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Mechanisms controlling crescentic bar amplitude
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[1] The formation of crescentic bars from self‐organization of an initially straight
shore‐parallel bar for shore‐normal incident waves is simulated with a two‐dimensional
horizontal morphodynamical model. The aim is to investigate the mechanisms behind the
saturation process defined as the transition between the linear regime (maximum and
constant growth of the crescentic pattern) and the saturated state (negligible growth). The
global properties of the morphodynamical patterns over the whole computational
domain are studied (“global analysis”). In particular, consideration of the balance of the
potential energy of the emerging bar gives its growth rate from the difference between a
production term (related to the positive feedback leading to the instability) and a damping
term (from the gravity‐driven downslope transport). The production is approximately
proportional to the average over the domain of the cross‐shore flow velocity times the
bed level perturbation. The damping is essential for the onset of the saturation, but it
remains constant while the production decreases. Thus, it is notable that the saturation
occurs because of a weakening of the instability mechanism rather than an increase of the
damping. A reason for the saturation of the crescentic bar growth is the change in bar shape
from its initial stage rather than the growth in amplitude itself. This change is mainly
characterized by the narrowing of the rip channels, the onshore migration of the crests,
and the change in the mean beach profile due to alongshore variability. These properties
agree with observations of mature rip channel systems in nature.

Citation: Garnier, R., N. Dodd, A. Falqués, and D. Calvete (2010), Mechanisms controlling crescentic bar amplitude, J. Geophys.
Res., 115, F02007, doi:10.1029/2009JF001407.

1. Introduction

[2] The surf zone of sandy barred beaches is characterized
by the presence of one or several shore‐parallel bars.
They are not always straight in plan view but are often
meandering with deep and shallow sections alternating
along the bars with a striking regularity. These bars are
called crescentic bars (or lunate bars) and are probably the
most documented and observed rhythmic features in the
surf zone [Wright and Short, 1984; Short, 1999; van
Enckevort et al., 2004; Lafon et al., 2004; Castelle et
al., 2007; Ruessink et al., 2007]. They are associated with
the typical current circulation of strong jet‐like offshore‐
oriented currents (called rip currents) in the deep sections
(called rip channels) and weaker wider onshore currents in
the shallow sections.
[3] Understanding the formation and the evolution of

crescentic bar systems is an active area of research.

Although their formation had been attributed to the hydro-
dynamical forcing of infragravity edge waves [Bowen
and Inman, 1971; Holman and Bowen, 1982], it is well
accepted nowadays that the feedback from the morphology
into the flow is the primary cause of their formation
[Deigaard et al., 1999; Falqués et al., 2000;Damgaard et al.,
2002; Reniers et al., 2004; Klein and Schuttelaars, 2006; van
Leeuwen et al., 2006; Calvete et al., 2007; Dronen and
Deigaard, 2007; Garnier et al., 2008; Smit et al., 2008].
Apart from Dronen and Deigaard [2007], who used a
quasi‐three‐dimensional area (Q3D) model, all these self‐
organization studies are based on wave‐ and depth‐averaged
process‐based (two‐dimensional horizontal (2DH)) mor-
phological modeling. They show that crescentic bar systems
would emerge from a free instability because of a positive
feedback between waves, currents, and morphology.
[4] Under normal or near‐normal wave incidence, the

positive feedback is explained by the bed surf mechanism
[Falqués et al., 2000; Caballeria et al., 2002; Ribas et al.,
2003; Calvete et al., 2005; Garnier et al., 2008]. Crescen-
tic bars are sometimes viewed as two adjacent series of
shoals and troughs. These series are antisymmetric with
respect to a line parallel to the coast. In particular, the bed
surf mechanism explains that these crescentic features can
appear on an alongshore uniform beach if the depth‐averaged
sediment concentration profile admits a local maximum. The
position of the maximum defines the antisymmetric axis,
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which, for a barred beach, is close to the top of the bar.
Garnier et al. [2008] showed that, for random waves over a
barred beach, the inner series (shoreward of the axis) emerges
from a free instability but the outer is forced by the inner so
that its amplitude is weaker and crescentic bars are mainly
defined by the inner series.
[5] Most of these modeling studies, based either on the

linear stability analysis or on nonlinear modeling, are lim-
ited to the bar formation and to the earliest stage of the bar
evolution because of the model formulation (linear models)
or because the nonlinear models break down. The reason for
this nonlinear model limitation is not clear and has not been
investigated. The reason is not necessarily numerical; it
could be a lacuna in the physics, casting doubt on whether
the saturation of the growth of crescentic bars can be
described by numerical models. Recently, Garnier et al.
[2008] reproduced this saturation by using a simple 2DH
model, but the physical mechanisms are still unexplored.
They reached the nonlinear regime and were able to simulate
the finite amplitude behavior of crescentic bars, showing that
the final bar shape differs from the initial one: the channels
become narrower than the crests (this is associated with
jet‐like rip currents), the channels tend to migrate offshore,
and the shoals tend to migrate onshore.
[6] Finite amplitude modeling of morphological features

