
Automatic Learning of 3D Pose Variability in WalkingPerformances for Gait AnalysisIgnasi Rius†, Jordi Gonzàlez‡, Mikhail Mozerov†, F. Xavier Roca†2nd April 2007
†Centre de Visió per ComputadorEdi�ci O. Campus UAB. 08193, Bellaterra, Spain.{irius, mozerov, xavir}@cvc.uab.es
‡Institut de Robòtica i Informàtica IndustrialCSIC-UPC, Barcelona, Spainpoal@iri.upc.edu AbstractThis paper proposes an action speci�c model which automatically learns the variability of 3Dhuman postures observed in a set of training sequences. First, a Dynamic Programing synchro-nization algorithm is presented in order to establish a mapping between postures from di�erentwalking cycles, so the whole training set can be synchronised to a common time pattern. Then, themodel is trained using the public CMU motion capture dataset for the walking action, and a meanwalking performance is automatically learnt. Additionally, statistics about the observed variabilityof the postures and motion direction are also computed at each time step. As a result, in this workwe have extended a similar action model successfully used for tracking, by providing facilities forgait analysis and gait recognition applications.Keywords: Human motion modeling, gait analysis and recognition, dynamic programming.

1



1 IntroductionHuman motion analysis has received great attention from the research community during the pastyears. The promising applications it brings comprise automatic video surveillance, gait recognition,human body tracking, automatic video annotation, realistic motion synthesis, sports performance andmedical applications among others. At present, there exist a lot of publications related to this wideand relatively-old research area [27, 25, 1] due to the number of involved tasks, which is directlyproportional to the huge number of potential applications .The nature of the open problems and techniques used in human motion analysis approaches stronglydepend on the goal of the �nal application. Hence, most approaches oriented to surveillance demandperforming activity recognition tasks in real-time dealing with illumination changes and low-resolutionimages. Thus, they require robust techniques with a low computational cost, and mostly, they tendto use simple models and fast algorithms to achieve e�ective segmentation and recognition tasks inreal-time. Additionally, unlike applications which require �nding body parts, most approaches treatthe image as a whole and extract 2D features which are fed into classi�cation schemes to provide themost plausible explanation of what is happening in the scene [7, 20]. Complementarily, other video-surveillance approaches are aimed to discover unusual or unseen situations, trigger an alarm whensuch situations are detected, and let a human operator supervise the scene. An example of this kindof systems is [8] where the system is designed to supervise a swimming pool environment so an alarmcan be triggered in case there is a water-related situation. They extract several features such as speed,posture, submersion time, etc. from each of the tracked objects within the surveillance perimeter, andfed them into a polynomial network in order to detect emergency events.In contrast, approaches focused to 3D tracking and reconstruction, require to deal with a moredetailed representation about the current posture that the human body exhibits [19, 22, 6, 23]. Theaim of full body tracking is to recover the body motion parameters from image sequences dealing with2D projection ambiguities, occlusion of body parts, and loose �tting clothes among others. Thus, theyrequire human body models able to capture the relative positions between joints and limbs. Towardsthis end, an �stick �gure� model [14] is usually used to represent the human body con�guration, wherebody parts are represented as segments which are connected by joints with a prede�ned number ofDegrees Of Freedom (DOF). Additionally, the stick-�gure model can be �eshed out by using volumetricprimitives such as cylinders, truncated cones or ellipsoids in order to model the surface of the human2



