
A Rudimentary Machine. Experiences in the
Design of a Pedagogic Computer

Enric Pastor, Ferm��n S�anchez and Anna M. del Corral

Abstract|

This paper describes a pedagogic computer named

\M�aquina Rudimentaria". This computer has been de-
signed to be used in a �rst course on logic design or com-
puter architecture; orthogonality and simplicity have been
the major goals. The description of the computer includes
the de�nition of both the machine and the assembly lan-

guage, the implementation of the datapath and the opti-
mization of the control unit. A programming framework
has been designed to allow the development of small pro-
grams in assembly language, their compilation and detailed
simulation on the proposed architecture.

I. Introduction

The M�aquina Rudimentaria (MR) [1] intends to be a
simple pedagogic computer. The main objective pursued in
the design is to guarantee the orthogonality and simplicity.
The MR may be used as a tool to teach basic concepts
about structure and architecture of computers in the �rst
courses of engineering or computer science studies. Since
the design of the MR only includes basic concepts about
digital systems, it can also be used as a complex case study
in VLSI design courses. In that sense, the MR allows a
natural progression from the study of logic design to the
basic concepts of computer architectures and further into
VLSI design. The MR has been design by professors in
the Dept. of Computer Architecture (UPC) by using the
experience acquired in the design of a simpler computer [2].
In order to use a processor in an initial course on

computer architecture, old commercial products like the
VAX [3] or Motorola series should be disregarded because
they include large instruction sets and complex addressing
modes. Processors in the Intel 80x86 family [4] should be
also disregarded because of their lack of orthogonality and
the number of side concepts that must be introduced (even
the old 8086 is too cumbersome). More recent RISC proces-
sors, like the SPARC family, still are beyond the required
complexity. Existing pedagogic processors like the DLX [5]
are typically well documented and allow to introduce ad-
vanced concepts on them. However, they are also still far
too complex to be easily assimilated by students with very
rudimentary knowledge about computer architecture.

II. The Architecture of the MR

A. Basic Structure

The MR is a classic von Neumann computer without any
I/O facility (for the sake of simplicity). The memory is
organized in 256 words of 16 bits, with separated ports for

Authors are with the Department of Computer Architecture Uni-
versitat Polit�ecnica de Catalunya, 08034 Barcelona, Spain. E-mail:
enric, fermin, anna@ac.upc.es.

Instruction Operation

ADDI Rs;#immediate;Rt Rt := Rs + immediate
SUBI Rs;#immediate;Rt Rt := Rs � immediate
ADD Rs1;Rs2;Rt Rt := Rs1 + Rs2
SUB Rs1;Rs2;Rt Rt := Rs1� Rs2
ASR Rs;Rt Rt := Rs >> 1
AND Rs1;Rs2;Rt Rt := Rs1 ^ Rs2

LOAD base addr(Ri);Rt Rt := M[base addr + Ri]
STORE Rs;base addr(Ri) M[base addr + Ri] := Rs

Instruction Branch condition

BR target addr unconditional 1
BEQ target addr equal Z
BL target addr less N
BLE target addr less or equal N _ Z

BNE target addr di�erent Z

BGE target addr greater or equal N

BG target addr greater N _ Z

Fig. 1. The assembly language for the MR.

reading and writing, and a read/write control signal. The
CPU is clearly divided into a datapath and a centralized
Control Unit, described in sections III and IV respectively.
The instructions of the MR work on integer numbers of

16 bits using two's complement encoding. Addresses have
8 bits matching with the size of the memory. The CPU is
able to perform basic integer operations on data stored in
the 8 registers available in a Register File. Register R0 is
dedicated to store the constant 0. Additionally, there exist
two condition 
ags for the sign (N) and for zero (Z).

B. The Assembly Language of the MR

The instructions are of a �xed length of 16 bits (the word
of the computer). The operation code is always stored in
the two more signi�cant bits, describing four types of in-
structions: arithmetic-logical instructions, data transfer in-
structions (two codes) and branch instructions. The MR
o�ers four basic addressing modes: register mode, immedi-

ate mode, relative mode (base address + o�set) and abso-

lute address mode.
The arithmetic-logical instructions can use both the reg-

ister and immediate addressing modes. When using the
register mode the register �le is accessed. When using the
immediate mode a 5 bits constant coded in the instruction
in two's complement is accessed. All arithmetic-logical in-
structions store their result into the register �le (Rt) and
activate the condition 
ags N and Z. If the instruction
writes the result into the register R0 (constantly set to
0) no result is stored, but the condition 
ags are updated.
According to the source operands, two types of

arithmetic-logical instructions exist: the �rst type reads all
its source operands from the register �le; the second reads