is fundamental for any comparison with observations. The
saturation of the bed form growth has been obtained for other
morphodynamical systems such as shoreface‐connected
sand ridges [Calvete and de Swart, 2003; Roos et al., 2004;
Vis‐Star et al., 2008], sand ripples [Marieu et al., 2008],
and shore‐transverse sandbars [Garnier et al., 2006]. A
method to investigate the mechanisms of saturation was
introduced byGarnier et al. [2006] and extended by Vis‐Star
et al. [2008]; it is called the global analysis. It consists of
studying the global properties of the bed forms over the
whole computational domain by deriving a potential energy
balance of the bed forms. For both the shoreface‐connected
ridges and the transverse bars, the saturation of the bed
forms occurs because of the balance between a production
and a damping term. However, the reason for this balance
has not yet been explained.
[7] The objective of this contribution is to investigate the

mechanisms behind the saturation of the growth of cres-
centic bars from the numerical experiments of Garnier et al.
[2008] by using the global analysis. It is organized as
follows. Section 2 presents the methodology by introducing
the equations and the hypothesis necessary to understand
the derivation of the global analysis. The general results
and the main variables of the analysis are given in section 3.
The physical mechanisms are explained in section 4.
Section 5 gives the conclusions.

2. Methodology

2.1. Governing Equations

[8] The 2DHMORFO55 model solves the phase‐averaged
nonlinear shallow water equations with sediment transport
and bed updating [Mei, 1989; Caballeria et al., 2002;
Garnier et al., 2006, 2008]. The water mass (equation (1)),
the momentum (equation (2)), and the sediment mass

(equation (3)) conservation equations read (repeated indices
indicate summation with i, j = 1, 2; t is time)

@D

@t
þ @

@xj
D vj
� � ¼ 0; ð1Þ

@vi
@t

þ vj
@vi
@xj

¼ �g
@zs
@xi

� 1

�D

@

@xj
S0 ij � S00ij
� �� �bi

�D
; ð2Þ

@zb
@t

þ @qj
@xj

¼ 0; ð3Þ

whereD is the total mean depth, v is the depth‐averagedmean
velocity vector (v = (v1, v2) = (u, v)), g is the acceleration due
to gravity (g = 9.8 m s−2), zs is the mean sea level, r is the
water density (r= 1024 kgm−3), S′ is thewave radiation stress
tensor, S″ is the turbulent Reynolds stress tensor, tb is the bed
shear stress vector, zb is the bed level, and q is the horizontal
sediment flux vector. Note that the bed porosity effect has
been included in the sediment flux in order to simplify the
notations. The wave field is solved by using the wave energy
dissipation equation and Snell’s law; the wave current inter-
action has been removed as it only has a small effect on the
presented results. For more details, refer to Garnier et al.
[2006, 2008].
[9] An initial topography that is strictly alongshore uni-

form forced by a stationary alongshore uniform wave field is
considered. Since the dynamics of crescentic bars are
assumed to be mainly governed by rip current circulation,
the cross‐shore transport driven by undertow, wave non-
linearities, and gravity is disregarded. This means that
those contributions are considered to be in balance for
this basic state, which is therefore an equilibrium state.
When departures from this bathymetry develop, the sediment
flux q does not vanish. It is based on the Soulsby–Van Rijn
total load formula [Soulsby, 1997] (see Garnier et al. [2008]
for details) and reads

q ¼ � v� � ub rhð Þ; ð4Þ

where a is the stirring factor, which includes the bed porosity
p = 0.4 (a = asvr/(1 − p)); g is the bed slope coefficient; ub is
the root‐mean‐square wave orbital velocity amplitude at the
bottom; and h is the bed level deviation from initial equilib-
rium (h = zb − zb

0, where zb
0 is the initial bed level). The stirring

factor asvr is computed as follows:

�svr ¼ AS us � ucð Þ2:4 if us > uc

�svr ¼ 0 otherwise;

according to Soulsby [1997], where AS and uc depend
essentially on sediment characteristics and water depth
[Soulsby, 1997]. The stirring velocity us reads

us ¼ jvj2 þ 0:018

cD
u2b

� �1=2

;

cD being the morphodynamical drag coefficient [Soulsby,
1997]. Essentially, a v describes the contribution from
the circulation, and −ag ub rh describes the contribution
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that would bring the bathymetry back to the equilibrium
profile if there were no circulation.