body [26, 5]. The number of segments and joints a�ects the complexity of the model, which in turn,is strongly determined by the �nal goal of the application.On the other hand, gait analysis applications demand methods suitable for comparing motion se-quences between individuals, between the same subject, and w.r.t. some universal representation ofthe same motion. They may be based on the detailed analysis of body parts trajectories [10], or in theextraction of characteristic simple image-based features for each individual from the image sequences[15, 11]. Similarly, some gait identi�cation approaches use the information from joint trajectories,according to Johansson's studies from the early 70's [12] pointing out that the motion of the jointsprovides the key to recognize the behaviour and the identity of the whole �gure. Other approaches togait recognition are based on appearance cues of the individuals [2, 4, 17, 13]. For instance, in [13]they present two methods for identi�cation of humans using gait. They extract a binary silhouetteof the individual and compute the width of its outer over time. Then, these features are fed into anHMM for classi�cation.Finally, motion synthesis applications usually deal with complex models having a large number ofDOF [16, 22, 24]. Here, the pursued objective is to provide realism and natural motion to animationsrather than merely describing the motion performed. For example, in [24] they use a database of pre-recorded motion capture sequences and learn an statistical model for segments of the original motioncapture data. Then, they are able to re-use previously recorded motion subsequences in the actualanimation, providing realism and soft transitions between motions.Complementarily, we present an action-speci�c model of human motion suitable for many applica-tions, that has been successfully used for full body tracking [19, 18]. In this paper, we explore andextend its capabilities for gait analysis and recognition tasks. Additionally, we present a method forsynchronizing similar motion sequences in order to allow comparison between them. Our action-speci�cmodel is trained with 3D motion capture data for the walking action from the CMU Graphics LabMotion capture database. In our work, human postures are represented by means of a full body 3Dmodel composed of 12 limbs. Limbs' orientations are represented within the kinematic tree using theirdirection cosines [28]. As a result, we avoid singularities and abrupt changes due to the representation.Moreover, near con�gurations of the body limbs account for near positions in our representation at theexpense of extra parameters to be included in the model. Then, PCA is applied to the training data toperform dimensionality reduction over the highly correlated input data. Additionally, the main modes3



of variation of human gait are naturally represented by means of the principal components found. Thisleads to a coarse-to-�ne representation of human motion which relates the precision of the model withits complexity in a natural way, and makes it suitable for di�erent kind of applications which demandmore or less complexity in the model.Subsequently, all the walking performances are synchronised using a Dynamic Programming algo-rithm and a mean manifold for a set of training performances is computed. As a result, we can analyseintra-performance di�erences in each time step. In other words, we can quantify the di�erence be-tween the same part of two di�erent performances of the same action, enabling to achieve gait analysisfor sports performance or medical applications among others. Finally, we learn a mean direction ofmotion for subsequences of a determined length, and extract statistics from the synchronised datasetthat characterise the variation observed in each step between di�erent training performances. Thisleads, together with the computed mean performance, to gait identi�cation applications since we canestablish classi�cation boundaries according to the variation observed from the mean performance.Both the action-speci�c model and the synchronization algorithm constitute the main contribution ofthis paper.The remainder of this paper is organised as follows. Section 2 details the composition of the mo-tion database used for training, the human body model employed, and explains the method used forsynchronising the whole training set. Then, Section 3 describes the action speci�c model and explainsthe procedure for learning its parameters from the synchronised training set. Section 4 introduces howthis model is used for gait analysis and gait recognition applications and some experimental results areshown. Finally, Section 5 concludes this paper and outlines the future research lines.2 Motion database synchronizationIn order to train and test our approach, we used the Carnegie Mellon University's (CMU) Graphics LabMotion capture database1. The motion data was acquired at 120 fps with a Vicon Motion CaptureSystem, using a 41 markers set. The database contains a total of 2622 performances classi�ed in23 di�erent motion categories such as walking, boxing or running, and were performed by di�erentsubjects. We encourage the reader to refer to their website for further details on the acquisitionprocedure, markers' positions and database organization.1Available at http://mocap.cs.cmu.edu/ 4
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2.1 Human Body ModelThe body model employed in our work is composed of twelve rigid body parts (hip, torso, shoulder,neck, two thighs, two legs, two arms and two forearms) and �fteen joints, see Fig. 1.(a). These jointsare structured in a hierarchical manner, constituting a kinematic tree, where the root is located at thehip.However, postures in the CMU database are represented using the XY Z position of each markerthat was placed to the subject in an absolute world coordinates system. Therefore, we must selectsome principal markers in order to make the input motion capture data usable according to our humanbody representation. Figure 1.(b) relates the absolute position of each joint from our human bodymodel with the markers' used in the CMU database. For instance, in order to compute the positionof joint 5 (head) in our representation, we should compute the mean position between the RFHD andLFHD markers from the CMU database, which correspond to the markers placed on each side of thehead. Notice that our model considers the left and the right parts of the hip and the torso as a uniquelimb, and therefore we require a unique segment per each. Hence, we compute the position of joints 1and 4 (hip and neck joints) as the mean between the previously computed joints 2 and 3, and 6 and 9respectively.We use directional cosines to represent relative orientations of the limbs within the kinematic tree[28]. As a result, we represent a human body posture ψ using 36 parameters, i.e.
ψ = {θx1 , θ
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12}, (1)where θxl , θyl , θzl are the relative directional cosines for the limb l, i.e. the cosine of the angle between alimb l and each axis x, y, and z respectively. Subsequently, let us de�ne a particular performance Ψiof an action as a time-ordered sequence of Fi postures such as
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i }, (2)where the index i denotes the number of performance. Finally, an action Ak = {Ψ1, ...,ΨIk} is de�nedby all the Ik performances that belong to that action.Directional cosines constitute a good representation method for body modeling, since it does not5



