

Testing Termination of
Query Satisfiability Checking

on Expressive Database Schemas
(Preliminary Version)

Guillem Rull grull@essi.upc.edu
Carles Farré farre@essi.upc.edu
Ernest Teniente teniente@essi.upc.edu
Toni Urpí urpi@essi.upc.edu

March 2010

Report ESSI-TR-10-4
Departament d’Enginyeria de Serveis i Sistemes d’Informació

 2

Abstract
 A query is satisfiable if there is at least one consistent instance of the database in which
it has a non-empty answer. Defining queries on a database schema and checking their
satisfiability can help the database designer to be sure whether the produced database
schema is what was intended. The formulation of such queries may easily require the use
of some arithmetic comparisons or negated expressions. Unfortunately, checking the
satisfiability of this class of queries on a database schema that most likely have some
integrity constraints (e.g., keys, foreign keys, Boolean checks) is, in general, undecidable.
However, although the problem is undecidable for such a class of schemas and queries, it
may not be so for a particular query satisfiability check. In this paper, we propose to
perform a termination test as a previous step to query satisfiability checking. If positive,
the termination test guarantees that the corresponding query satisfiability check will
terminate. We assume the CQC method is the underlying query satisfiability checking
method; to the best of our knowledge, it is the only method of this kind able to deal with
schemas and queries as expressive as the ones we consider.

 3

1. Introduction
 A query is satisfiable on a database schema if there is at least one consistent instance of
the database in which the query has a non-empty answer [3, 5, 8].
 The motivation of this work is the application of query satisfiability checking to the
validation of database schemas [3]. As an example, consider the database schema in
Figure 1. It models data about employees, bosses and departments. All attributes are
assumed to be not null. Underlined attributes denote keys, and dashed arrows denote
foreign keys. The designer wanted to be sure that the database schema was what he
intended, so he defined a set of views on the schema that will help him to answer the
following questions:

− Can an employee be boss of himself?
− Is it possible to have an employee that is not assigned to any department?
− Can an employee have a salary higher than his boss?
− May two employees from different departments work for the same boss?

The key point is that these questions do not refer to a particular database instance, but to
all possible instances that are consistent with the schema. Therefore, in order to answer
them one needs to reason on the definition of the database schema. More specifically,
these questions can be answer by means of checking whether the views on the schema are
or not satisfiable:

− BossOfSelf is satisfiable if and only if an employee can be boss of himself.
− EmpWithoutDept is satisfiable if and only if it is possible to have an employee that is

not assigned to any department.
− RareEmp is satisfiable if and only if an employee can have a salary higher than his

boss.
− MultiDeptBoss is satisfiable if and only if two employees from different departments

may work for the same boss.

 These satisfiability checks can be performed by applying the CQC method [4], which,
to the best of our knowledge, is the only query satisfiability method that is able to deal
with the class of database schemas we consider. The checks will reveal that all views but

WorksFor
 emp
 boss

Employee
 ssn
 name
 salary
 dept

Department
 name
 max-salary
 min-salary

Figure 1: Example database schema.

Views:

BossOfSelf(e) ← WorksFor(e, e)
EmpWithoutDept(e) ← Employee(e, n, s, d) ∧ ¬isDept(d)
isDept(d) ← Department(d, max, min)
RareEmp(e) ← WorksFor(e, b)
 ∧ Employee(e, ne, se, de) ∧ Employee(b, nb, sb, db) ∧ se > sb
MultiDeptBoss(b) ← Employee(e1, n1, s1, d1) ∧ Employee(e2, n2, s2, d2)
 ∧ d1 ≠ d2 ∧ WorksFor(e1, b) ∧ WorksFor(e2, b)

Additional Integrity Constraints:

ic1: Department(n, max, min) → max ≤ 5000
ic2: Department(n, max, min) → min ≥ 700
ic3: Employee(e, n, s, d) ∧ Department(d, max, min) → s ≥ min
ic4: Employee(e, n, s, d) ∧ Department(d, max, min) → s ≤ max

 4

EmpWithoutDept are satisfiable. Then, it is up to the designer to decide whether the result
of each satisfiability check points to some semantic flaw or not. For instance, view
EmpWithoutDept being unsatisfiable is most likely the answer the designer was
expecting; however, the satisfiability of views BossOfSelf, RareEmps and MultiDeptBoss
is probably indicating that some integrity constraints are missing.
 Unfortunately, checking query satisfiability on a class of database schemas that is as
expressive as the one of the schema shown in Figure 1 is undecidable. Nevertheless,
although the problem is undecidable with respect to the whole class of schemas, it may
not be so for a particular schema. For instance, the process of checking the satisfiability
of the views in Figure 1 does indeed terminate.
 In this paper, we propose a termination test to be performed as a previous step to the
application of the CQC method to check the query satisfiability. If the termination test is
positive, then it guarantees that checking the query satisfiability with the CQC method
will terminate. Otherwise, the satisfiability checking may or may not terminate. Note that
the termination test is a sufficient but not necessary condition for the termination of the
query satisfiability checking, as expected due to the undecidability of the termination
problem.
 We adapt the termination test proposed in [6] for the context of reasoning on UML
conceptual schemas. Our main contributions are the following:

• We extend the class of schemas the termination test is able to deal with to that
handled by the CQC method. In particular, we allow for multiple levels of negation,
i.e., negated atoms that correspond to views that may also have negated atoms in
their definition, which in turn may also correspond to other views with negated
atoms, and so on.

• We provide formal proofs, which were not provided in [6].

 The paper is structured as follows. Section 2 reviews basic concepts about database
schemas and gives a brief overview of the CQC method. Section 3 explains the details of
the termination test, and Section 4 summarizes the conclusions.