2.2. Bottom Evolution Equation Approximation

[10] The Bottom Evolution Equation (BEE) has been
introduced by Falqués et al. [2000] as an approximate
expression of bed changes to facilitate understanding bed
evolution in connection with hydrodynamics. For complete-
ness, we briefly revisit it in our context. By using the sediment
transport formula (equation (4)), the sediment conservation
equation (equation (3)) reads

@h

@t
¼ �rrrrrrr � �vð Þ þ rrrrrrr � �rrrrrrrhð Þ;

where G = g a ub. According to the water mass conservation
equation (equation (1)),

rrrrrrr � �vð Þ ¼ rrrrrrr � CDvð Þ ¼ Dv � rrrrrrrC � C
@D

@t
;

where C is the equivalent depth‐averaged concentration
(C = a/D), also called the potential stirring.
[11] From the combination of the two previous equations,

and by assuming ∣∂D/∂t∣ ’ ∣∂h/∂t∣ (the flow is assumed to
adjust instantaneously to the bed changes), we obtain

1� Cð Þ @h
@t

’ �D v � rrrrrrrC þrrrrrrr � �rrrrrrrhð Þ:

Finally, by using the approximation C � 1 (for instance,
C ’ 0.001 from Garnier et al. [2008]), the BEE reads

@h

@t
’ �D v � rrrrrrrC þrrrrrrr � �rrrrrrrhð Þ: ð5Þ

2.3. Global Analysis

[12] The global analysis of beach evolution was intro-
duced by Garnier et al. [2006] and consists of analyzing
variables that are integrated over the computational domain.
It differs from the local analysis used by Garnier et al.
[2008], which can only explain the formation of features
and not the saturation of the growth. The limitation of the
local analysis can be understood because the bars can still be
in movement while their growth on average is already sat-
urated, so that some sort of equilibrium is reached (we refer
to this as a “dynamical equilibrium”). For instance, for
oblique waves, an equilibrium state is reached, but the bars
still migrate; thus, the local analysis still predicts erosion
and deposition at some locations. The global analysis for the
evolution of transverse bar systems appearing on a planar
beach [Garnier et al., 2006] is extended here to the case of
rip channels developing from the deformation of an initially
alongshore uniform parallel bar obtained by Garnier et al.
[2008].
[13] We first introduce the overbar notation to define an

average over the computational domain. It reads, for any
function f = f(x, y),

f ¼ 1

LxLy

Z Ly

0

Z Lx

0
f dx dy;

where Lx (Ly) is the cross‐shore (alongshore) length of the
computational domain. Following Garnier et al. [2006], the
production P and the damping D can be defined by

P ¼ � hrrrrrrr � �vð Þ; ð6Þ

� ¼ � hrrrrrrr � �rrrrrrrhð Þ: ð7Þ

The production term P comes from the first contribution of
the sediment flux vector q (equation (4)) (advective part).
According to BEE (equation (5)), it can be approximated by

P ’ � hD v�rC ð8Þ

and therefore measures the tendency for growth or decay of
bars by the bed flow couplings and bed surf couplings
[Garnier et al., 2006]. The damping term D comes from the
downslope or diffusive contribution of q.
[14] By using the same definition as Vis‐Star et al. [2008],

the “global growth rate” s of the instability reads

� ¼ 1

k h k2
d

dt

1

2
k h k2

� �
; ð9Þ

where khk is the L2 norm of h and is defined as

k h k¼ h2
� �1=2

;

so that khk2 can be interpreted as the potential energy
density of the bed forms [Vis‐Star et al., 2008].
[15] To illustrate the physical meaning of s, let us con-

sider a topographic perturbation like

h x; y; tð Þ ¼ exp �0tð ÞH x; yð Þ; ð10Þ

which represents a topographic wave that exponentially
grows with a growth rate s0 and which keeps a constant
shape given by H(x, y), with H being an Ly periodic function
with respect to y. This occurs, for instance, during the linear
regime (initial stage) of the bar evolution. Then,

� tð Þ ¼ �0:

[16] More generally, the sign of s determines the different
state of the bar evolution: the growth (decay) of the bars can
be characterized by s � 0 (s < 0), while the saturation of
bars occurs when s = 0. Moreover, the global growth rate
can be computed with the relationship

� ¼ 1

k h k2 P ��ð Þ; ð11Þ

which can be obtained from the definition (equation (9)) by
multiplying the BEE (equation (5)) by h and integrating.

3. Model Results

[17] The morphodynamical evolution of an initially
alongshore uniform parallel barred beach is studied for
hundreds of days. A numerical experimental setup similar
to that of Garnier et al. [2008] is used. Waves are assumed
to arrive normal to the coast. At the offshore boundary
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(x = Lx = 250 m) the height of the incident waves is
Hrms
0 = 1 m, and the period is T = 6 s. By perturbing

the initial topography, instability develops, and an equilib-
rium state is eventually reached. The final state is presented
in Figures 1a–1c for a random perturbation (perturbation
amplitude ∼ 1 mm). The evolution of the bed profile is dis-