(a) (b)Figure 1: Details of the human body model used (a) and the relationship to the markerset employedin the CMU database (b).lead to discontinuities, in contrast to other methods such as Euler angles or spherical coordinates.Additionally, unlike quaternions, they have a direct geometric interpretation. However, given thatwe are using 3 parameters to determine only 2 DOF for each limb, such representation generates aconsiderable redundancy of the vector space components. Additionally, the human body motion isintrinsically constrained, and these natural constraints lead to highly correlated data in the originalspace. Therefore, we aim to �nd a more compact representation of the original data to avoid redun-dancy. To do this, we consider a set of performances corresponding to a particular action Ak, andperform Principal Component Analysis (PCA) to all the postures that belong to that action. Then,we project all the training postures to the PCA space, i.e.
ψ̃ = [e1, ..., eb]

T (ψ − ψ), (3)where ψ refers to the original posture, ψ̃ denotes the lower-dimensional version of the posture repre-sented in the PCA space, [e1, ..., eb] is the PCA space transformation matrix that correspond to the�rst b selected eigenvectors, and ψ is the mean of all the postures. The resulting PCA-like space where6



postures are represented will be denoted as ΩAk . As a result, we obtain a lower-dimensional represen-tation of human postures which is more suitable to describe human motion, since we found that eachdimension on the PCA space describes a natural mode of variation of human motion [9]. Choosingdi�erent values for b lead to models of more or less complexity in terms of their dimensionality. Hence,while the gross-motion2 is explained by the very �rst eigenvectors, subtle motions in the PCA spacerepresentation requires more eigenvectors to be considered. The projection of the training sequencesinto the PCA space will constitute the input for our sequence synchronization algorithm.2.2 Composition of the training setGiven that we are focused in modeling the walking action, we only use the walking sequences from theCMU database. As a result our training set is composed of 12 subjects showing di�erent performancesof the walking action. In turn, each walking performance consists in a variable number of cycles rangingfrom 1 to 5. Subsequently, each recorded performance is split in its composing walking cycles. Weused the angle between the left and right legs as the criterion for splitting walking cycles. A full cycleis de�ned as all the body postures in between two consecutive maximums of the angle between bothlegs when the left leg remains in the back. Incomplete cycles and erroneous sequences were discardedfrom the training set. As a result, we �nally end up with a set of 16891 body postures correspondingto 126 walking cycles performed by 12 di�erent actors showing di�erent speeds and di�erent bodycon�gurations while performing the same action. Table 1 details the composition of our training set.The number of each subject and recorded performance corresponds to the same indexes used in theCMU database.2.3 Synchronization algorithmAs stated before, the training sequences are acquired under very di�erent conditions, showing di�erentdurations, velocities and accelerations during the performance of a particular action. As a result,it is di�cult to perform useful statistical analysis to the raw training set, since we cannot put incorrespondence postures from di�erent cycles of the same action. Therefore, a method for synchronizingthe whole training set is required so that we can establish a mapping between postures from di�erentcycles.2mainly, the motion of the torso, legs and arms in low resolution.7