2. Preliminaries

2.1 Database Schemas
 A database schema is a set of relations with integrity constraints. We use first-order
logic notation and represent relations by means of predicates. Each predicate P has a
predicate definition P(A1, ..., An), where A1, ..., An are the attributes. Predicates may be
either base predicates, i.e., the tables in the database, or derived predicates, i.e., queries
and views. Each derived predicate Q has attached a set of non-recursive deductive rules
that describe how Q is computed from the other predicates. A deductive rule has the
following form:

q(X̄) ← r1(Ȳ 1) ∧ ... ∧ rn(Ȳ n) ∧ ¬rn+1(Z̄ 1) ∧ ... ∧ ¬rm(Z̄ s) ∧ C1 ∧ ... ∧ Ct,

where each Ci is a built-in literal, that is, a literal in the form of t1 op t2, where op ∈ {< ,
≤, >, ≥, =, ≠} and t1 and t2 are terms, which can be either variables or constants; and

 5

ri(Ȳ i), ¬ri(Z̄ i) are positive and negated ordinary literals (those not built-in), respectively.
Literal q(X̄) is the head of the rule, the other literals are the body. Symbols X̄ , Ȳ i, and Z̄ i
denote lists of terms. Variables in Z̄ i, X̄ and Ci are taken from Ȳ 1, ..., Ȳ n in order to make
the deductive rule safe [7].
 An integrity constraint is a disjunctive embedded dependency [1] extended with atoms
of derived relations and arithmetic comparisons. It takes one of the following two forms:

r1(Ȳ 1) ∧ ... ∧ rn(Ȳ n)→C1 ∨ ... ∨ Ct
r1(Ȳ 1) ∧ ... ∧ rn(Ȳ n) ∧ C1 ∧ ... ∧ Ct→∃V̄ 1 rn+1(Ū 1) ∨ ... ∨ ∃V̄ s rn+s(Ū s),

where V̄ i is a set of fresh variables, and variables in Ū i are taken from V̄ i and Ȳ 1, ..., Ȳ n.
Note that predicates r1, ..., rn and rn+1, ..., rn+s in the integrity constraints may be either
base or derived.
 Formally, we write DS = 〈PD, DR, IC〉 to indicate that DS is a database schema with
predicate definitions PD, deductive rules DR, and integrity constraints IC.
 A database instance is a set of facts about the base predicates. A fact is a ground literal,
i.e., a literal with all its terms constant. An instance is consistent if it satisfies all integrity
constraints.

2.2 The CQC Method
 To the best of our knowledge, the CQC method [4] is the only query satisfiability
method able to deal with the class of database schemas defined in Section 2.1. It is a
constructive method, that is, it tries to build a database instance in which the query’s
answer contains at least one tuple, and in such a way that the database instance satisfies
the integrity constraints of the schema.
 The CQC method consists of two phases. The first phase is query satisfaction. Starting
from an empty instance, it adds the necessary tuples so the body of one of the deductive
rules of the query becomes true. The second phase is integrity maintenance. Since the
database instance produced by the previous phase does not necessarily satisfy the
integrity constraints of the schema, it is required to check them. If a constraint is violated,
there are two possibilities: (1) the constraint is of the form r1(Ȳ 1) ∧ ... ∧ rn(Ȳ n) → C1 ∨ ...
∨ Ct, in which case the current database instance is not only inconsistent but also
irreparable, and previous decisions made during the application of the method should be
reconsidered; or (2) the constraint is of the form r1(Ȳ 1) ∧ ... ∧ rn(Ȳ n) ∧ C1 ∧ ... ∧ Ct →
∃V̄ 1 rn+1(Ū 1) ∨ ... ∨ ∃V̄ s rn+s(Ū s), in which case the violation of the constraint may still
be repaired by the addition of a new tuple. In the latter case, and since the new tuple may
be of a derived predicate, a recursive application of the query satisfaction and integrity
maintenance phases is required. The process ends when either (1) a constraint violation is
found and no previous decision is left to reconsideration (i.e., all alternatives have been
tried), in which case the conclusion is that the query is not satisfiable; or (2) a database
instance is found such that satisfies the query and the integrity constraints, in which case
the conclusion is that the query is satisfiable, and the constructed database instance is an
example of that.
 In order to instantiate the tuples to be added to the instance under construction, the
CQC method uses a set of Variable Instantiation Patterns (VIPs). Each application of a
VIP results in a finite set of constants to be tried. The VIPs guarantee that if no solution

 6

can be constructed using the constants they provide, then no one exists. There are four
VIPs: Simple VIP, Negation VIP, Dense Order VIP and Discrete Order VIP. Its
application depends on the syntactic characteristics of the database schema. We only
sketch them here, the details can be found in [4]:

− Simple VIP assigns a fresh constant to each distinct variable. It is typically used on
schemas with no constraints, negations or arithmetic comparisons.

− Negation VIP states that in order to instantiate a variable we must consider: (1) the
used constants, that is, the constants that appear in the schema and those that have
been used to instantiate previous variables, and (2) a fresh constant. It is used when
there are constraints and/or negations, but no order comparisons.

− Order VIPs consider: (1) the used constants, (2) a fresh constant lower than all used
constants, (3) a fresh constant greater than all used constants, and (4) for each pair of
consecutive used constants in the domain’s order, a fresh constant placed between
them (in the discrete case, only if there is room for it). These VIPs are used on
schemas with order comparisons.

