on the location and on the time period,
southward propagation being apparent only during the last
50 years. This is also consistent with results of Guillen et al.
[1999] who analyzed the Jarkus data set during the period
1964–1992 and found southward propagation of sand
waves along the Holland coast. Their wavelength is how-
ever quite short, l � 2–3 km, and the celerity is V ’ 0.15–
0.2 km/yr. In the northern stretch of the coast (Wadden
coast), there is again a clear propagation to the northeast
with a celerity of about 0.13 km/yr, which is clearly
higher than on the delta coast. The results of the analysis
by Verhagen [1989] are qualitatively in agreement with
Ruessink and Jeuken [2002] but some quantitative differ-
ences arise. Larger sand wave amplitudes ranging from 30 to
500 m are reported and the wavelengths are larger too,
ranging from 2.5 up to 22 km.
[42] The fact that model computations for a generic coast

predict HAWI dominant wavelengths in the range 4–15 km
which is in the same range of observed wavelengths along
the Dutch coast is certainly intriguing and suggest that these
sand waves might be generated by this mechanism. How-
ever, a preliminary study by Ashton et al. [2003] indicated
that the shore-obliqueness of the wave climate of the Dutch

coast is relatively low being at the instability threshold
according to their model. An application of our model to the
Dutch coast is here shown. For the sake of brevity and since
the main purpose of this paper is to present the model and
its implications for a generic coast, we will omit most of the
details and we will focus only on the main results. The
reader who is interested in a more detailed discussion is
advised to contact the authors.
[43] The wave climate has been taken from the National

Institute for Costal and Marine Management/RIKZ (Golf-
klimaat web site). For the Wadden coast the ELD station
(x1 = 1.5 	 104 m, D1 = 26 m) has been used. The
Ijmuiden station (x1 = 3.6 	 104 m, D1 = 22 m) has been
used for the central and southern coasts. The incidence
angles and significant wave heights have been divided into
20� and 1 m intervals. A probability of occurrence pj and a
mean wave period Tj were assigned to each bin character-
ized by a q1 and a (Hs)1 intervals. From the linearity of the
governing equation (18), it is readily seen that the resulting
growth rate and celerity of a sand wave of a certain
wavelength are

sr ¼
Xn
j¼1

pjsrj V ¼
Xn
j¼1

pjVj; ð35Þ

where sr j and Vj are the growth rate and celerity during
wave conditions (q1, (Hs)1, T)j.
[44] Figure 10 shows the growth rates for l between 3

and 15 km. It is seen that all sand waves tend to decay, any
stretch of the coastline being HAWI stable. The southern
part is the most stable while the northern part is a little less
stable. Typical decay times, e.g., for l � 10 km, are about
8 years. In agreement with Ashton et al. [2003], it turns out
that the stability of the coast is due to the insufficient wave
obliqueness. Indeed, looking at the wave climate on the
southern coast, one of the main wave directions is 220�–
240�. Model runs with the real wave heights and periods but

Figure 10. (left) Predicted growth rate and (right) alongshore celerity of the HAWI on the Dutch coast
as a function of the wavelength of the coastline waves.
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by assuming that all the waves come from the 230� angle
gave instability with a dominant wavelength of 6.5 km and
a growth time of 13 years. Thus the spreading of angles on
the real wave climate renders the coast stable.
[45] Figure 10 also shows the migration celerity of sand

waves for l between 3 and 15 km. Here, the model results
are quite encouraging. Both the sand waves along the Delta
coast and along the Wadden coast migrate to the north/
northeast and on the latter they do with a larger celerity. On
the central coast they migrate also to the north but with
much smaller celerity. In the latter case it is found that small
changes in model conditions (e.g., profile of the topographic
perturbation) can reverse the migration celerity. This is fully
consistent in a qualitative sense with the data analysis of
Ruessink and Jeuken [2002]. However, also the quantities
are close to observations in case of the southern and the
northern stretches of coast. Model predictions are within the
correct order of magnitude for the observed range of wave-
lengths. For instance, in case of l = 7 km, the celerities are
0.039 km/yr and 0.071 km/yr for the Delta and the Wadden
coasts, respectively. However, even a perfect agreement of
0.070 km/yr and 0.13 km/yr is attained in case of l = 5 km.
This is remarkable given the large number of simplifications
of the model and the fact that no parameter tuning has been
done. For instance, the constant m in front of the CERC
formula, equation (2), has been fixed to 0.15 m1/2 s�1 which
is well in the center of the accepted interval. For the Holland
coast the predicted celerity is 0.016 km/yr in case of l =
5 km. This small value and the fact that it can be even
reversed by changing model conditions is also consistent
with observations according to which there is no clear
propagation direction along this section of the coast.