Subjectid. Index of selectedperformances # recordedperfor-mances Total # ofwalkingcycles Total #bodypostures2 {1, 2} 2 3 3725 {1} 1 3 4487 {1, 2, 3, 6, 7, 8, 9,10 ,11} 9 15 20278 {1, 2, 3, 6, 9, 10} 6 9 105812 {3} 1 3 48216 {15, 16, 21, 22, 31,32, 47} 7 15 197735 {1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14,15, 16, 28, 29, 30,31, 32, 33, 34} 23 42 578238 {1, 2} 2 4 54039 {1, 2, 3, 4, 5, 6, 7, 8,9, 10, 12, 13, 14} 13 26 326043 {1} 1 2 26349 {1} 1 3 49155 {4} 1 1 191TOTAL 67 126 16891Table 1: Detail of the training set composition.Inspired by techniques used in the stereo-matching and image procesing literature [3, 21], we de-veloped a novel dense matching algorithm based on Dynamic Programming (DP), which allows usto �nd an optimal solution for synchronizing the pre-recorded motion sequences of the same class inthe presence of di�erent speeds and accelerations. Towards this end, we �rst compute the similaritybetween each pair of training sequences with a given metric. Then, in order to extract from the inputdata set the best time scale pattern for synchronization, an intra-class minimum global distance crite-rion is used. Finally, all walking cycles are synchronised to the computed time pattern. The detailedexplanation of the process is as follows.The projection of the training sequences into the PCA space constitutes the input for our sequencesynchronization algorithm. Hereafter, we consider a multidimensional signal xi(t) as an interpolatedexpansion of each training performance Ψ̃i such as
xi(t) = ψ̃fi if t = (f − 1)δf ; f = 1, ..., F ; (4)where the time domain of each action performance xi(t) is [0, T ).8



Before starting synchronising the dataset, all the walking cycle performances are resampled, usingcubic spline interpolation, so that all the performances have exactly the same number of frames F .The longest performance from the training set is chosen to be the one which determines the numberof frames F of the rest of the set. As a result, all the input sequences xi(t) have the same period T .The problem of synchronizing two multidimensional signals xn(t) and xm(t) is similar to the match-ing problem of two epipolar lines in a stereo image. For stereo matching a Disparity Space Image(DSI) representation is usually employed [3, 21]. The DSI approach assumes that a 2D DSI matrixhas dimensions time p and and disparity d, ranging from 0 ≤ p < P , and −D ≤ d ≤ D. Let E(d, p)denote the DSI cost value assigned to each DSI matrix element (d, p) calculated by
En,m(p, d) = |xn(pδt) − xm(pδt+ dδt)|2 , (5)where δt stands for the time sampling interval used.Consequently, we formulate the synchronization task as an optimization problem as follows: �nd thetime-disparity function ∆n,m(p), which minimizes the synchronization distance between the comparedsignals xn and xm, i.e.

∆n,m(p) = arg min
d

<P
∑

i=0

En,m(i, d(i)) + µ
<P−1
∑

i=0

|d(i+ 1) − d(i)| . (6)The discrete function ∆n,m(p) coincides with the optimal path through the DSI trellis. In otherwords, we must �nd the path whose sum of cost values plus its weighted length is minimal among allother possible paths. This is solved e�ciently by using the Dynamic Programming (DP). The methodconsists of an step-by-step control and optimization given by the following recurrence relation:
S(p, d) = E(p, d) + min

k∈0,±1
{S(p− 1, d+ k) + µ1d+ k1} ,

S(0, d) = E(0, d), (7)where the scope of the minimization parameter is chosen in accordance with |∆n,m(p+ 1) − ∆n,m(p)| ≤

1. By using that recurrence relation, the minimal value of the objective function in Eq.(6) can be foundat the last step of optimization. Next, the algorithm works in reverse order and recovers a sequence ofoptimal steps (stored in a lookup table K(p,d) for the values of the index k in the recurrence relation9



given by Eq. 7) and eventually the optimal path, given by
d(p− 1) = d(p) +K(p, d(p)),

d(P − 1) = 0,

∆(p) = d(p). (8)Finally, having found ∆n,m(p), the synchronised version of xm(t) to a base rate sequence xn(t) mightbe calculated by
xn,m(pδt) = xm(pδt+ ∆n,m(p)δt). (9)Summarizing, the dense matching algorithm that synchronises two arbitrary human motion se-quences xn(t) and xm(t) is as follows:1. Prepare a 2D DSI matrix, and set initial cost values Eo using Eq. (5)2. Find the optimal path trough the DSI using recurrence Eqs. (7), (8).3. Synchronise xm(t) to the rate of xn(t) using Eq.(9).Our algorithm assumes that a particular sequence is chosen to be a time scale pattern for all othersequences. In order to make an optimal choice of the sequence that will be used as the pattern forsynchronizing the rest, a statistically proven rule according to some appropriate criterion is desirable.Towards this end, we de�ne the synchronisation distance between a pair of sequences (n,m) as

