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Abstract—This paper analyzes the impact of the charge of EVs
(Electrical Vehicles) on a power grid. In order to simulate the
behavior of the EV charging on the grid a model of its battery
has been found (EV’s charging curve). As the way of the EV
is charged from the grid affects critically to the voltage levels
and to the saturation of the lines two modalities of charge are
presented: not-controlled charge and controlled charge. Finally,
the simulations have been performed from two points of view:
deterministic analysis and probabilistic analysis.

I. INTRODUCTION

The recent awareness about fossil fuels and the environment
has arisen more sustainable alternatives regarding means of
transport. Consequently, hybrid vehicles and pure electrical
vehicle have become the main alternatives for green trans-
portation. This new trend has caused market activation and it
is expected that hybrid and electrical vehicles will constitute
the majority in private transport.

Moreover, one kind of hybrid vehicles, the plug-in electric
vehicles (PHEV), will not only charge their batteries, but
PHEV will also be able to inject power to the network
when required, as the electrical vehicles (EV) do. This fact
suggests that EV penetration will affect current power system
performance. Then, it is necessary to study some scenarios
of penetration of such vehicles into the electrical network in
order to maintain security and quality of power supply within
standard limits.

On one hand, in order to analyze the impact of EVs
integration into the power grid, aspects related to storage
technologies (namely batteries) and the charging process of
such storage devices have to be studied. In order to analyze

the impact of EV on the power grid, load flow calculations in
a standard urban network are performed following. To do that,
different penetrations of EV into the network are considered.
The results of simulations are shown and commented lately.

On the other hand, an European standard which defines the
type of connector to be used by EVs is needed. Until a new
standard gets develop, it is proposed to use a SCHUKO (CEE
7/4) connector type for currents up to 16A. In addition, to slow
charging, the output values of the charging station should be
up to 16 A per plug, 230 V ± 10%, and 50 Hz ± 1% [1].

II. ELECTRICAL VEHICLE

In order to analyze the impact of the EVs into the grid, a
model of its charging curve is needed. From all the existing
models of EV, the charging curve chosen is from the Mit-
subishi I-MIEV [2]. This vehicle has an autonomy of 160 km
and its batteries are made of Li-ion (50Ah 16kWh 330V) [2];
Fig.1 shows the charging curve of the EV when its capacity at
20%. The battery is charging at full power during 2 hours and
then decreases its charging power exponentially since the hour
4; at this time it is considered that the battery is completely
charged.

The way of how EVs are charged from the grid has a
critical influence on its impact on the voltage levels and on the
saturation of the lines. Considering this fact, two modalities
of charge are presented: not-controlled charge and controlled
charge. In the not-controlled charge EVs start the charge as
they park. In the controlled charge, EVs only can charge during
a determined period of time of the day (low-load period).
In both modalities of charge, the number of EVs charging
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Fig. 1. Charging curve of the EV

is defined establishing different scenarios of EV penetration
over the vehicles acceding to the city (Fig.2). The curve of
the movement of the vehicles has been obtained from an
estimation of the curve of Barcelona [3] and has been shifted
two hours earlier in order have a better representation of the
Denmark’s vehicle movement (in this estimation, population
has also been considered).
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Fig. 2. Movement of vehicles

During the charging process of the EV, will be charging
simultaneously EV with different states of charge. Therefore,
a model is needed to take this fact into account in the steady-
state simulations. Eq.1 models the superposition of the demand
caused by the EV in different charging states, where R is
penetration of EV, Pev is the maximum power which a car
can charge, i is the counter associated to the actual hour, j is
the counter associated to the previous hour, ∆vak,k−1 is the
increase of EV between the hour i and the hour j and Cevk
is the charging state of the EV (Fig.1).