8. Discussion and Conclusions

[46] The dynamics of small amplitude perturbations of an
otherwise rectilinear coastline has been investigated in the
framework of an extended one-line model. The main new
features of the model are that coastline perturbations are
linked to bathymetric perturbations with a finite offshore
extend that affect wave transformation from deep water. The
latter is done by account of the curvature of the bathymetric
lines.
[47] As was discovered by Ashton et al. [2001], the

stability or instability of the coast depends on the wave
incidence angle q1, larger angles rending the coastline
unstable. It is seen however that instability depends on a
number of additional factors so that the critical angle for
instability is in general higher than the one indicated by that
paper (’42�). It seems therefore that this value is just a
lower bound of the critical angle. It is found that instability
is favored by sea waves and inhibited by swell. It is also
seen that instability is favored by small values of Db/Dc, that
is, by relatively small waves with respect to the highest
waves in the wave climate which are associated to the depth
of closure. The instability also depends on the equilibrium
topographic profile, steeper shorefaces being more condu-
cive to instability than gently sloping ones. A typical
timescale for the initial growth of the fastest growing
wavelength is in the range of 1–10 years. This comes out
of a continuous forcing with a wave height of 1 m which is
a reasonable value for an annual average rms wave height.

[48] The finding that HAWI always develops with per-
turbations above some critical wavelength has the very
interesting consequence that there is a dominant wave-
length. This wavelength is typically in the range 4–15 km
and is proportional to the width of the surf zone, Xb, with a
factor in the order 40–150. This factor has a relatively
complex behavior (specially with q1) but in general terms
in tends to be larger for small values of s, Db/Dc than for
large values, that is, for small swell waves rather than for
large sea waves. Thus the sand wave wavelength tends to
increase with the water wave wavelength. The existence of a
dominant wavelength in the linear regime is, in general
terms, in contrast with the results of the nonlinear model of
Ashton et al. [2001]. In the latter study, there was typically
no alongshore characteristic length scale of the shoreline
features since the wavelength commonly increased in time
simultaneously to the growth in amplitude (except in case of
a wave climate consisting of stabilizing and destabilizing
waves). On the other hand, that approach adapted to small
amplitude perturbations also fails to predict any character-
istic length scale of the instability since the governing
equation is a diffusion one with a negative diffusivity (see
equation (31), where @3xs/@y

3 has been disregarded). Thus
the present study is clearly in contradiction with the
linearized version of that model. The comparison with the
nonlinear version is more subtle. On one hand, the present
study shows that HAWI do not develop at relatively short
length scales. Although Ashton et al. [2001] already sug-
gested that their study was valid only for large length scales,
no quantitative lower bound was given. On the other hand,
the present study do not contradict the finite amplitude
regime described by Ashton et al. [2001] if the associated
length scale is large enough. Likely, given a small amplitude
perturbation to the coastline, their Fourier components at
wavelengths in the range of a few km can grow. Once the
amplitude is significant, the nonlinear cascade toward larger
wavelengths described by Ashton et al. [2001] will eventu-
ally dominate.
[49] In case of decaying perturbations, even though the

governing equation is not a diffusion one, the decay rate
provides a useful indication of the coastline diffusivity at
the corresponding length scale. In agreement with the
simplified approach by Falqués [2003], the diffusivity is
typically smaller than its classical linearized prediction
[Pelnard-Considère, 1956; Larson et al., 1987; Komar,
1998]. It can be however somewhat larger (up to 10%) in
case of very short sand waves in the order of 2 km or less.
The latter is due to the distribution of wave energy along the
sand wave which stabilizes the coastline at short wave-
lengths. In the limit of large-scale features, Falqués [2003]
gives a good prediction in case of sea waves but only the
trend in case of swell. It turns out that the classical
prediction is very good for large swell waves and moderate
angles or, if for whatever reason, the bathymetric perturba-
tion is confined very close to the coast. Of course, when the
threshold for HAWI is approached, the classical diffusivity
computation for small amplitude features is by no means
valid.
[50] The downdrift propagation of coastline waves is not

described by the traditional linearized one-line model and
the origin of such a propagation is an open problem [see,
e.g., Falqués and Calvete, 2003, and references therein].
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The prediction of this propagation is therefore another
interesting result of the present model. It is a consequence
of the fact that the refraction and wave energy effects
described above do not tend to produce a maximum Q at
the point l/4 updrift of the crest but somewhat downdrift of
it. However, a detailed analysis of this process and a
description of the general results concerning sand wave
propagation is beyond the scope of the present paper.
[51] Shoreline cuspate features are sometimes very prom-