played in Figure 1h along a channel and along a crest (as
indicated in Figure 1c). It shows that the shore‐parallel bar
crest, initially at 2 m depth (black dots), subsequently rises
up to 1.5 m depth on the crescentic horns (darkest solid line).
[18] Figures 1d–1g show time series of variables taken

from the longshore section defined at x = 50 m. Figure 1d is

Figure 1. Final state (day 100): (a) top view of the bed level zb and current vectors v and (b) top view of
the bed level perturbation h and its contour. Solid (dashed) lines represent the crests (troughs). (c) Tridi-
mensional view of the bed level zb. Time series: (d) h(x = 50 m, y, t), bed level perturbation along the
longshore section x = 50 m (the darker colors represent the deeper areas); (e) F (x = 50 m, l, t), its Fourier
transform (the darker colors correspond to the more predominant wavelengths); (f) lm(x = 50 m, t),
resulting predominant wavelength; and (g) growth rates computed with different formula. Black thick line,
s, (global) growth rate computed with relationship (11). Gray thin lines, sm, growth rates corresponding to
lm of Figure 1f. Different gray levels are used to distinguish the two wavelengths. (h) Bed level profile
evolution of a crest (solid lines) and of a channel (dashed lines). The selected sections are shown in
Figure 1c. The darker the lines are, the longer the evolution is. The dots indicate the initial bed level.
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the bed level variation, Figure 1e is its Fourier analysis,
Figure 1f is the predominant wavelength (lm), and in
Figure 1g the growth rates (predominant sm and global s)
are displayed. The predominant wavelength lm (Figure 1f)
corresponds to the maximum Fourier coefficient at each
time step (plotted in Figure 1e). The growth rate (sm)
corresponding to lm is displayed in Figure 1g. Notice that
similar results are obtained if the Fourier analysis is made at
another cross‐shore location where crescentic bars develop.
Thus, these wavelengths correspond to the same unstable
mode, that is, the crescentic bar system. At the final state,
lm = 180 m, and the corresponding initial growth rate
(from Fourier analysis) is about sm = 0.6 d−1. This growth
rate is similar to the initial growth rate corresponding to
lm = 200 m, which is dominant from day 3 to day 65.
Notice that these initial growth rates are taken during the first
period where they are constant in time: this period corre-
sponds to the time when the mode amplitude grows expo-
nentially, i.e., to the linear regime. Interestingly, these
growth rates obtained from Fourier analysis are similar to
the global growth rate s computed from relationship (11)
(Figure 1g, thick black line), which takes into account
the overall patterns, not only the features appearing in the
section x = 50 m.
[19] The saturation of features begins when s decreases

(Figure 2a). The saturated state is defined as the state for
which for the first time s ’ 0. This state can be highly
dynamical, in particular if there is merging of bars [Garnier
et al., 2006]. The equilibrium state is reached when s = 0 for
all times. The time taken to reach the equilibrium state is
sometimes very long, as the growth rate during the saturated
state is small; it can be an order of magnitude longer than
the time corresponding to the saturation processes. Because
equilibrium is sometimes not observed, its existence is
sometimes unknown. Here our interest is the saturation
process, so we want to understand why s decreases. This
can be due to either the decrease of the production (more
exactly, of P/khk2) or the increase of the damping term
D/khk2.
[20] As Figure 3 shows, there are two ways to observe the

evolution of s and all the variables: as a function of t
(Figures 2a and 3a–3e) or of khk (Figure 2b or Figures 3f–3j).
The condition of instability is given by s � 0; that is, the

bars grow if P � D. It is found that P and D are very
similar (Figures 3a and 3f), only their small differences
explaining the instability (Figures 3b and 3g).
[21] The difference in the normalized variables P/khk2

and D/khk2, i.e., s, should be constant in time for the initial
growth of any linearly unstable mode. Because of non-
linearities, it is not constant, and we see that the dynamics of
these variables are better represented by analyzing their
variations as a function of khk (Figure 3h) rather than time.
To be precise, we remark that D/khk2 is constant during the
saturation process, while P/khk2 is only constant at the
initial stage, decreasing thereafter until it balances D/khk2.
[22] Thus, the saturation seems to be due to the reduction

of the production term rather than an increase of the
damping. This will be analyzed in detail in section 4.

4. Physical Mechanisms

4.1. Analysis of the Damping Term

[23] Integrating by parts, and because of the boundary
conditions, i.e., because a(x = 0) ’ 0, h(x = Lx) ’ 0, and
since h is Ly periodic, we can write

�= k h k2¼
R Ly
0

R Lx
0 � @xhð Þ2 þ @yh

� �2n o
dx dyR Ly

0

R Lx
0 h2 dx dy

� 0 ;

so that D will contribute to a loss of potential energy
[Vis‐Star et al., 2008].

4.2. Analysis of the Production Term

4.2.1. Breaking Down the Production
[24] From equation (8), P can be broken down as

P = Pu + Pv, with

Pu ¼ � uhD@xC;

Pv ¼ � vhD@yC;

which describe the role of the cross‐shore and the longshore
flow components on the production.

