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Background and Purpose—There is a lack of agreement regarding measuring the effects of stroke treatment in clinical

trials, which often relies on the dichotomized value of 1 outcome scale. Alternative analyses consist mainly of 2

strategies: use all the information from an ordinal scale and combine information from several outcome scales in a

single estimate.

Methods—We reanalyzed 3 outcome scales that assessed patient recovery (modified Rankin Scale, National Institutes of

Health Stroke Scale, and Barthel Index). With data collected from the 1652 patients in the Citicoline pooling data

analysis, we used 2 standard techniques of exploratory multivariate analysis to analyze the distances among ranks and

to isolate the common and the unique information provided by each of the 3 scales.

Results—The different scale values correspond to gradually different patient status, confirming that information is lost

when a scale is collapsed to just 2 values, whether recovered or not. The scales shared 90.7% (95% CI, 84.5–96.9) of

their information, with no individual scale contributing unique information.

Conclusions—Salient stroke outcome information is lost when an ordinal scale is collapsed into fewer categories. In

contrast, the full scales provide a comprehensive patient outcome estimate. Furthermore, in the context of stroke clinical

trials, those scales are highly correlated, providing the rationale to pool them into a single estimate. These insights may

be used to optimize the analysis of stroke trials to increase study power to detect efficacious interventions. (Stroke.

2010;41:e143-e150.)
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S troke is the second most common cause of death and a

major cause of disability worldwide.1 Although at least

178 randomized clinical trials enrolling .73 000 patients

were conducted for 75 promising agents over the 20th

century, only 3 trials reported positive findings and only 1

agent has been approved by the Food and Drug Administra-

tion for use in acute cerebral ischemia.2

The pivotal phase III clinical trial is used to guarantee

that only a small a-proportion of nonefficacious interven-

tions are approved for application to patients. Statisticians

have developed methods to maximize study power; that is,

the proportion of interventions with true biological effi-

cacy that are approved. In addition to the magnitude of the

intervention effect and the sample size, power is mainly

related to measurement reliability and statistical analysis.

Although patient recovery after stroke is routinely mea-

sured by ordinal outcome scales, the most popular statis-

tical analysis3 has been comparing the proportion of

recovered patients, defined as those with scores above a

single prespecified cut-point on a single outcome scale. As

Wardlaw et al4 have shown, “a change of a single point on

the Ranking scale can make the difference between ‘suc-

cess’ and ‘failure.’ of the trial.

In this article, we address 2 increasingly used though

controversial alternatives to the traditional, dichotomized,

single-scale analysis: (1) the use of the entire range of

information captured in an ordinal scale; and (2) the use of

more than just 1 single scale. For the former, opinions are

clearly divided between those in favor of using all the ordinal

information to maximize power5,6 and those in favor of

dichotomization because of its readability.7 If the scale is

truly ordinal—that is, if differences in scale categories are

related to some progressive degree of biological or clinical

difference in patient outcome— then some information is lost

when different categories are merged. The second contro-

versy confronts the classical univariate effect estimate based

on just 1 scale with an effect estimate based on information

pooled from several—often 3 to 4—scales (“global test”).8,9

The rationale is that if more information is used from every

patient, fewer patients would be needed. One regulatory

agency has argued that this global estimate causes difficulties

in its clinical interpretation10 and its explanation to patients.

An additional concern is how to interpret a single “global”

effect if discordant treatment effects are observed on each

component scale. The key point is whether those scales are
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measuring different patient characteristics or just 1 single

dimension of patient recovery.

We use 2 well-established methods of explanatory multi-

variate analysis to study 2 assumptions underlying alternative

methods. First is the existence of some progressive order

among the different outcome values of ordinal scales. Do

patients belong to just 2 alternative categories (success and

failure), or may they be ranked within the full scope? To put

it more simply, does an order make sense? Second is the

amount of common vs unique information provided by the 3

most usual scales. Does a combination of outcome scores

make sense, or does this pooling imply that some specific

information is lost? In addition, the correspondence among

values of different scales is provided.

Materials and Methods

Patient Population
We analyze the individual data pooled in a meta-analysis of
Citicoline,11 which merged 4 clinical trials conducted in the United
States between 1997 and 2001. They included 1652 patients with a
24-hour previous stroke. Main clinical and demographic character-
istics can be found elsewhere.11

Recovery Measures
Patients were assessed 12 weeks after stroke using the Modified
Rankin Score (mRS), the National Institute of Health Stroke Score
(NIHSS), and the Barthel Index (BI). The worst values on the NIHSS
(42), BI (0), and mRS (6) were imputed to the 275 patients who died
before 12 weeks had passed.