3. Testing Termination
 The termination test proposed in [6] in the context of reasoning on UML conceptual
schemas relies on a simplified version of the CQC method, which allows the use of
negation only on predicates that either are base or their deductive rules do not contain
negated literals. In this paper, we extend the termination test so it can handle the full class
of schemas the CQC method is able to deal with; in particular, we extend the termination
test so it can deal with multiple levels of negation. We also provide formal proofs, which
were not provided in [6].
 In order to deal with the multiple levels of negations, we propose to perform a
preprocessing of the database schema in which all derived predicates are materialized,
i.e., converted into base predicates. Then, a variation of the termination test from [6] is
applied on the resulting database schema.

3.1 Preprocessing the Schema
 The result of the preprocessing is a new database schema that we refer to as b-schema.
Intuitively, the b-schema is a database schema that materializes the derived predicates of
the original schema, turning them into base predicates and introducing constraints to keep
them updated.

 DEFINITION 1 (B-Schema). Let S = 〈PDS, DRS, ICS〉 be a database schema. The b-
schema of S is BS = 〈PDBS, ∅, ICBS〉, where PDBS = PDS ∪ PDDR, ICBS = ICS ∪ ICDR ∪
ICP ∪ ICN, and, for each deductive rule qi = (q(X̄ i) ← L1 ∧ ... ∧ Lk) ∈ DRS, the following
is true:

• PDDR contains the predicate definition qi(A1, ..., At, B1, ..., Bn), where t is the number of
terms in the head of qi, i.e., t = |X̄ i|, and n is the number of distinct variables in L1 ∧ ...
∧ Lk.

• ICDR contains the integrity constraints:

 7

qi(Ā i, B̄ i) → q(Ā i),
qi(Ā i, B̄ i) → Aj1 = k1,
..., qi(Ā i, B̄ i) → Aju = ku ,
qi(Ā i, B̄ i) → Ag1 = Bh1,
..., qi(Ā i, B̄ i) → Agv = Bhv ,
q(Z̄) → ∃B̄ 1 q1(Z̄ , B̄ 1) ∨ ... ∨ ∃B̄ i qi(Z̄ , B̄ i) ∨ ... ∨ ∃B̄ m qm(Z̄ , B̄ m),

where k1, ..., ku are the constants in X̄ i; they appear in the positions j1, ..., ju; Bh1, ..., Bhv
are the variables in B̄ i that correspond to variables in L1 ∧ ... ∧ Lk that appear in Xi with
positions g1, ..., gv; Aj1, ..., Aju and Ag1, ..., Agv are the variables in Ā i in the positions j1,
..., ju and g1, ..., gv, respectively; Z̄ denotes a list of t distinct variables; and q1, ..., qm
are the base predicates in PDDR that correspond to those deductive rules in DRS with
the derived predicate q in their head.

• If L1, ..., Lk are positive literals, ICP contains the constraints:

L1 ∧ ... ∧ Lk → qi(Ā i, B̄ i),
qi(Ā i, B̄ i) → L1,
..., qi(Ā i, B̄ i) → Lk .

• If L1 ∧ ... ∧ Lk = P1 ∧ ... ∧ Pr ∧ ¬N1(Z̄ 1) ∧ ... ∧ ¬Ns(Z̄ s) and s > 1, ICN contains the
constraints:

P1 ∧ ... ∧ Pr → N1(Z̄ 1) ∨ ... ∨ Ns(Z̄ s) ∨ qi(Ā i, B̄ i),
qi(Ā i, B̄ i) → P1,
..., qi(Ā i, B̄ i) → Pr ,
qi(Ā i, B̄ i) ∧ N1(Z̄ 1) → 1 = 0,
..., qi(Ā i, B̄ i) ∧ Ns(Z̄ s) → 1 = 0.

 As an example, consider the tables and integrity constraints in the schema of Figure 1.
Consider also the following views:

EmpBoss(e, n, s, b) ← WorksFor(e, b) ∧ Employee(e, n, s, d) ∧ Department(d, max, min)
EmpBoss(e, n, s, null) ← Employee(e, n, s, d) ∧ Department(d, max, min) ∧ ¬hasBoss(e)
hassBoss(e) ← WorksFor(e, b)

The b-schema of this example contains the following (base) predicates: WorksFor,
Employee, Department, EmpBoss and hasBoss. The integrity constraints that keep
EmpBoss updated in the b-schema according to the deductive rules above are shown in
Figure 2. Note that predicate names are abbreviated in Figure 2; EB stands for EmpBos,
hB for hasBoss, E for Employee, D for Department, WF for WorksFor, and EB1, EB2 are
the predicates in PDDR that correspond to the two deductive rules of EmpBoss.

 DEFINITION 2 (B-Instance). Let IS be a database instance. The b-instance of IS is

IBS = IS ∪ Facts(DRS, IS),

where Facts(DR, I) = {q(X̄)σ, qi(X̄ , Ȳ)σ | qi = (q(X̄) ← L1∧...∧Lk) ∈ DR, Ȳ denotes the
variables in L1 ∧ ... ∧ Lk, and σ is a ground substitution such that I ⊨ (L1 ∧ ... ∧ Lk)σ}.

 8

 LEMMA 1. Let S be a database schema, and let BS be its b-schema. The following is
true:
• Let IS be an instance of S, then the b-instance IBS of IS is an instance of BS.
• Let IBS be an instance of BS, then IBS is the b-instance of an instance IS of S.

 PROOF. It follows from (1) the fact that the set of predicate definitions of the b-schema
is PDBS = PDS∪PDDR and (2) the fact that a b-instance is built from the original instance
IS by materializing the derived predicates in S and populating the new predicates defined
in PDDR. □

 LEMMA 2. Let IS be an instance of database schema S. Instance IS is consistent if and
only if the b-instance of IS is a consistent instance of the b-schema of S.