Figure 2. Sketch of the saturation processes: (a) s as a function of t and (b) s as a function of khk.
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[25] Figure 4a shows the Pu contribution during the sat-
uration process. We see that Pu � Pv ≥ 0:

P ’ Pu ¼ � uhD@xC : ð12Þ

4.2.2. Local Analysis of the Production
[26] The variables controlling the growth and saturation

of the bed forms are examined locally by plotting the
integrands of (11), (12), and (7) for two different states:
during the linear regime (day 11) and during the saturation
process (day 19) (Figure 4). In agreement with Figure 3i, the
decrease of P/khk2 (by 26%) with khk is much stronger than
the decrease of D/khk2 (by 6%).

[27] To understand the variations of P and, more partic-
ularly, the decrease of P/khk2 for increasing khk, we
examine, locally, the variable uhD∂xC. Figure 5 shows, at the
initial state and during the saturation process, the variables
−uh/khk2, D∂xC, and their product −uhD∂xC/khk2, which,
integrated over the whole domain, gives P/khk2. From
Figures 5a and 5e, the product −uh is seen to be mainly
positive, and its highest values are attained where the insta-
bility occurs. Where the bars develop, i.e., where the gradient
in potential stirring is strong, the variable D∂xC is also posi-
tive. This explains why P is positive.
[28] To analyze if the decrease of P/khk2 is due to a phase

shift between −uh and D∂xC, the correlation between these
two signals is examined. The correlation between two real

Figure 3. General results obtained from the global analysis. (left) Variables as a function of time. (right)
Variables as a function of k h k. (a, f) Production P and damping D. (b, g) P – D. (c, h) P/khk2 and
D/khk2. (d, i) Global growth rate s. (e, j) Bar norm khk.
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functions f and g (f ? g) is made with a cross correlation
defined as

f ? g x0; yð Þ ¼
Z Lx

0
f x; yð Þg xþ x0; yð Þ dx;

where −Lx < x′ < Lx. For each alongshore location, the cross‐
shore position of the maximum of f ? g, denoted as x?′ ,
represents the cross‐shore shift between f and g. The
correlation −uh/khk2 D∂xC in Figures 5d and 5h shows

that, at the most unstable alongshore location (i.e., over crests
or troughs), the cross‐shore profiles of the signals −uh and
D∂xC are centered at the initial state and also during the
saturation process. Therefore, the decrease of P/khk2 is not
primarily due, for this specific modeled case, to a shift
between the two signals.
[29] Moreover, we notice that the alongshore variations of

D and ∂xC are small compared to those of u and h (Figure 5).
Therefore, the effect of the variations in D∂xC is negligible
in comparison to the effect of the variations of −uh/khk2.

Figure 4. (a) Decomposition of the production P ’ Pu: P/khk2 and Pu/khk2 as a function of khk. (b–g)
Local analysis. Contour lines represent the bed level perturbations h; solid (dashed) lines are used for
crests (troughs). Figures 4b–4d show the initial state corresponding to the maximum growth rate of
instabilities (day 11, linear regime). Figures 4e–4g show the intermediate state corresponding to a decreas-
ing growth rate (day 19, saturation process). Figures 4b and 4e are for −uhD∂xC/khk2 − hrrrrr · (Grrrrrh)/khk2.
Figures 4c and 4f are for −uhD∂xC/khk2. Figures 4d and 4g are for −hrrrrr · (Grrrrrh)/khk2.

GARNIER ET AL.: MECHANISMS CONTROLLING BAR AMPLITUDE F02007F02007

7 of 14



[30] In conclusion, the variations of P/khk2 seem con-
trolled by the local variations of −uh/khk2.
4.2.3. Variations of −uh
[31] To understand the behavior of −uh, we introduce the

variable S:

S ¼ � uh; ð13Þ

which is expected to govern the variation of P. To check
this claim, we define S0 as the average of P/S (Figure 6b):

S0 ¼
Rmaxkhk
0 P=S d k h k

max k h k :

As shown in Figures 6b and 6c, during the entire saturation
process, P/S can be approximated as a constant (its relative
variation is less than 2%), and

P ’ S0 S: ð14Þ
Thus, S seems to control the variation of P, and we will
focus on investigating why S/khk2 decreases with khk. To
understand the variations of the global variable S/khk2, we
can distinguish the processes over the crests and the chan-
nels by introducing the variables S′cha and S′bar, which are
representative of the quantity S/khk2 over the channels and
the bars, respectively. They read

S0
cha ¼ �max u=min h;

S0
bar ¼ �min u=max h;