Dn,m =
P

∑

i=0

|xn(iδt) − xm(iδt+ ∆n,m(i)δt)|2

+µ
P−1
∑

i=0

|∆n,m(i+ 1)δt− ∆n,m(i)| , (10)Then, we can compute the global distance of the full synchronization of all the sequences m relativeto the pattern sequence n as
Dn =

∑

m∈Ak

Dn,m. (11)We thus choose the synchronizing pattern sequence with minimal global distance Dn: in a statisticalsense, such signal can be considered as a median value over all the performances that belong to the set10



(a) (b)Figure 2: The �rst b = 4 dimensions within the PCA space before (a) and after (b) synchronization ofthe training set.of Ak or can be referred to as median sequence.Finally, after running the algorithm on all our training performances Ψ̃i all the walking cycles havebeen synchronised and will be denoted as Ψ̂i = {ψ̂1
i , ..., ψ̂

F
i } .Figure 2.(a) shows the �rst 4 dimensions of the input walking sequences represented in the PCAspace without performing any synchronisation. Figure 2.(b) shows the same situation after applyingthe synchronization algorithm proposed in this work. Notice that a common motion pattern arisesafter the synchronisation step.3 Learning the motion modelOnce all the walking sequences share the same time pattern, we learn an action speci�c model forwalking which is accurate without loosing generality, and suitable for many applications such as gaitanalysis, gait recognition and tracking. Thus, we want to learn where the postures lie in the spaceused for representation, how do they change over time as the action goes by, and what characteristicsdo the di�erent performances have in common which can be exploited for enabling the aforementionedtasks. In other words, we aim to characterize the shape of the synchronised version of the training setfor the walking action in the PCA-like space. The process is as follows.First, we extract from the training set Âk = {Ψ̂1, ..., Ψ̂Ik} a mean representation of the action by11



Figure 3: Learned mean performance Ψ̄ and standard deviation σt for the walking action.computing the mean performance Ψ̄Ak = {ψ̄1, ..., ψ̄F }, where each mean posture ψ̄t is de�ned as
ψ̄t =

Ik
∑

i=1

ψ̂i
t

Ik
, t = 1, ...F. (12)

Ik is the number of training performances for the action Ak, ψ̂it corresponds to the t-th posture fromthe i-th training performance, and �nally, F denotes the total number of postures of each synchronisedperformance.Then, we want to quantify how much the training performances Ψ̂i vary from the computed meanperformance Ψ̄Ak of Eq.(12). Therefore, for each time step t, we compute the standard deviation σt ofall the postures ψ̂t that share the same time stamp t, i.e.
σt =

√

√

√

√

1

Ik

Ik
∑

i=1

(ψ̂i
t
− ψ̄t). (13)Figure 3 shows the learned mean performance Ψ̄ (red solid line) and ±3 times the computed standarddeviation σt (dashed black line) for the walking action. We used b = 6 dimensions for building thePCA space representation explaining the 93.3% of total variation of training data.On the other hand, we are also interested in characterising the temporal evolution of the action.Therefore, we compute the main direction of the motion vt for each subsequence of d postures from12



Figure 4: Sampled postures at di�erent time steps, and learnt direction vectors vt from the meanperformance for the walking action.the mean performance Ψ̄Ak , i.e.
vt =

∑t−d+1
j=t

(ψ̄j−ψ̄j−1)

‖(ψ̄j−ψ̄j−1)‖

d
; vt =

vt

‖vt‖
, (14)where vt is a unitary vector representing the observed direction of motion averaged from the last dpostures at a particular time step t. In Figure 4, the �rst 3 dimensions of the mean performance areplotted together with the direction vectors computed in Eq.(14). Each black arrow corresponds to theunitary vector vt computed at time t, scaled for visualization purposes. Hence, each vector encodes themean observed motion's direction from time t−d to time t, where d stands for the length of the motionwindow considered. Additionally, selected postures from the mean performance have been sampled attimes t = 1, 30, 55, 72, 100, 150 and 168 and overlaid in the graphic.As a result, the action model ΓAk is de�ned by