 PROOF. Let us assume that IS is a consistent instance of S = 〈PDS, DRS, ICS〉. Let IBS be
the b-instance of IS. By Lemma 1, IBS is an instance of the b-schema BS = 〈PDBS, ∅, ICBS〉
of S. We know that ICBS = ICS∪ICDR∪ICP∪ICN, and that those facts in IBS that are also
facts of IS do satisfy the constraints ICS. The key point is to show that the facts in IBS that
are not facts of IS do satisfy the constraints ICDR∪ICP∪ICN.
 Let us start with ICDR. The constraints in the form of qi(Ā i, B̄ i) → Aju = ku and qi(Ā i,
B̄ i) → Agv = Bhv state that, in the materialized relation qi(X̄ , Ȳ), X̄ contains one variable
for each term in the head of the deductive rule qi ∈ DRS, which can be either a constant
(i.e., consequent is Aju = ku) or a variable from the body of qi (i.e., consequent is Agv =
Bhv). We can be sure that these constraints hold on IBS because of the definition of
Facts(DRS, IS), which adds q(X̄)σ and qi(X̄ , Ȳ)σ to IBS for each ground substitution σ
that makes the body of qi true on IS.
 Still in ICDR, the constraints in the form of qi(Ā i, B̄ i) → q(Ā i) and q(Z̄) → ∃B̄ 1 q1(Z̄ ,
B̄ 1)∨...∨∃B̄ i qi(Z̄ , B̄ i)∨...∨∃B̄ m qm(Z̄ , B̄ m) state that there must be one fact q(X̄)σ about
the derived predicate q for each instantiation qi(X̄ , Ȳ)σ of the deductive rule qi, and vice
versa, i.e., if there is a fact about q, it has to come from some of the deductive rules of q.

c1: WF(e, b) ∧ E(e, n, s, d) ∧ D(d, a, i) → ∃(e′, n′, s′, b′) EB1(e′, n′, s′, b′, e, b, n, s, d, a, i)
c2: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → WF(e, b)
c3: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → E(e, n, s, d)
c4: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → DS(d, a, i)
c5: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → e′ = e
c6: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → n′ = n
c7: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → s′ = s
c8: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → b′ = b
c9: EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) → EB(e′, n′, s′, b′)
c10: E(e, n, s, d) ∧ D(d, a, i) → ∃b hB(e, b) ∨ ∃(e′, n′, s′, b′) EB2(e′, n′, s′, b′, e, n, s, d, a, i)
c11: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → E(e, n, s, d)
c12: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → D(d, a, i)
c13: EB2(e′, n′, s′, b′, e, n, s, d, a, i) ∧ hB(e, b) → 1 = 0
c14: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → e′ = e
c15: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → n′ = n
c16: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → s′ = s
c17: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → b′ = null
c18: EB2(e′, n′, s′, b′, e, n, s, d, a, i) → EB(e′, n′, s′, b′)
c19: EB(e′, n′, s′, b′) → ∃(e, b, n, s, d, a, i) EB1(e′, n′, s′, b′, e, b, n, s, d, a, i) ∨ ∃(e, n, s, d, a, i) EB2(e′, n′, s′, b′, e, n, s, d, a, i)

Figure 2: Portion of the integrity constraints of a b-schema.

 9

Again, this clearly holds in IBS since Facts includes both a fact q(X̄)σ about q and a fact
qi(X̄ , Ȳ)σ about qi for each instantiation σ of each deductive rule qi.
 The constraints in ICP keep qi(X̄ , Ȳ) updated according to the body of the deductive
rule when this has no negated literals. If the body holds, then the corresponding tuple
must exists, and if the tuple exists, the literals in the body must all be true. This obviously
holds in IBS given the definition of Facts.
 Finally, ICN addresses the case in which the body of qi has negated literals. It is like ICP
with some additional algebraic manipulations: in P1 ∧ ... ∧ Pr → N1(Z̄ 1) ∨ ... ∨ Ns(Z̄ s) ∨
qi(Ā i, B̄ i), the negated literals have been moved into the consequent, and in qi(Ā i, B̄ i) ∧
Ns(Z̄ s) → 1=0 the negated literal has been moved into the premise. As above, it follows
immediately from the definition of Facts.
 We can therefore conclude that IBS satisfies all constraints in ICBS, that is, IBS is a
consistent instance of the b-schema.
 On the other direction, let us assume IS is an instance of S whose b-instance IBS satisfies
the integrity constraints of the b-schema. Since the facts in IS are also facts of IBS, i.e.,
IS ⊆ IBS, and the b-schema includes the constraints of S, i.e., ICS ⊆ ICBS, then IS will be
consistent. □

 THEOREM 1. Derived predicate Q of database schema S is satisfiable if and only if the
base predicate Q in the b-schema of S is satisfiable.