15 13 10 7 081114

00010

00 Ri
15 13 10 7 081114

Load

Ri
15 13 10 7 081114

01 Store

15 13 10 7 081114

11
23

OP
45

00 reg−reg
Arit

15 13 10 7 081114

11
23

OP Arit

COND Branch

reg−imm

base_addr

base_addr

immediate

Rs1 Rs2

RsRt

Rt

Rt

Rs

target_addr

Fig. 2. Machine language format for the MR.

one operand from the register �le and the second one from
the instruction itself (immediate mode). The MR o�ers six
arithmetic-logical instructions, as shown in Figure 1.
There exists two data transfer instructions: load and

store (see Figure 1). These instructions use the register
and relative addressing modes. The target memory ad-
dress is computed by adding the contents of the eight less
signi�cant bits of an index register (Ri), the o�set, to an
8 bits address stored in the instruction (base addr), the
base. The detailed format of each instruction is described
in Figure 2.
All branch instructions use the absolute mode (8 bits) to

indicate the branch target address. None of the branching
instructions modi�es the value stored in the condition 
ags.
There exists six conditional branch instructions and one
unconditional branch instruction, as shown in Figure 1.

III. Datapath

The set of instructions described in Section II can be
sequentially executed (not in a pipelined way) in the dat-
apath described in Figure 3. The datapath contains six
special registers:
� The program counter (PC),
� the instruction register (IR),
� the address register (R@),
� the ALU register (RA) and
� the sign and zero 
ags (RN and RZ).
Four parts can be distinguished in the datapath:
� Register �le control: The register �le has 8 16-bit
registers. R0 is a special register that always contains
a 0. The register �le provides one read port and one
write port that can be simultaneously used.

� Arithmetic-logical computation: This part in-
cludes:
{ the Arithmetic-Logical Unit: the operation to be per-

formed is controlled by means of three bits. The
OPERATE bit proceeds from the control unit.

{ a 16-bit register to store the �rst operand (it is always
a register from the register �le)

{ a mux to select the source of the second operand,
either from the register �le, the memory or the IR.
The input of the mux is selected by the control unit.

{ the 
ags Z and N .
� Branch evaluation circuit: This speci�c combina-
tional circuit generates one bit that reports to the con-

trol unit the result of the evaluation of the branch con-
dition.

� Memory references calculation: The memory ref-
erences performed during the execution of a program
are calculated in this module.

Memory references can be generated by three events:
� Fetching consecutive instructions: Instructions
are 16-bit length. Since a memory reference contains
a 16-bit word, two consecutive instructions are always
stored in consecutive addresses.

� Execution of memory-reference instructions:
Load and store instructions reference a memory word
by using the relative addressing mode. Then, the ad-
dress of such a word is calculated by adding an o�set
(contained in the bits 7-0 of the instruction) to a base
address (stored in a register from the register �le).

� Read the contains of a branch target address:
In order to store the branch target address in R@ , bits
7-0 of the branch instruction (branch target address)
are added to zero (taken from R0 ) in the ADRAD

adder .

IV. Control Unit

The control is modeled by means of a state diagram,
which indicates the sequence of the operations performed
in the datapath to execute each machine instruction. The
control takes steps to load the registers (Ld RA, Ld IR,
Ld PC, Ld R@, Ld RZ and Ld RN) and the register �le
(ERt), decides whether data are read from or written to
memory (R=W), indicates to the ALU if an operation
must be performed (OPERATE) and selects the appropri-
ate data in the multiplexors (PC=@ and CRs). The control
is modeled as a Moore synchronous state machine [6] (see
Figure 4). The next state is decided by using both the
operation code (bits 14 and 15 of the instruction) and the
branch evaluation bit.