ΓAk = {ΩAk , Ψ̄Ak , σt,vt}, t = 1..F, (15)where ΩAk is the PCA space de�nition for action Ak, Ψ̄Ak is the mean performance, and σt,vt corre-13



spond to the computed standard deviation and mean direction of motion at each time step t, respec-tively.Finally, to handle the cyclic nature of the waking action, we concatenate the last postures in eachcycle with the initial postures of the most close performance according to a Euclidean distance criterionwithin the PCA space. Additionally, the �rst and last (d/2) postures from the mean performance(where d is the length of the considered subsequences) are resampled using cubic spline interpolationin order to soft the transition between walking cycles. As a result, we are able to compute σt and vtfor the last postures of a full walking cycle.4 Applications and experimental resultsIn this section we use the action speci�c model ΓAk in di�erent application scenarios. A similar modelwas successfully used within a Bayesian 3D tracking framework in [18], and here its applicability forgait analysis and gait identi�cation is presented and some experimental results are shown.4.1 Gait analysisGiven the synchronisation of di�erent performances to the same time pattern, the angle variationbetween di�erent performances can be quanti�ed and analysed at any particular moment of the action.We took three performances from di�erent subjects, namely S2, S5 and S7, in order to analysehow di�erent they perform on a walking cycle. The �rst performance corresponds to subject #2, 1stwalking cycle from performance #1, and will be denoted as ΨS2. The second one, ΨS5, correspondsto the 1st cycle of the 1st performance of subject #5, and �nally, the �rst cycle from performance #2from subject #7 was compared and will be denoted as ΨS7. Figure 5 shows the evolution of absolutedirection cosine angles from 4 limbs of the body model, namely the hip, the shoulders, the right upperarm and the right upper leg, respectively. It is worth saying that subjects S2 and S7 were males, whilesubject S5 corresponds to a female. By comparing the depicted angle variation values between thethree walkers, one can observe several di�erences. In the �rst place, there are not substantial di�erencesbetween hip's motion between the two male subjects. However, the hip's angles w.r.t. the X and Yaxes from subject S5, corresponding to the elevation and rotation parallel to the �oor according toFig. 1, are a lot di�erent from the other tested subjects. Thus, the swing movement of the hip ismore emphasized in the female subject performance. Contrarily, when comparing the angle variation14



Figure 5: Absolute direction cosines computed for subjects S2, S5, and S7 for the hip, shoulder, rightupper arm and upper leg limbs.of the right arm and leg between male walkers and the female, few dissimilarities can be derived exceptthat the female walker exhibits a less emphasized swing movement in the whole walking cycle. On theother hand, the shoulder movement is slightly di�erent specially concerning the angle w.r.t. Y axis,corresponding to the elevation of the limb. In general, while subjects S2 and S7 show some di�erences,they share a very similar walking style compared to subject S5. These results con�rm the conclusionsstated in [10] about di�erences between walking styles between male and female actors.4.2 Gait identi�cationTo test the suitability of our action model for gait recognition applications, we aim to identify whichsubject is performing an action by analysing the observed motion from a particular test subject. Hence,we trained an speci�c model for each subject Si, where i identi�es the subject according to Table 1.As a result, we learned 11 di�erent action models, namely ΓS2, ΓS5, ΓS7, ΓS8, ΓS12, ΓS16, ΓS35, ΓS38,
ΓS39, ΓS43, and ΓS49. All subject-dependent action models share the same PCA space representation
ΩAk so all the postures are represented in a common space. Notice that subject S55 was not consideredin this experiment since we had only 1 walking cycle available from this subject.15



S2 S5 S7 S8 S12 S16 S35 S38 S39 S43 S49S2 66.7 0 0 0 0 0 0 0 33.3 0 0S5 0 100 0 0 0 0 0 0 0 0 0S7 0 0 80 13.3 0 0 0 6.7 0 0 0S8 0 0 0 77.8 0 0 0 0 22.2 0 0S12 0 0 0 0 100 0 0 0 0 0 0S16 0 0 0 0 0 40 33.4 13.3 0 13.3 0S35 0 0 0 0 0 7.14 92.86 0 0 0 0S38 0 0 0 0 0 25 0 75 0 0 0S39 15.4 0 0 19.2 0 0 0 0 65.4 0 0S43 0 0 0 0 0 0 0 0 0 100 0S49 0 0 0 0 0 0 0 0 0 0 100Table 2: Confusion Matrix in percentages for full cycle recognitionThe approach is as follows: given an input motion sequence of length d, we compute the similarity
D to all the subsequences of the same length from the 11 learned mean performances. Then, thesubsequence which best matched a subject's mean performance according to our metric determines theidentity of the subject.Hence, the distance used for gait identi�cation between 2 subsequences of length d, namely Ψa =