 PROOF. Let us assume derived predicate Q of schema S = 〈PDS, DRS, ICS〉 is satisfiable.
There is a consistent instance IS of S that contains at least one fact about Q. By Lemma 2,
the b-instance IBS of IS is a consistent instance of the b-schema. By construction of IBS, we
know that IBS contains a fact q(X̄)σ for each instantiation σ that makes true the body of a
deductive rule (q(X̄) ← L1∧...∧Lk) ∈ DRS on IS. Since Q is satisfiable on IS, there is at
least one of such instantiations, i.e., IBS contains at least one fact about Q. Therefore,
instance IBS exemplifies that base predicate Q of the b-schema is satisfiable.
 On the other direction, let us assume base predicate Q in the b-schema of S is
satisfiable. There must be a consistent instance IBS of the b-schema with at least one fact
about Q. By Lemmas 1 and 2, there is a consistent instance IS of S such that IBS is its b-
instance. Since IBS contains a fact q(X̄)σ about Q, and by definition of b-instance, there
must be an instantiation σ and a deductive rule (q(X̄) ← L1∧...∧Lk) ∈ DRS such that
(L1∧...∧Lk)σ is true on IS. Therefore, Q has a non-empty answer on IS, i.e., IS exemplifies
that Q is satisfiable on S. □

3.2 The Termination Test
 Once derived predicates have been materialized, we can already apply the termination
test. The test is aimed to determine whether the CQC method is guaranteed to terminate
for a particular query satisfiability checking. We adapt to the query satisfiability context
the test proposed in [6] in the context of reasoning on UML conceptual schemas. The test
consists of two activities: the construction of a dependency graph and the analysis of the
cycles in that graph.

 10

3.2.1 Dependency Graph

 The dependency graph is intended to show the dependencies that exist between the
integrity constraints of a given schema, in our case, the b-schema of the database.

 DEFINITION 3 (Potential Violation and Repair). A literal p(X̄) is a potential violation of
an integrity constraint ic ∈ ICST if it appears in the premise of the constraint. We denote
by PV(ic) the set of potential violations of ic. There is a repair REi(ic) = {Li} for each
ordinary literal Li in the consequent of ic. A variable X is free in a repair REi(ic) if X ∈
vars(REi(ic)) and X ∉ vars(PV(ic)).

 DEFINITION 4 (Dependency Graph). A dependency graph is a graph such that each
vertex corresponds to an integrity constraint ici ∈ ICST. There is an arc labeled REk(ici)
from ici to icj if there exists p(X̄), p(Ȳ) such that p(X̄) ∈ REk(ici) and p(Ȳ) ∈ PV(icj).
Note that there may be more than one arc from ici to icj, since two different repairs of ici
may lead to the violation of icj. Also, note that only the integrity constraints that have
ordinary literals in its consequent are considered in the dependency graph.
 A maximal set of constraints SP = {ic1, ..., ics} such that ic1, ..., ics have the same
premise (modulo renaming of variables) is considered as a single constraint ic′ from the
point of view of the graph; thus, it corresponds to a single vertex. Let L1,1 ∨ ... ∨ L1,r1, ...,
Ls,1 ∨ ... ∨ Ls,rs be the consequents of the constraints in SP; there is a repair REk(ic′) =
{L1,j1, ..., Ls,js} for each combination j1, ..., js with 1 ≤ j1 ≤ r1, ..., 1 ≤ js ≤ rs. The incoming
and outgoing arcs of ic′ in the graph are computed as defined above.

 Figure 3 shows a portion of the dependency graph for the example in Section 3.1. It
shows the dependencies that exist between the constraints c1 to c19 from Figure 2. The
literals in the repairs that label the arcs of the graph appear abbreviated.

3.2.2 Analysis of Cycles

 Once constructed the dependency graph, each cycle in the graph must be checked to be
finite. Intuitively, a cycle C in the dependency graph is finite if for all finite instance I of
the b-schema, integrity maintenance of I with cycle C results in a finite instance I′, that is,
C cannot cause an infinite sequence of violations and repairs. When we say integrity
maintenance with cycle C, we mean that only the constraints in C are considered, that
they are checked in the order they appear in C, and that if a point is reached where the
constraint under consideration is not violated, then the process ends.

c1 c2, c3, c4, c9

c19

c10 c11, c12, c18

Figure 3: Portion of a dependency graph.

{EB1}

{EB2}

{EB2}

{WF, E, D, EB}

{WF, E, D, EB}

{E, D, EB}

{E, D, EB}

{EB1}

 11

 DEFINITION 5 (Cycle and Nested Cycle). A cycle is a sequence in the form of C = (ic1,
r1, ..., icn, rn, icn+1 = ic1), where ri denotes the label of the arc in the dependency graph
from ici to ici+1. We say C is a nested cycle of cycle C′ if C′ is of the form C′ = (ic1′, r1′,
..., ic1, r1, ..., ic2, r2, ..., icn, rn, ..., icm′, rm′, icm+1′ = ic1′).

 DEFINITION 6 (Finite Cycle). We say cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) is finite if

(1) its nested cycles are finite

(2) for each possible starting ici, 1 ≤ i ≤ n, and for all finite b-schema instance I, there
exists a constant k such that Maintk(I, ici) = Maintk+1(I, ici) (i.e., integrity mainte-
nance reaches a fix-point), where Maintj denotes the result of the first j steps of the
integrity maintenance process and is defined as follows:

Maint0(I, ici) = I
Maintj (I, ici) = Maintj-1(I, ici) ∪ ri+j-1θ1 ∪ ... ∪ ri+j-1θm, j > 0

where each θt = δt ∪ δt′ is one of the m possible instantiations such that Maintj-1(I,
ici) ⊨ PV(ici+j-1)δt, ∄ρ (Maintj-1(I, ici)⊨ (ri+j-1)(δt ∪ ρ)), δt′ instantiates each free
variable in ri+j-1 with a fresh constant, and, if j > 1, (PV(ici+j-1)δt ∩ (Maintj-1(I, ici) -
Maintj-2(I, ici))) ≠ ∅.