Bivariate Analysis of Ordering
To explore the existence of a genuine rank ordering of the levels
of each scale, we analyze if there is a trend in the central values
(means and medians) of 1 scale given the values of the other
scales (eg, we compare the mean NIHSS scores for patients rated
0–6 on mRs).

Simultaneous 3-Dimensional Analysis of Ordering
Multiple correspondences analysis (MCA) explores the relation-
ship between the categories of the different scales. It makes no
assumption about their order. For all cases in each scale category
(eg, mRS51), it computes its profile, that is, the percentage of
patients in each category of the remaining scales. Closer catego-
ries are expected to have more similar profiles. The degree of
dissimilarity between the profiles of 2 categories is quantified by
the x

2 distance. Based on algebra analysis, MCA defines a new
multidimensional space and locates each category in this new
space to reproduce their original distances with the minimum
possible number of independent dimensions. As 2 analogies, the
distances among 50 European cities should be able to be plotted
in just 2 dimensions: north-to-south and east-to-west, but the
distances between 50 railway stations of the same line should be
able to be plotted in only 1 dimension. The French term “analyses
des correspondances” was used to denote a “system of associa-
tions” between the categories in a data set. Hence, there is an
agreement between the positions (in the new dimensions defined
by MCA) of the categories in terms of their association in the data
matrix. It has been used in the medical field to study the
interrelationships among risk factors12 and to reduce highly
correlated categorical variables to fewer but more significant
dimensions. For example, Briand13 reduced 5 exposure variables
to 1 aggregated exposure indicator. Islami14 constructed a com-
posite wealth score using multiple socioeconomic status assess-
ments. Here, we apply MCA to analyze the distances among the
successive ranks.

Common and Specific Information Behind the
3 Scales
The amount of common information shared by the 3 scales has been
quantify with principal component analysis (PCA). MCA and PCA
are very similar, with the difference being that the latter assumes a
measurement unit and then it is able to use means and variances.
PCA considers variability as information that allows differentiation
of patients. It defines a new dimension (component or factor)
that—as much as possible—retains the variability contained in the
original variables. The information not included in the first compo-
nent is then used to define a second component that, being indepen-
dent to the former, retains, again, as much information as possible.
PCA also provides an R2-like measure of the amount of original
information retained in the new space.
We also assessed the implications of unit measure and dichoto-

mization by comparing the values of the parametric (Pearson), the
rank (Spearman), and the dichotomized (Phi) correlation coefficients
between pairs of variables.
MCA and PCA have been implemented using version 5.6.0 of

SPAD (Système Portable pour l’Analyze de Données). Confidence
intervals (CI) have been computed by standard intensive jackknife
resampling methods using version 2.6.0 of the free software R.

Results

Description
In the 4 studies, 1652 patients were included and they provided

values for the 3 outcome scales. Figure 1 and Table 1 show the

shape and descriptive statistics of the 3 outcome scales.

Analysis of Ordering
Analyses of the means from 1 scale along the values of other

scales suggest the existence of a natural ordering within the

categories of 3 scales, with almost no ties and only some

minor discordant results (Figure 2).

Figure 3 shows the position, with CI, of each category

within the first MCA dimension. The BI value 100 is plotted

close to NIHSS and mRS values 0, 1, and 2. On the other side

of the new dimension, the 3 worst values of each scale are

represented together. Only 4 inversions have been observed:

2 on NIHSS (value 12 fell into position before 11; and 10 fell

into position before 8 and 9) and 2 inversions on BI

(categories 25 and 30, as well as 5 and 10). In the center we

found mRS value of 4, BI values of 25 and 30, and NIHSS

values of 8, 9, and 10.

Uniform Unit of Measurement
Spearman-Rank correlations among the 3 scales (Table 2)

ranged from 0.89 to 0.94, being slightly superior to the

Pearson unit-measure correlations of 0.84 to 0.90 but clearly

superior to the Phi correlation between the dichotomized

scales of 0.58 to 0.68.

Taking into account the numeric values of the 3 scales, the

first PCA component retained 90.7% (95% CI, 84.5%–

96.9%) of the overall information, quantified by the sum of

the 3 variances of the original 3 scales (Figure 4). The

remaining 2 components were quantitatively negligible (6.0%

and 3.3%) and qualitatively showed no pattern of information

specifically related to any scale.