{ψ1
a, ..., ψ

d
a} and Ψb = {ψ1

b , ..., ψ
d
b} is de�ned as follows:

D(Ψa,Ψb) = exp
(

DM (Ψa,Ψb)
)

[

(va • vb) + 1

2

]α

, (16)where • stands for the dot product between vectors va and vb corresponding to the average directionof motion computed following Eq.(14). DM is the sum of the Mahalanobis distance within the PCAspace ΩAK between each posture ψja and ψjb from the subsequences, j = 1..d. Our similarity measureis decomposed in two terms. The exp term accounts for the distance between postures within thePCA space, while the dot product term expresses similarity between directions of motion across time,regardless the body postures exhibited. Finally the exponent α controls the importance given to thelatter term for computing the �nal similarity. In other words, high values for α will provide highsimilarity values to sequences following the same direction of motion, while low values will take moreinto account the position of their postures within the PCA space. Therefore, this similarity metricde�nes a trade o� from one hand between sequences that exhibit similar motion directions, and fromthe other hand sequences with close postures within the PCA space according to their Mahalanobisdistances. As a result, only close sequences which follow the same direction will get high scores, whilesequences that do not match in motion direction or position are given low similarity scores.In our �rst experiment, we took a full walking cycle of each individual for testing the identi�ca-16



S2 S5 S7 S8 S12 S16 S35 S38 S39 S43 S49S2 91.28 0 0.05 0.47 0 0 0 0 7.04 1.16 0S5 0 97.21 0 0 1.92 0 0 0.35 0 0 0.52S7 0.35 1.80 89.88 0.12 0 0 0.06 2.50 0.12 1.92 3.25S8 0.47 0 0.29 91.86 0 0 0 0.12 7.26 0 0S12 0 0 0 0 99.83 0 0 0 0 0 0.17S16 0 0 0 0 3.20 64.17 19.37 6.34 0 2.04 4.88S35 0 1.34 0.06 0 4.19 19.09 69.28 3.84 0 1.10 1.10S38 0 1.28 0 0 1.86 6.17 2.91 76.85 0 0 10.93S39 6.51 0 0.06 3.49 0 0 0 0 88.66 1.28 0S43 0 0 0 0 0 0 0 0 0 100 0S49 0 0 0 0 0.17 0 0 0 0 0 99.83Table 3: Confusion Matrix in percentages for subsequences of d=10 posturestion approach. We chose b = 10 dimensions for the PCA space representation of human postures.Subsequently, the distance of the full test cycle to each speci�c action model's mean performance wascomputed according to Eq.(16). The tested walking cycle was removed from the training set in thelearning stage. Then, this experiment was repeated for each cycle of the database, resulting in a totalof 126 identi�cation tests. The confusion matrix explaining the recognition performance can be seen inTable 2. Several miss classi�cations occur due to di�erent reasons. On the one hand, results obtainedfor subjects S2, S38, S43 and S49 are not statistically con�dent since less than 5 cycles are providedin the training database. On the other hand, looking at the miss classi�cation obtained between sub-jects S16 and S35 we discovered that indeed they correspond to the same actor who performed therecording. Despite of the fact that in the speci�cation of the CMU database, these subjects are de�nedas di�erent, the authors of this paper recognised that the same person performed the recordings forboth subjects datasets by subsequently checking the video recordings from those sessions.Afterward, we ran another experiment taking d = 10 as the length of the subsequences considered forperforming gait identi�cation. All the testing walking cycles have a total length of F = 200 postures.Then, for each subject, we selected a random test walking cycle from the database. Thus, each testedcycle is composed of a total of (F − d + 1) overlapping motion subsequences. Hence, we ran the gaitidenti�cation experiment for each possible motion subsequence of each tested subject and computedits confusion matrix. The same experiment was repeated a total of 10 times. The average of theobtained confusion matrices can be seen in Table 3. One can observe that the performance obtainedis comparable with the full cycle experiment, but using only 1/20 of a walking cycle. Althoughsome miss classi�cations occur between subjects that did not appear in the previous experiment, insome cases the performance is even better. This can be explained because of the better statistical17



robustness of this experiment, since we performed an identi�cation test for each of the (F − d +