 Note that Maint assumes the worst case scenario for the integrity maintenance process,
that is, assumes the built-in literals (i.e., the arithmetic comparisons) in the premise of an
integrity constraint are always evaluated true, i.e., they will not prevent the violation of
the constraint (see conditions “Maintj-1(I, ici) ⊨ PV(ici+j-1)δt” and “∄ρ (Maintj-1(I, ici) ⊨
(ri+j-1)(δt ∪ ρ))” in Definition 6); and assumes the free variables in the constraints are
always instantiated with fresh constants, i.e., the cycle will not be closed by the reuse of
previously used constants. Extending the termination test beyond this worst case
scenario, i.e., exploiting the presence of comparisons and the reuse of variables in order
to detect more finite cases, would be an interesting topic for further research.
 The termination test consists in evaluating, on each cycle C, three sufficient conditions
for C to be finite. It is important to note that each one of these conditions assumes that
any nested cycle of C is tested separately.

 THEOREM 2 (Condition 1). A cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) is a finite cycle if
its nested cycles are finite and, for all constraint ici in C and for all pair of literals
p(X1, ..., Xm) ∈ ri and p(Y1, ..., Ym) ∈ PV(ici+1), variable Xk being free in ri implies
Yk ∉ vars(ri+1), 1 ≤ k ≤ m.

 As an example, consider the following cycle:

(ic1) p(X) → ∃Y q(X, Y)
(ic2) q(X, Y) → p(X)

Since ic2 does not propagate the value of the existentially quantified variable in ic1, we
obtain at the end of the cycle the same fact about p that violated ic1 in the first place.
 Another example is the cycles in Figure 3.

 12

 PROOF. Performing integrity maintenance of an instance I with cycle C when nested
cycles are disregarded and Condition 1 holds can be reduced to chasing I with a weakly
acyclic set of tgds, which is a well-known finite process [2]. The reduction is quite
straightforward; each pair ici ri in C produces a tgd PV(ici) → ri. The only technical detail
to take care of is the existence of nested cycles, i.e., the fact that some ri in C may contain
a literal that is not only a potential violation of the next constraint but also of some other
constraint in C. Since the nested cycles are to be tested finite separately, and in order to
avoid the nested cycles to “interfere” with the chase of the current cycle, we modify the
name of the predicates in C so a fact introduced by the repair of ici only matches the
potential violations of ici+1, e.g., {r(x) → ∃y t(x, y), t(x, y) ∧ v(y) → s(x), s(x) ∧ t(x, y)
→ r(y)} would become {r(x) → ∃y t1(x, y), t1(x, y) ∧ v(y) → s(x), s(x) ∧ t2(x, y) →
r(y)}. Now, since Condition 1 forbids the propagation of the existentially quantified
variables of any constraint by the next, there will be no cycles going through special
edges (see [2]), which is the definition of weakly acyclic set of tgds. □

 Consider now the following cycle, which would not be detected as finite by the
previous condition:

(ic1) p(X, Y) ∧ q(X, Z) → r(X)
(ic2) r(X) → ∃Y ∃Z p(Y, Z)

We can see that since neither ic1 nor ic2 insert new tuples about q, given any finite
instance I, the repair of ic2 may only lead to new violations of ic1 a finite number of
times, one for each fact about q in I. Nevertheless, performing integrity maintenance
through this cycle will certainly stop after a finite number of iterations. A new condition
is thus necessary to identify this kind of finite cycles; see the following.

 THEOREM 3 (Condition 2). A cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) is a finite cycle if
its nested cycles are finite and it contains a constraint ici that satisfies the following. Let
UR = {p | p(X̄) ∈ rj, 1 ≤ j ≤ n} be the union of repairs of the constraints in C, and let
UVi = {q | q(Ȳ) ∈ PV(ici)} be the union of potential violations of ici. Then,

(1) (UR ∩ UVi) ⊂ UVi, where {L1, ..., Lk} are the literals in PV(ici) whose predicates
belong to UVi but not to UR, and

(2) vars(ri) ⊆ vars({L1, ..., Lk}).

 PROOF. Let us assume the nested cycles have been tested finite. Let I be any finite
instance of the b-schema. Let σ1, ..., σm be the m possible ground substitutions such that
I ⊨ (L1 ∧ ... ∧ Lk)σj, 1 ≤ j ≤ m. Let us suppose performing integrity maintenance on I with
cycle C produces an infinite instance. Let I′ be I after m iterations of the integrity
maintenance process. I′ must violate some constraint in the cycle; let us assume it is
ici = L1 ∧ ... ∧ Lk ∧ Lk+1 ∧ ... ∧ Ln → Ln+1 ∨ ... ∨ Ln+r (otherwise, we keep following the
sequence of violations and repairs until we reach ici). Let δ be such that I′ ⊨ (L1 ∧ ... ∧ Lk
∧ Lk+1 ∧ ... ∧ Ln)δ and I′ ⊭ (Ln+1 ∨ ... ∨ Ln+r)δ. By point (1), ∃j, 1 ≤ j ≤ m, δ = σj ∪ δ′ and
I′ ⊨ (L1 ∧ ... ∧ Lk)σj. By point (2), vars(Ln+1 ∨ ... ∨ Ln+r) ⊆ vars(L1 ∧ ... ∧ Lk). Therefore,
I′ ⊭ (Ln+1 ∨ ... ∨ Ln+r)σj. However, since ici has already been violated and repaired m

 13

times, I′ ⊇ {Ln+1σj, ..., Ln+rσj | 1 ≤ j ≤ m}, which means I′ ⊨ (Ln+1 ∨ ... ∨ Ln+r)σj. So, we
have reached a contradiction. □

 The last condition (see below) simulates one iteration of integrity maintenance through
the cycle, starting from a canonical database instance. The simulation is performed for
each possible starting constraint in the cycle. The idea is to see whether all these simula-
tions reach a fix-point.