Discussion

Scale Ordinality
Our results provide evidence that for the leading outcome

scales measured 12 weeks after stroke, the different values of
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each correspond to different patient status and those values

are gradually ordered. This finding supports the recommen-

dation of the European Agency for the Evaluation of Medic-

inal Products that “dichotomization of outcome (positive–

negative) is not recommended for neurological scales as

patients in the same category may be clinically distinct and

important information might be missed.”15

However, from a medical point of view, the objective

could be “whether subjects finish the study with minimal or

no disability” and, then, the main analysis may rely on the

proportion of patients reaching this goal. This medical objec-

tive should be weighted with the statistical objective of

maximizing the trial power, as well as the need to provide

regulators, clinicians, and patients with a readable treatment

effect measure.

The binary correlations in Table 2 are lower than those

reported by Tilley et al8 for the NINDS tissue plasminogen

activator stroke trial (0.67 vs 0.75 for mRS–NIHSS and 0.58

vs 0.67 for BI–NIHSS). In addition to random sample

variability, evaluator reliability, a different data imputation

strategy, or a more heterogeneous patient population (ie,

wider eligibility criteria, longer treatment delay, and so on)

can also explain this result. In any case, the benefit of

combining the univariate estimators in a single multivariate

one (as the Generalized Estimating Equations [GEE] does) is

higher for lower correlations.”16

Uniform Unit
Our results show that the scales are not linear (Figure 2), with

some clustering for the healthier scale values that may

suggest smaller information loss when pooling mRS of 0 with

mRS of 1 than when pooling from mRS of 2 to 6. However,

the assumption of a uniform unit has a limited impact in

correlation measures. In addition to the standard assumptions

of independent and identical randomly distributed variables,

the Pearson correlation coefficient also assumes a normal

bivariate distribution and a linear relationship among the

variables, but the Spearman correlation coefficient only

assumes a linear relationship among the ranks calculated

considering ties.

Any mathematical model is a simplification of nature, but

our data agree much more with the oversimplification of unit

measure (ie, that the difference between mRS51 and mRS52

equals the difference between mRS54 and mRS55) than the

oversimplification of dichotomization (ie, that patients with

mRS52 are equal to patients with mRS55). So, if in the

quest for simplification researchers agree to pay the smaller

penalty of unit measure, then parametric statistics may be

used to quantify treatment effect size, probably leading to

more powerful and readable analysis.

Figure 1. Univariate distributions for the outcome neurological
scales on day 90. The mRs is a global measure of disability and
handicap ranging from 0 (no symptoms) to 6 (death). NIHSS is a
neurological impairment scale ranging from 0 (no deficits) to 42,
rated by an expert neurologist. BI is a functional activities of daily
living scale ranging from 0 (completely disabled) to 100 (fully inde-
pendent), with only 21 possible values ending in 0 or 5 (eg, 0, 5,
10, . . . 95, 100). The mRS is more uniform than the other scales,
with a mode on the value of 4. NIHSS is skewed to the lowest val-
ues, although the worst value, 42, is strongly influenced by its
imputation to dead patients. BI is U-shaped, with values concen-
trated at both extremes. Imputed values to the 275 patients who
died are highlighted.

Table 1. Descriptive Statistics for the Neurological Scales on

Day 90

Median (IQR) Mean (SD)

mRS 3 (2) 3.1 (1.9)

NIHSS 6 (12) 11.9 (14.5)

BI 75 (90) 59.7 (40.8)

IQR indicates interquartile range.
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The assumption of uniform unit has been widely used

with those neurological scales. For example, scale means

have been provided in the description of one-fifth of stroke

clinical trials.17 In a review of their clinical interpreta-

tion,18 the NIHSS and BI reliability are quantified by the

unit-measure intraclass correlation coefficient. In a more

sophisticated way, the VISTA19 and the SAINT investiga-

tors20 used baseline NIHSS as a quantitative predictor

variable of outcome in 2 similar logistic regression. Joint

analysis of the 2 SAINT trials estimated that the odds of a

favorable outcome is expected to be systematically multi-

plied 0.814-times for each 1-point increment on the NIHSS

baseline, either in an increment from 1 to 2 or in an

increment from 21 to 22.

Common vs Unique Information
The scales have traditionally been used to assess the

different dimensions of health recognized by the World

Health Organization: physical deficits (NIHSS), functional

disability (BI and mRS), and social handicap (mRS).