Figure 5. Local analysis of the production. (left) Initial state corresponding to the maximum growth rate
of instabilities (day 11, linear regime) and (right) intermediate state corresponding to a decreasing growth
rate (day 19, saturation process): (a, e) −uh/khk2, (b, f) D∂xC, (c, g) −uhD∂xC, repeated from Figures 4c
and 4g (in Figures 5a–5c and 5e–5g, contour lines represent the bed level perturbations h, and solid
(dashed) lines are used for crests (troughs)); and (d, h) −uh/khk2 ? D∂xC. Small values are shaded, and
large values are white. The dashed line defines the maximum for each alongshore location.
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where min and max stand for the minimum and maximum
value of the variables in the computational domain. Because
the current is offshore (onshore) oriented, and h is negative
(positive) over a channel (bar), the quantity S′cha (S′bar) is
positive. Assuming that in the linear regime −u and h are in
phase (and have the same cross‐shore distribution), we can
write u(x, y) = −Ah(x, y), with A = S′cha = S′bar = S/khk2, so
that channels and shoals contribute equally. Figure 6d shows
that S′cha = S′bar only at the earliest stage, but later S′cha is
constant while S′bar decreases; thus, the saturation of the
crescentic bar growth seems to occur because of the satu-
ration of the bar crests.

4.3. Analysis of the Saturation Process

[32] We have shown that the main reason explaining the
saturation of the growth is the decrease of S/khk2 when the
bars grow (reduction by 35%, Figure 6a). This decrease
comes from the change in the bar characteristics during the
saturation process. The primary bar property that changes
during the saturation is the amplitude, and the increase in
current intensity with increasing bar amplitude could slow
down for large amplitudes. Another possibility for the sat-
uration could be the change in bar shape. In particular, we
notice at saturation (Figure 7) that the crests become wider
and the channels become narrower, the shoals tend to mi-
grate onshore while the channels migrate offshore, and the
deepening of the channels becomes less pronounced than
the increased shoal elevation (i.e., the bed level perturbation
normalized with the bar norm (h/khk2) increases in the
channels when saturation occurs). Actually, these changes in
shape properties can be seen as an increase of asymmetry
between the linear regime (symmetric bed forms) and the
nonlinear stage.
[33] These hypotheses are now investigated by means of

“flow over topography” experiments. This means that the
model has been used in its hydrodynamical mode (i.e.,
without sediment transport and bed changes), starting from
the same initial profile but superimposing preexisting bed
patterns, similar to the rip channel systems obtained by self‐
organization (Figure 8a). For the default case, the wave-
length of the bed forms is set to 200 m, and the amplitude is
set to max(h) = −min(h) = 50 cm, which corresponds to a
norm of khk = 0.11 m. In each experiment, a hydrody-
namical equilibrium state is reached after less than 1 h.
[34] Then the properties of the preexisting bars will be

modified to analyze their expected global growth rate if
sediment transport and bed evolution were switched on.
This fictive growth rate is computed by using formula (11).
This allows us to characterize which property of the satu-
rated bar system causes the saturation.
4.3.1. Change in Bar Amplitude
[35] To investigate if the change in bar amplitude affects

the growth rate of the instabilities, the amplitude of the
imposed features has been varied from 1 mm to 1 m.
Figure 8b shows an estimate of the global growth rate s of
these bed forms by using formula (11). Within the range of
amplitude simulated in the morphodynamical experiments
(i.e., khk < 0.15 m), the growth rate decreases with the bar
norm, but it does not vanish. Thus, the increase in bar
amplitude contributes to the saturation process, but we will
see that it is not the main reason. Interestingly, we notice
an increase of the growth rate for higher bed forms due to

Figure 6. Variations of −uh. (a) S/khk2 as a function of
khk. P ’ S0S: (b) P/S, D/S, and S0 as a function of
k h k and (c) P/k h k 2 and S0 S/k h k 2 as a function
of khk. (d) S/khk 2 (black solid line), S′cha (gray dashed
line), and S′bar (gray solid line) as a function of khk.
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strong gradients ∂xC, which cause an increase of the
production.
4.3.2. Bar Widening
[36] The influence of the bar asymmetry on the cross‐

shore velocity and on S/khk2 is investigated here through
hydrodynamical experiments. To this end, the alongshore
extent of the crests is set to 150 m, and that of the channels
is set to 50 m (see contour lines, Figures 9a–9c). We remark
that the increase of the asymmetry leads to a reduction in
S/khk2 by 30% in this case (Figures 8d and 9b). This implies
that the global growth rate is positive when the bed level is
symmetric (Figure 8c), while it is negative with the asym-
metry (Figure 9a). A comparison between Figures 8d and 9b
shows that S′bar decreases because the onshore current
magnitude over the larger crest decreases (Figures 8e and
9c). However, there is not clear reduction of S′cha as the
offshore current is stronger in the narrow channel (Figures 8e
and 9c), in agreement with Figure 6d. Actually, S/khk2
globally decreases because the bar widening implies that the
crests hold relatively more space than the channels.
4.3.3. Onshore Bar Migration
[37] The analysis of the growth rate, locally (Figure 8c),