 THEOREM 4 (Condition 3). A cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) is a finite cycle if
its nested cycles are finite and, for each possible starting ici, ∃k, 1 ≤ k ≤ n, such that
Simk(ici) = Simk+1(ici), where Sim simulates an integrity maintenance process on a
canonical instance as follows:

Sim0(ici) = PV(ici)σ0
Simj (ici) = Maint1(Simj-1(ici), ici+j-1)

∪ PV(ici+j) σ1 ∪ ... ∪ PV(ici+j) σr
j > 0

and the following holds:

(i) Substitution σ0 assigns a fresh constant to each variable.
(ii) For each L ⊆ Maint1(Simj-1(ici), ici+j-1) and M ⊆ PV(ici+j) such that

(L ∩ (Maint1(Simj-1(ici), ici+j-1) - Simj-1(ici))) ≠ ∅ and there is a most general
unifier δ of L and M, then there exists σs = δ ∪ σs′, 1 ≤ s ≤ r, where σs′ assigns a
fresh constant to each variable in PV(ici+j)δ - Mδ.

 Intuitively, the simulation begins with the construction of a canonical instance that
“freezes” each variable in the premise of ici into a constant (point (i)). Then, Sim
evaluates the premise of the constraint, disregarding the arithmetic comparisons, and, if
the constraint is violated, adds the necessary facts to repair it (definition of Maint1).
Additionally, for each subset of existing facts that includes at least one of the previous
repairs and that can be unified with some portion of the premise of the next constraint, it
freezes the non-unified variables of this next premise into constants, and inserts the
resulting facts (point (ii)); this is required since we want the satisfaction of a constraint to
come from its repairs already holding and not from its potential violations being false.
The process moves from one constraint in the cycle to the next, until it completes one
iteration of the cycle or reaches a constraint that does not need to be repaired. As an
example, consider the following cycle:

A(X)→∃Y B(X, Y) (ic1) A(X)→∃Y E(X, Y)
(ic2) B(X, Y) ∧ C(X, Z)→D(X, Y, Z)

D(X, Y, Z)→A(X) (ic3) D(X, Y, Z)→∃V E(X, V)

The successive violation and repair of constraints ic1 and ic2 leads to the satisfaction of
the two consequents in ic3, that is, A(X) and ∃V E(X, V) in ic3 are guaranteed to hold
because of the violation of ic1 (remind that in order to violate a constraint, its premise
must hold) and its repair, respectively. Similarly, in the case in which the integrity

 14

maintenance process starts with ic2, the violation and repair of ic2, ic3 leads to the
satisfaction of ic1. In the case in which it starts with ic3, the violation and repair of ic3, ic1,
ic2 leads to the satisfaction of ic3. Therefore, the simulation of one iteration of integrity
maintenance always reaches a fix-point. The case in which it starts at ic1 is shown below:

Sim0(ic1) = {A(x)}
Sim1(ic1) = Sim0(ic1) ∪ {B(x, y), E(x, y2), C(x, z)}
Sim2(ic1) = Sim1(ic1) ∪ {D(x, y, z)}
Sim3(ic1) = Sim2(ic1) ∪ ∅

Notice the insertion of C(x, z) in Sim1, which ensures the satisfaction of the premise of ic2
in the next step of the simulation.
 The conclusion is that the cycle in the example is finite, and that while Condition 1 and
Condition 2 of the termination test do not hold, Condition 3 does.

 PROOF. Assume the nested cycles have been tested finite separately. Let us take as
hypothesis that Condition 3 holds, but assume there is a finite instance I such that
integrity maintenance of I with cycle C = (ic1, r1, ..., icn, rn, icn+1 = ic1) is an infinite
process. From Condition 3, we know that for each ich, 1 ≤ h ≤ n, there is a certain
constant k ≤ n, which we assume is the lowest possible, such that Simk(ich) = Simk+1(ich).
From I being infinite, we know there must be an ici, 1 ≤ i ≤ n, such that ∀j, j ≥ 0,
Maintj(I, ici) ⊂ Maintj+1(I, ici). Let us assume, without lost of generality, i = 1. That
implies there exists an infinite sequence of constraint violations and repairs ic1θ1,
r1(θ1∪θ1′), ..., ick+1θk+1, rk+1(θk+1∪θk+1′), ... where, by definition of Maint, the following is
true: ∀j, j ≥ 1, Maintj-1(I, ic1) ⊨ PV(icj)θj, ∄ρ (Maintj-1(I, ic1) ⊨ rj(θj ∪ ρ)), θj′ is an
instantiation for the free variables in rj, and, if j > 1, (PV(icj)θj ∩ rj-1(θj-1 ∪ θj-1′)) ≠ ∅.
 Our goal is to show that, since Condition 3 holds, we can build a similar sequence
ic1δ1, r1(δ1∪δ1′), ..., ick+1δk+1, rk+1(δk+1∪δk+1′), where Simk(ic1) ⊨ rk+1(δk+1 ∪ δk+1′) and the
following is true: ∀j, 1 ≤ j ≤ k+1, Simj-1(ic1) ⊨ PV(icj)δj, ∄ρ (Simj-1(I, ici) ⊨ rj(δj ∪ ρ) and
j < k+1), δj′ is an instantiation for the free variables in rj, and, if j > 1, (rj-1δj-1′ ∩ icjδj)≠ ∅.
We will also show that this sequence represents a finite execution of an integrity
maintenance process, and that it can be “unified” with the 2(k+1) first elements of the
previous (infinite) sequence. That will lead us to a contradiction.
 We know that Sim0(ic1) is a canonical instance built by freezing the variables in PV(ic1)
into constants (point (i)), so let δ1 be that instantiation. We also know that θ1 unifies each
literal in PV(ic1) with a certain fact from I. Therefore, we can define (with a slight abuse
of notation) a substitution σ1 from the frozen variables in ic1δ1 to the constants in ic1θ1
such that (ic1δ1)σ1 = ic1θ1. At this point, we have unified the first element of the two
sequences.
 Similarly, we know that Sim1(ic1) instantiates the free variables in r1 with fresh
constants (definition of Maint1), so let δ1′ be that instantiation. Since (r1θ1′ ∩ ic2θ2) ≠ ∅,
we use UR1, UI2 to denote the non-instantiated literals in r1, ic2, respectively, that are the
source of the facts in (r1θ1′ ∩ ic2θ2). We define σ1′ as the substitution that replaces the
frozen variables in UR1(δ1∪δ1′) with the constants in UI2θ2 so UR1(δ1 ∪ δ1′)(σ1 ∪ σ1′) =
UI2θ2; and we have unified the second element of the sequences.
 Now, we apply induction and focus on an intermediate icj, 1 < j ≤ k+1. Our hypothesis
of induction is that what we just did in reference to ic1 can be done in reference to all ici,