However, they are highly correlated, and all of them can

also be conceived as measuring stroke recovery. Our

results show that 90% of the value differences on each of

the 3 scales reflect variation along a single common stroke

recovery dimension. Because the remaining variability

cannot be attributed to specific information indexed

uniquely by an individual scale, controversial clinical trials

results among scales are not expected. Furthermore, our

results support interpreting the 3 scales as repetitive

measures of the same parameter: patient recovery. As an

analogy, cardiologists average 3 repetitions of independent

determinations of blood pressure values to improve reli-

ability. For example, the CONSORT statement,21 in item

6b, requires specifying “any methods used to enhance the

quality of measurements (eg, multiple observations).” Our

estimated value of 90.7% of common variance can be

directly compared with the intraclass correlation coeffi-

cient obtained on blood pressure data. Montes et al22

estimated the concordance between a family doctor and a

semiautomatic device to be 0.84 (95% CI, 0.78–0.90). In

other settings, such as health-related quality-of-life mea-

sures, usual intraclass correlation coefficient values can

range23 between 0.55 and 0.79. The assumption of a

common correlation without specific contributions from

any scale has been used in simulations to explain the extra

power provided by the global statistic.16

Readability and Transparency
In choosing a statistical method, in addition to the medical

question and its statistical properties, its readability should

Figure 2. Progression of means over the scale values. Solid (broken) lines represent the means (95% CI) of the scale plotted on the vertical
axis depending on the values of the scale on the horizontal axis. Light gray lines represent the results for all patients, and the dark gray lines
represent the survivors subset (89 patients with the lowest BI value). The mRS (A, B) shows no inconsistencies in the progression of means
from the other 2 scales, although this “progression” is higher from 3 to 6 than 0 to 3. The pattern of NIHSS also shows a progression in the
means from mRS (C) and BI (D), with minor deviations in less-observed categories (eg, 10). BI shows a natural ordering when analyzing mRS
values (E) but some oscillations or minor inconsistencies in the less-observed categories (15–40) of NIHSS (F).

e146 Stroke March 2010

 by on February 23, 2010 stroke.ahajournals.orgDownloaded from 



also be considered to achieve the desired transparency to

enhance physician advice and patient choice. Our results

suggest that in the setting of clinical trials, the 3 outcome

scales can be seen as a repeated measure of the same clinical

feature: patient recovery. Provided that this assumption is not

violated in the actual clinical trial data (ie, that different

scales do not show true different estimations of effect size), it

facilitates the interpretation. For example, the GEE odds ratio

estimates a single treatment effect on “patient recovery” with

“minimal or no disability.”

To check the transparency and readability of the differ-

ent alternative statistical analyses, random surveys of the

general population of potential stroke patients, of patients

who have had a stroke, and of physicians who treat stroke

patients should be conducted to ask the various groups

what type of treatment effect size measure they find most

interpretable.

Limitations
External validity is maybe the most important limitation. To

reach its main objective (to get an unbiased estimate of the

treatment effect size), clinical trials rely on the random

allocation of treatments to patients fulfilling the eligibility

criteria. Because they are not based on random samples of

patients, the extrapolation of their results needs the additional

assumption that the treatment effect is still the same on the

external, more general, new target population. Because our

results rely on clinical trial data, we do not pretend that our

conclusions apply to other conditions. Specifically, in con-

trast to our results, it is highly plausible that the 3 outcome

scales should have a completely different meaning in settings

other than stroke trials. So, we do not propose that the 3 scales

should be interpreted as just measuring only 1 patient

characteristic in the general population. Furthermore, the 3

outcome scales we used were recorded 12 weeks after stroke

by evaluators blinded to treatment assignment but aware of

the other scale values, violating a key design feature for

Figure 3. MCA: first dimension.# MCA first computes the x
2 distance between each pair of categories by comparing their profiles (that

is, the percentages of all remaining values). Second, it looks for the smallest dimension that better-reproduces those distances. The x
2

distance between categories is a measure of dissimilarity between their profiles. #Other dimensions were negligible. The vertical axis
represents the first new dimension that could be interpreted as patient recovery. It has been rescaled to have a mean of 0 and stan-
dard deviation of 1. The bar length is the 95% CI and the center square is the 50% CI. The natural rank is highly preserved, but con-
secutive scale values related to healthier status (top) are plotted closer than those related to worse health conditions (bottom). As an
example of correspondences among values from different scales, mRS value 4 corresponds to values 9 and 35–40 on NIHSS and BI
scales.

Table 2. Correlations Between Pairs of Scales

Correlations

Unit Measure

(Pearson)

Ranks

(Spearman)

Dichotomized†

(Phi)

mRS–NIHSS 0.84 0.91 0.68

mRS–BI 0.90 0.94 0.67

NIHSS–BI 0.84 0.89 0.58

†mRS#1, NIHSS#1, BI$95.