1) = (200 − 10 + 1) = 191 subsequences belonging to a full tested cycle. This results in a total of
191 ∗ nSubjects ∗ timesRepeated = 191 ∗ 11 ∗ 10 = 21010 identi�cation tests as opposed to the 126identi�cation tests from the previous experiment. The results are very encouraging, since they showthat we are able to recognise which subject is performing an action by observing only a very reducedmotion portion from it.5 Conclusions and future workWe have presented an action-speci�c model suitable for gait analysis, gait identi�cation and trackingapplications. The model is tested for the walking action, and is automatically learnt from the publicCMU motion capture database. A methodology for synchronising the original human motion inputsequences is detailed, which uses Dynamic Programming techniques. As a result, we learnt the pa-rameters of our action model which characterise the pose variability observed within a set of walkingperformances used for training.The resulting action model consists of a representative manifold for the action, namely the meanperformance, the standard deviation from the mean performance, and the mean observed directionvectors from each motion subsequence of a given length. The action model can be used to classify whichpostures belong to the action or not. Moreover, the trade o� between accuracy and generality of themodel can be tuned using more or less dimensions for building the PCA space representation of humanpostures. Hence, using this coarse-to-�ne representation, the main modes of variation correspond tomeaningful natural motion modes. Thus, for example, we found that the main modes of variation forthe walking action obtained from PCA, explain the combined motion of both the legs and the arms,while in the bending action they mainly correspond to the motion of the torso.Subsequently, the learnt action model was used in combination with the synchronisation algorithmfor gait analysis applications. This enabled us to compare and quantify the di�erence between di�erentperformances of the same action. Furthermore, the computed mean observed direction vectors for aperformance allow the formulation of a similarity measure D between motion subsequences of the samelength. The measure combines similarity in the direction of the performed motion and distance withinthe PCA space. Its usefulness for gait identi�cation has been presented, and experimental resultspoint out that we are able to recognise the 11 tested subjects using a very reduced number of motion18



samples.Future research lines rely on obtaining the joint positions directly from image sequences. Previously,the action model has been successfully used in a probabilistic tracking framework for estimating theparameters of our 3D model from a sequence of 2D images. In [19], the action model improved thee�ciency of the tracking algorithm by constraining the space of possible solutions only to the mostfeasible postures while performing a particular action, thus avoiding estimating postures which are notlikely to occur during an action. However, we need to develop robust image-based likelihood measureswhich evaluate the predictions from our action model according to the measurements obtained fromimages. Work based on extracting the image edges and the silhouette from the tracked subject iscurrently in progress. Hence, the pursued objective is to learn a piece-wise linear model which evaluatesthe �tness of segmented edges and silhouettes to the 2D projection of the stick �gure from our humanbody model. Methods for estimating the 6DOF of the human body within the scene, namely 3Dtranslation and orientation, also need to be improved. Lastly, a method for automatically initialisingthe tracker is also being studied, since the Bayesian inference framework used to face the trackingproblem does not provide any clue for the initial state of the tracked object.Finally, even using tracking approaches, recovering all joints' positions from images accurately isspecially di�cult in the presence of occlusions and when all joints are not directly observable due to2D projection e�ects. Therefore, we aim to explore and extend the gait analysis and identi�cationfacilities of the action model presented here in case that not all the joints' positions are available orcorrectly estimated by the tracking algorithm.AcknowledgmentsThis work has been supported by EC grants IST-027110 for the HERMES project and IST-045547 forthe VIDI-Video project, and by the Spanish MEC under projects TIN2006-14606 and DPI-2004-5414.Jordi Gonzàlez also acknowledges the support of a Juan de la Cierva Postdoctoral fellowship fromthe Spanish MEC. The database used in this project was obtained from mocap.cs.cmu.edu which wascreated with funding from NSF EIA-0196217.
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