 15

1 ≤ i < j. By point (ii), we know there is δj such that Simj-1 ⊨ PV(icj)δj. Then, for each
fact Fs in PV(icj)θj, there are two possibilities: either (1) ∃t, 1 ≤ t < j, such that Fs appears
in ictθt or rtθt′, in which case, by hypothesis of induction, we already have defined a
substitution σt that unifies a certain fact in Simt(ic1) with Fs, and we define γs = σt; or (2)
Fs does not appear before in the sequence, in which case, we know from point (ii) that
there is a fact Fs′ in PV(icj)δj that can be unified with Fs, and we define γs as that unifier.
Finally, we define σj as the union of these γs’s and get (icjδj)σj = icjθj. We have unified
ic1δ1, r1(δ1 ∪ δ1′), ..., icjδj with ic1θ1, r1(θ1 ∪ θ1′), ... icjθj.
 Now, if j ≤ k, we can proceed as we did with ic1; otherwise, j = k+1, and we know that
no new facts are added by Simk+1, which means ∃δk+1′, Simk(ic1) ⊨ (rk+1)(δk+1∪δk+1′). By
hypothesis of induction, we have already defined a σt for each fact in Simk(ic1) that
unifies it with some fact in Maintk(I, ic1). Therefore, we can define σk+1′ as the union of
these σt’s and get rk+1(δk+1 ∪ δk+1′)(σk ∪ σk+1′) = rk+1(θk+1 ∪ θk+1′). We have finally unified
the 2(k+1) first elements of the two sequences.
 Since rk+1(δk+1 ∪ δk+1′) ⊆ Simk(ic1), we can conclude rk+1(θk+1 ∪ θk+1′) ⊆ Maintk(I, ic1),
which contradicts with our assumption that ∀j, j ≥ 1, ∄ρ Maintj-1(I, ic1) ⊨ rj(θj ∪ ρ). In
other words, the facts introduced by Maintk+1(I, ic1) to repair ick+1 do already exist in
Maintk(I, ic1), which means ick+1 is not actually violated, and that contradicts with our
assumption that the sequence of violations and repairs is infinite. □

 COROLLARY 1. If all cycles in the dependency graph of a given b-schema are finite,
then checking the satisfiability of a predicate from the b-schema with the CQC method is
a finite process.

 The corollary follows immediately from the definition of finite cycle and the fact that
the CQC method is, after the first query satisfiability phase, an integrity maintenance
process.
 Note that the three conditions in the termination test are sufficient but not necessary, as
expected due to the undecidability of the termination checking problem. Note also that
the evaluation of the conditions is decidable.

4. Conclusion
 We have proposed the performance of a termination test in order to determine whether
a given query satisfiability check performed by means of the CQC method is guaranteed
to terminate or not. We have adapted an existing termination test from the context of
UML conceptual schemas to the query satisfiability context, and extended it so it can deal
with the class of database schemas the CQC method works on. We have also provided
formal proofs for the obtained results.

Acknowledgements
 This work has been supported in part by Microsoft Research through the European PhD
Scholarship Programme, and by the Ministerio de Ciencia e Innovación under project
TIN2008-03863.

 16

5. References
[1] Alin Deutsch, Val Tannen: Optimization Properties for Classes of Conjunctive

Regular Path Queries. DBPL 2001: 21-39
[2] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa: Data exchange:

semantics and query answering. Theor. Comput. Sci. 336(1): 89-124 (2005)
[3] Carles Farré, Ernest Teniente, Toni Urpí: A New Approach for Checking Schema

Validation Properties. DEXA 2004: 77-86
[4] Carles Farré, Ernest Teniente, Toni Urpí: Checking query containment with the

CQC method. Data Knowl. Eng. 53(2): 163-223 (2005)
[5] Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua Sagiv, Oded Shmueli: Static

analysis in datalog extensions. J. ACM 48(5): 971-1012 (2001)
[6] Anna Queralt, Ernest Teniente: Decidable Reasoning in UML Schemas with

Constraints. CAiSE 2008: 281-295
[7] Jeffrey D. Ullman: Principles of Database and Knowledge-Base Systems, Volume

II Computer Science Press 1989
[8] Xubo Zhang, Z. Meral Özsoyoglu: Implication and Referential Constraints: A New

Formal Reasoning. IEEE Trans. Knowl. Data Eng. 9(6): 894-910 (1997)