Rank correlations are slightly higher than unit measure correlations but

much higher than their dichotomized version.

Cobo et al Improving Stroke Treatment e147

 by on February 23, 2010 stroke.ahajournals.orgDownloaded from 



measuring concordance and diagnostic performance.24 To

apply our results to other clinical settings, adequately col-

lected data should be analyzed.

In all of our analyses we have assumed that the equivalence

premise holds for all the scale values, that is, that patients

sharing the same scale value are identical among each other

but different from any other patient, at least in the measured

characteristic. This premise is intrinsic to any measurement,

irrespective of other measure properties such as rank or unit

measure. However, this assumption is highly questionable in

the case of the NIHSS scale. For example, a NIHSS of 3

could represent a major deficit in 1 area or a collection of 3

very minor deficits. Our analysis does not provide any

evidence about the correspondence between these 2 different

kinds of NIHSS of 3, but maybe a future MCA performed on

the different components of this scale could add some new

information. Taking into account the idiosyncrasies of stroke

patients, it should also be studied to see if they can help in

assessing the equivalence between those different NIHSS53

values.

In the interest of parsimony, our reported analyses have not

considered 3 variables that may potentially affect the distri-

bution of the outcome scales: study, allocated treatment, and

Treatment delay. When those 3 variables have been included

in our analyses, the results have been almost identical.

Implications for Phase III Clinical Trials
Our results point out that the frequent dichotomization of

ordinal scales merges scale values that correspond to different

patient status, suggesting the loss of power previously raised

by several authors, either by using theoretical formulas of

sample size3 or by reanalyzing previous stroke clinical

trials.25 However, Savitz et al26 found that the Cochran-

Mantel-Haenszel ordinal shift test failed to outperform the

dichotomized Rankin outcome of 0 to 2 in the post hoc

analysis of the NINDS and ECASS trials.

We have shown that the assumption of unit measurement

has a modest impact on results, allowing parametric statistics,

such as means and standard deviations, to display patient

evolution on any of those scales and using design features to

improve statistical efficiency (such as averaging repeated

determination of the same scale to control either inter-rater or

intrapatient variability). Researchers can avoid the assump-

Figure 4. Representation of the scales in the first 2 PCA dimensions. NIHSS, mRS, and inverted BI all extend in the same direction
along the first component, which can be regarded as patient recovery and accounts for 90.7% of the original variability. The exclusion
of patients who died resulted in a very similar pattern (dotted lines), with minor changes only in the second dimension, which confronts
the neurological information from NIHSS with the more general information from BI and mRS, but it accounts only for 6.0% of the over-
all information provided by the 3 scales. If the 3 variables had been fully independent, each new dimension would have retained one-
third of the original information provided by the 3 variables. In the other extreme situation when the 3 variables are perfectly correlated,
only 1 new dimension would retain 100% of the information. In such a situation, the 3 variables will order the individuals in exactly the
same manner, with exactly the same relative distance between consecutive cases.
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tion of a constant scale unit by using an ordinal analysis,

which retains much of the power and is less sensible to

extreme values. In ordinal analyses, treatment effect esti-

mates can take the form of odds ratios3 or the Mann-Whitney-

Wilcoxon c-statistic; that is, the proportion of patients having

better outcomes with the study intervention than with the

control,27 which is a single and interpretable measure of

stroke treatment effect.5,28

Our results also provide a foundation for merging estimates

from different scales. Because the scales do not statistically

measure unique dimensions, results in different directions

should not be encountered, and a single combined estimate

will increase study power. The O’Brien test may combine

quantitative variables from several outcomes.29 If the unit-

measure assumption does not hold, the adjusted O’Brien

rank–sum-type test can be applied to the ordinal outcome

scales.30

By interpreting the scales as repetitions of the measure-

ment of patient recovery, we pose the question of “adding

patients or adding measures,”31 because extra information can

also be provided by other scales, such as the Glasgow

Outcome Scale.

Conclusion
Our results suggest that the common practice of using a single

dichotomized scale in primary end point analysis is not

optimal, and it may result in reduced study power, making

trials needlessly larger or increasing the chance that studies

will fail to detect the benefit of a genuinely efficacious agent.

Our results indicate that more information can be used in the

statistical analysis of stroke trials if dichotomization is

avoided and several scales are joined to estimate a single

efficacy measure.

However, we have not studied the power of the suggested

methods under different alternative treatment effects. To

definitively boost the chances of improving stroke treatment,

statistical simulation studies should be performed to consider

the type of treatment effect of the new compound over the

comparator.
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