inent. This is the case of the capes on the Carolina Coast in
USA or the large spits in the Sea of Azov in Ukraine. The
finite amplitude dynamics described by Ashton et al. [2001]
certainly applies to them. However, shoreline features can
also be much more subtle, like the sand waves along the
Dutch Coast [Ruessink and Jeuken, 2002; Verhagen, 1989]
with wavelength l � 3.5–10 km and amplitude typically in
the range a � 20–50 m. The observed wavelengths fit very
well in the range of dominant wavelengths obtained in the
present investigation. This suggests that the wavelength
selection mechanism presented here could be an explanation
for the length scales of shoreline sand waves which are one
to two orders of magnitude larger than those of typical surf
zone rhythmic features. The model has been therefore
applied to the Dutch coast and it has been found that the
Dutch coastline forced by the present wave climate is
HAWI stable. It turns out that if all waves approached from
the SW the rectilinear coastline would be unstable. Thus the
stability under the actual climate is mainly caused by the
relatively frequent occurrence of low-angle waves. This
finding confirms the preliminary results of Ashton et al.
[2003]. On the other hand, the model reproduces well the
qualitative trends of the sand wave migration along the
Dutch coast. Furthermore, even the quantitative predictions
are in a reasonable agreement. This indicates that the model
captures the main features of large-scale dynamics of sandy
coastlines which are diffusivity/instability and sand wave
propagation. Turning to the Dutch coast the question still
remains about the origin of the observed sand waves.
Guillen et al. [1999] suggested that shoreline sand waves
along a section of the Holland coast with a wavelength
about 2–3 km could be just forced by surf zone crescentic
bars. This is however a very particular case and the
wavelength is at the lower limit of those observed. It has
also been suggested [Ruessink and Jeuken, 2002] that sand
waves could be forced by cyclic behavior of shoals associ-
ated to tidal inlets. If this was the case, the Dutch shoreline
waves would result from a mixed forced-free behavior:
forcing due to tidal inlet morphodynamics and free propa-
gation plus damping induced by the alongshore wave-
driven sediment transport as described by the present
model. Anyhow, the origin of such sand waves deserves
further research.
[52] The main limitation of the present study is the

assumption of a fixed cross-shore structure of the topo-
graphic perturbation. There is however no other option
within the framework of the one-line modeling. In nature,
the dynamics of the coastline is linked to the dynamics of
the bars, shoals and troughs in the surf zone and beyond it
via the longshore and cross-shore sediment transport. The
present study disregards all these processes and assumes
that if in a certain area there is convergence (divergence) of
wave driven alongshore sediment transport this will even-

tually result in advance (retreat) of the coastline. Thus the
present morphodynamic approach makes sense only on a
long timescale (months to years) which is larger than the
typical timescale of the dynamics of surf zone bars. This
timescale must be large enough for letting the cross-shore
beach profile to adjust to equilibrium faster than the sand
wave evolution. In particular, the present approach filters
out rip currents and the surf zone morphodynamic insta-
bilities which are related to them [Caballeria et al., 2002;
Ribas et al., 2003; Reniers et al., 2004]. This is why the
short wavelengths at which rhythmic surf zone features
appear are damped in the present model.
[53] Finally, another important simplification is that a

single wave height, direction and period have been used.
The present study can therefore be considered only as a first
step toward the most realistic situation of randomwaves with
a probability distribution in height, frequency and angle.

Appendix A: Perturbed Wave Transformation

[54] The procedure to compute the perturbation of the
wave transformation defined by

k ¼ k0 xð Þ þ k̂ xð Þ0estþimy þ c:c:; q ¼ q0 xð Þ þ q̂ xð Þ0estþimy þ c:c:;

H ¼ H0 xð Þ þ Ĥ xð Þ0estþimy þ c:c: ðA1Þ

as a function of the topographic perturbation defined in
equation (22) is explained in this appendix.
[55] The linearized dispersion relation equation (5) is the

algebraic equation

k̂ 0

k0
¼ 2p

2pþ sinh 2pð Þ
ĥ

D0

; ðA2Þ

where p = k0D0. The linearized equation (4a) reads

dS

dx
� im tan q0ð ÞS ¼ �i

m

cos q0
k̂ 0; ðA3Þ

where the unknown, S(x) = k0q̂
0 cos q0+ k̂ 0 sin q0, is

proportional to the phase, F = � i/m S. This equation can be
solved numerically as an initial value problem with S(x1) =
0, marching from x = x1 up to the coastline. Once q̂(x)0 is
known, the linearized equation (4b) can be solved too. By
defining

� xð Þ ¼ 2cgH0Ĥ
0 cos q0 þ ĉ0gH

2
0 cos q0 � cgH

2
0 q̂

0 sin q0; ðA4Þ

with ĉg
0 being the perturbation in the group celerity, equation

(4b) can be cast into

d�

dx
� im tan q0ð Þ� ¼ i

mcgH
2
0

cos q0
q̂0: ðA5Þ

This equation has the same structure than equation (A3)
and is solved with the same scheme from the initial value
�(x1) = 0. Once the perturbed wave transformation is
known in all the domain, the breaker line quantities are
computed from equations (14) and (16).
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