shows that the initial bed forms that were aligned on the
same alongshore axis tend to migrate cross‐shore, the crests
(channels) migrating onshore (offshore), as it is observed in
the self‐organized patterns. This characteristic of rip channel
systems is also a reason for the growth saturation. By
including an onshore (offshore) shift of the bars (channels)

of 20 m, Figures 9d–9f show that the topography is less
prone to instability and that the bed forms tend to be damped
(Figure 9d). As with the introduction of asymmetry, the
growth rate is found to be negative because of a strong
decrease of onshore flow over the bar. The magnitude of the
offshore flow is slightly increased, but we notice a global
weaker current circulation that results in a decrease of
S/khk2.
4.3.4. Change in Mean Beach Profile
[38] During the evolution, the beach profile changes

(Figure 10) as the crests migrate onshore and the channels
migrate offshore. Thus, there is a global (slight) onshore
migration of the longshore bar. Moreover, the mean beach
profile is affected by a bed rise in the crests relatively
stronger than a bed fall in the channels (compare maximum
and minimum values in Figure 10b), so that h/khk increases
in the channels and remains almost constant at the crests
(Figure 10c). This could be because of a higher downslope
transport in the channels than on the crests due to stronger
gradients induced by the asymmetry. This increase of
h/khk causes a decrease of production in the channel and
also a weaker current circulation in the whole domain and
therefore a reduction of the global production.
4.3.5. Comparison With Observations
[39] The fundamental interest of the finite amplitude

modeling is revealed when comparing model results with
field observations, as real bars are finite amplitude features.
Interestingly, despite the simplicity of the model, the bar

Figure 7. Analysis of the saturation process and change in bar characteristics. (left) Initial state
corresponding to the maximum growth rate of instabilities (day 11, linear regime) and (right) intermediate
state corresponding to a decreasing growth rate (day 19, saturation process): (a, d) h/khk, (b, e) u/khk, and
(c, f) −uh/khk2, repeated from Figures 5a and 5e. Contour lines represent the bed level perturbations h;
solid (dashed) lines are used for crests (troughs).
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shape at the final state that causes the saturation seems to be
consistent with the observations of mature crescentic bar
systems.
[40] First, the commonly observed narrow jet‐like rip

currents along with wider and weaker onshore return cur-
rents [Short, 1999; MacMahan et al., 2006] are reproduced
here as a result of nonlinearity (the alongshore profiles being
sinusoidal for the linear regime). In our morphodynamical
model, which couples morphology and circulation, the
widths of the rips and of the return currents are correlated
with the widths of the channels and shoals, respectively. The
rip currents being narrower than the return currents is a very
robust characteristic of the system, and it has been shown to
occur even in the absence of bed changes because of con-
servation of vorticity for a horizontal circulation (purely
hydrodynamical problem) on a plane sloping beach [Arthur,
1962]. In this case, if rip channels are just carved by the
current, their widths should be correlated too. This corre-
lation between narrow rips and narrow channels is also
observed in some intertidal bars [Castelle et al., 2007;
Bruneau et al., 2009]. Therefore, all this suggests that the
narrowing of the channels and widening of the shoals that
has been shown to slow down the growth of the crescentic
pattern would be characteristic of mature crescentic bars.
However, from bathymetric measurements there is no gen-
eral evidence for the narrowing of the channels. Moreover,
experimental studies do not show the correlation between

the width of the narrow rip currents and the width of the
channels. This could be due to the difficulties in getting
current measurements and underlying bathymetry in the surf
zone. For instance, during the Rip Current Experiment
(RIPEX) [MacMahan et al., 2005, 2006], for some partic-
ular events, the channels can appear wider than the bars. But
the data are given for a fixed cross‐shore location without
taking into account the cross‐shore variability. This could be
critical because the widths of the channels and of the bars
should be measured where the bed alongshore variability is
the highest or where the cross‐shore current magnitude is
the strongest. Therefore, in the absence of systematic
bathymetric measurements, we conclude that the widely
observed asymmetry in the circulation indicates that
although there is no clear direct experimental evidence of
the corresponding asymmetry between channels and shoals,
it is, in general, very likely to occur.
[41] Second, the onshore (offshore) migration of the crests

(channels) can be seen as a step in the transition “Rhythmic
Bar and Beach” to “Transverse Bar and Rip” of the Short
[1999] classification [Ranasinghe et al., 2004; Garnier et
al., 2008]. This transition typically occurs for calm wave
conditions following a storm, which is consistent with the
presented simulations. Moreover, this behavior of the cres-
centic bar system is linked to an onshore migration of the
mean parallel bar, due to a net sand deposition shoreward of
the bar and erosion seaward.