PHi = R · Pev ·
i∑

k=1

(∆vak,k−1 · Cevk) (1)

Applying this model to the vehicle movement curve, the de-
mand curves for the both charging modalities can be obtained
(Fig.3)

III. POWER GRID

The scenario of the simulations is a part of the Danish
sample grid (Fig.4) [4]. This grid, of 400 MW of short-circuit
power, has 3 wind turbine generation units of 630 kW at
busbars B013, B015 and B017. In addition, there are three
combined cycle units of 3 MW each one at the busbar B005,
but for purposes of the study has remained disconnected.
Loads are at the busbars B005, B010, B011 and B012. Due to
simplify the interpretation of the simulations and the results,
EVs have been separated from the other consumptions.
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(a) Not-controlled charge
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(b) Controlled charge

Fig. 3. EV’s power demand for the not-controlled and controlled charge
modality
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Fig. 4. Danish power grid

In order to study the most critical situation the Winter(week)
case has been chosen from all the possible situations of
electrical demand because it has the highest demand in every
hour (Fig.5). Therefore, the wind power generation curve is
from this period. Fig.6 depicts a representative daily generation
for the three wind power generation units.
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Fig. 5. Electrical demand

In the deterministic and in the probabilistic analysis the
voltage results presented are from two busbar. The first busbar
is B005 and it has been chosen because L00 is always the load
with the highest power. The second busbar chosen is B014 in
order to have the behavior of a closer busbar to a wind power

2
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Fig. 6. Wind power generation

generation unit.

IV. DETERMINISTIC ANALYSIS

In this section, the result from executing a deterministic
analysis are shown. In this kind of analysis all loads are
previously determined. The results from the two typologies of
charge for the EV are presented for the different penetrations
of EV.

A. Not-controlled charge

Fig.7 and Fig.8 show respectively the voltage levels for
busbar B005 and B014 for the case of not-controlled charge.
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Fig. 7. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge for the deterministic analysis

B. Controlled charge

Fig.9 and Fig.10 show respectively the voltage levels for
busbar B005 and B014 for the case of controlled charge.

V. PROBABILISTIC ANALYSIS

From the compiled data during the week days of the winter
season a mean and an standard deviation have been found
for each hour of the day. In order to perform a probabilistic
analysis 50 load flows for each hour have been executed
generating random powers with the mean and the standard
deviation founded previously.
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Fig. 8. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge for the deterministic analysis
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Fig. 9. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of controlled charge for the deterministic analysis
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Fig. 10. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of controlled charge for the deterministic analysis
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A. Not-controlled charge

Fig.11 and Fig.12 show mean voltage levels for the different
penetrations of EV in the case of not-controlled charge. In
both figures are the calculated mean voltage levels from the
probabilistic analysis and the mean from the deterministic
analysis. In order to have a most detailed view of the critical
busbar, in this case B014, Fig.13 show the the range of voltage
level that can be reached at this busbar.
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Fig. 11. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge
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Fig. 12. Voltage levels for the busbar B014 for the different penetrations of
EV in the case of not-controlled charge

B. Controlled charge

Fig.14 and Fig.15 show mean voltage levels for the different
penetrations of EV in the case of controlled charge. As
happens in the not-controlled charge, the B014 is the busbar
with the lowest voltage levels, Fig.16 show the the range of
voltage level that can be reached at this busbar.

VI. CONCLUSION

The objective of the paper is to analyze the impact of charg-
ing EVs from a Danish grid. Therefore, different penetrations
of EV and charge modalities are proposed. In order to cover

1

1,005

0,995

0,985

0,99

u]

0,98

0,985

V
ol
ta
ge

 [p
u

0 97

0,975

0,965

0,97

MIN

AVG

0,96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour [h]

MAX

Fig. 13. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge
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Fig. 14. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of controlled charge
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Fig. 15. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge
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Fig. 16. Voltage levels for the busbar B005 for the different penetrations of
EV in the case of not-controlled charge

the maximum situations two analysis have been performed:

deterministic analysis and probabilistic analysis.
On one hand, results from the simulations show that not-

controlled charge amplifies the demand of the line at the hours
of the higher electrical demands. On the other hand, simula-
tions show that with the controlled charge a high penetration
of EVs can be charged without the need of investments in the
power grid infrastructure.
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5


	I Introduction
	II Electrical Vehicle
	III Power Grid
	IV Deterministic Analysis
	IV-A Not-controlled charge
	IV-B Controlled charge

	V Probabilistic Analysis
	V-A Not-controlled charge
	V-B Controlled charge

	VI Conclusion
	References