V. Simulator and assembler of the MR

A graphic simulator of the MR architecture has been de-
veloped in the Dept. of Computer Architecture. The simu-
lator includes an assembler program to translate assembly
code to machine code. The assembly language contains
the basic elements to de�ne instructions, labels, directives,
expressions and macros [1].
The simulator is available via ftp at the address

ftp://ftp.ac.upc.es/pub/archives/mr. Versions for
DOS and WINDOWS environments can be freely down-
loaded.
The simulator depicts simultaneously the datapath, the

state diagram of the control unit and the program in ex-
ecution. The contents of the register �le and the memory
are presented at each moment. The buses that are active
at each step are highlighted, as well as the contents of all
the registers of the datapath and the value of the output
signals of the control unit. The current state is shadowed
in the state diagram.
The user may expand or unexpand macros (macros may

be nested) and put or get break points at any place in the



IR2 (OP2)

0

OPERATE1

0

SELDAT

3

8

Rx0-7

PC / @

3

0

1

2

3

3

3

IR13-11 (Rs/Rd)

IR10-8 (Rs1/Ri)

IR7-5 (Rs2)

CRs

2

3not used

WRt

Ld_RZ

Ld_RN

Ld_RA

OPERATE

CRs

Ld_IR

Ld_PC

PC / @

Ld_R@

R / W

2

C
O

N
T

R
O

L 
U

N
IT

WRt

Rx0-15

16

load

16

RZ

RN

load

Ld_RZ

Ld_RN

ALU
2

A B

OPERATE
IR1-0 (OP1-0)

IR13-11(COND)3

Z

NBranch
evaluation

IR15-14 (OC)2

Cond

@

Mout

R
A

M
 M

E
M

O
R

Y

3

IR13-11 (Rd)

Min

1

0

R/W

8

R
@

P
C

+1 8

8

8

Ld_PC
load

Ld_R@
load

8

IR

load

Ld_IR

8

16 16

16

16

16

5

1616 16

16

IN

OUT

+
IR0-7

IR3-7

Output

InputWrite

Read

write enable

SELADR

ADRAD
SELREG

SIGN
EXTEND

Register file

Register

register

data

data

Register file control

Arithmetic-
logical
computation

Memory references calculation

load

Ld_RA

16

3 12

16

RA
16

Fig. 3. Datapath of the MR.

LOAD

L

S

STORE

BRANCH

B

FETCH

F

xxx

DECO

D

01x

00x

A

ARIT

11x

xxx

100

xxx

xxx
101

xxx

(a)

Outputs UC F D A L S B

Ld RA 0 1 0 0 0 0
Ld IR 1 0 1 0 0 1
Ld PC 1 0 1 0 0 1
Ld R@ 0 1 0 0 0 0
Ld RZ 0 0 1 1 0 0
Ld RN 0 0 1 1 0 0
WRt 0 0 1 1 0 0

R=W 0 0 0 0 1 0

PC=@ 0 x 0 1 1 1
CRs x 1 2 x 0 x
OPERATE x x 1 0 x x

(b)

Fig. 4. State diagram and output table for the control unit.

program. The execution of a program can be also stopped
at any clock cycle or after �nishing every instruction.
The simulator also allows to build timing diagrams with

the control signals and buses of the datapath selected by
the user. This feature makes easy to the students under-
standing in detail how the MR works.

VI. Conclusions

This work has presented an overview of the architec-
ture and design of the pedagogic computer namedM�aquina

Rudimentaria. The MR is a useful tool to introduce the
basic principles about computer structure and architec-
ture in a �rst course in an Engineering or Computer Sci-
ence degree. Its simple design allows a natural and 
u-
ent connection from the study of digital circuits to as-
sembly language and computer architecture. The exis-

tence of a programming environment and a detailed sim-
ulator eases the compression of its operation (available at
ftp://ftp.ac.upc.es/pub/archives/mr).

References

[1] R. Hermida, A.M. del Corral, E. Pastor, and F. S�anchez, Funda-
mentos de Computadores, Ed. S��ntesis, 1998.

[2] E. Aiguad�e, J.J. Navarro, and M. Valero, La M�aquina Sencilla:

Introducci�on a la Estructura B�asica de un Computador, Edicions
UPC, Col.lecci�o Aula, Num. 26, 1992.

[3] E. F. Sowell, Programming in Assembly Language VAX-11,
Addison-Wesley, 1987.

[4] Barry B. Brey, Programming the 80286, 80386, 80486 and
Pentium-based Personal Computer, Mac Millan Pub Co., 1996.

[5] J. L. Hennessy and D. A. Patterson, Computer architecture. A
Quantitative Approach, Morgan Kaufmann Publishers. San Ma-
teo, Calif., 1990.

[6] R. S. Sandige, Modern Digital Design, McGraw-Hill, 1990.