Figure 8. Change in bar amplitude. Hydrodynamical experiments. (a) Linear bed level perturbation for an
amplitude of max(h) = 50 cm (k h k = 0.11 m) and (b) s as a function of the bar norm khk at the hydro-
dynamical equilibrium state. Equilibrium state (max(h) = 50 cm): (c) −uhD∂xC/khk2 − hr · (Grh)/khk2,
(d)−uh/khk2, and (e) u. Contour lines represent the bed level perturbations h; solid (dashed) lines are used
for crests (troughs).
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Figure 10. Change in mean beach profile. Bed perturbation h, the dashed line indicates the cross‐shore
position of the maximum production for each alongshore location: (a) initial state (day 11) and (b) inter-
mediate state (day 19). (c) Alongshore profiles of h/khk following the dashed line of Figures 10a and 10b.
(d) Cross‐shore profiles of zbmean

(x) = meany(zb(x, y)). The thick black line corresponds to the beginning of
the evolution (Figure 10a), and the thin gray line corresponds to the saturation process (Figure 10b).

Figure 9. Change in bar shape. Hydrodynamical experiments. (left) Bars and channels, alongshore
extended and reduced, respectively, by 50 m and (right) bars and channels, onshore and offshore shifted,
respectively, by 20 m: (a, d) −uhD∂xC/khk2 − hr · (Grh)/k h k 2, (b, e) −uh/k h k 2, and (c, f) u. Contour
lines represent the bed level perturbations h; solid (dashed) lines are used for crests (troughs).
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[42] Interestingly, this global migration is exclusively due
to 2‐D circulations as the cross‐shore sediment transport
processes (undertow, wave asymmetry, etc.) are assumed to
be in balance. This result is in agreement with the empirical
modeling study of Plant et al. [2006], as it illustrates the
coupling between the bathymetric alongshore variability and
the displacement of the shore‐parallel bar. The alongshore
variability, which can be seen as the cross‐shore span of the
crescentic system (as defined by Plant et al. [2006]),
becomes stronger because of the increase of the bar ampli-
tude, the onshore migration of the crests, and the offshore
migration of the channels (although the increase of the bar
amplitude induces the migrations by producing the non-
linearities). This will cause the net onshore bar migration.
Moreover, in this particular experiment, which is represen-
tative of calm, stationary wave conditions approaching a
beach previously smoothed by a storm, a morphodynamical
equilibrium state is obtained, and it is characterized by an
increase of the variability and by the onshore migration of the
parallel bar, as Plant et al. [2006] suggests.
[43] More generally, the overall changes in bar shape

causing the growth saturation (the bar widening, the onshore
crest migration, and the decreasing channel depth) comprise
a development of bar asymmetry due to the nonlinearity of
the beach system. All of them lead to a change in the mean
beach profile. This shows the importance of the role of the
alongshore variability and of the 2‐D nonlinear processes in
the cross‐shore dynamics, which are generally not addressed
by 1‐D cross‐shore modeling studies.

5. Conclusions

[44] The reasons for the saturation of the growth of
crescentic bars emerging from self‐organization of an ini-
tially straight parallel bar have been investigated for normal
wave incidence. The saturation process is defined as the
transition between the linear regime (maximum and constant
growth rate) and the saturated state (negligible growth). A
wave‐ and depth‐averaged nonlinear shallow water equation
solver with wave transformation, sediment transport, and
bed updating has been used to reproduce the saturation and
therefore to simulate the finite amplitude behavior of such
rhythmic systems. Thereafter, the global analysis of the
beach system has been used to understand the mechanisms
behind the saturation process. It consists of studying the
global properties of the morphodynamical patterns over the
whole computational domain. In particular, the potential
energy balance of the morphological pattern gives an
expression for the growth rate as the difference between
the production (related to the positive feedback leading to
the instability) and the damping (loss of energy due to the
gravity‐driven downslope transport). To understand which
aspects of the developing bar system cause the decrease of
the growth rate, a new method is introduced. It is based on
computing the hydrodynamics on preexisting fixed (i.e., no
sediment transport) arbitrary morphological patterns (called
the “flow over topography” problem). This has been used in
previous studies in the case of a local morphodynamical
analysis, but the innovative aspect here is its combination
with the global analysis, which allows us to compute the
fictive growth rate of the patterns, along with the production
and damping terms.

[45] The analysis leads to the following conclusions.
(1) Although the damping is essential for the onset of the
saturation, it is remarkable that the saturation occurs because
of a weakening of the instability mechanism rather than an
increase of the damping. (2) The effect of the alongshore
component of the current in the bar evolution is negligible
during both the initial development and the saturation
process. (3) The saturation of the crescentic patterns is
substantially due to the changes in bar shape from its
initial stage rather than the growth in amplitude itself.
(4) The alongshore variability of the topography induces the
displacement of the mean shore‐parallel bar.
[46] Although the conclusions are drawn for a specific

modeled case, the method introduced here is likely to be
applicable to other types of sandbars.
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