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ABSTRACT 
Since the emergence of the Web, the ability to map XML data between different data sources has become crucial. Defining a mapping is 
however not a fully automatic process. The designer needs to figure out whether the mapping is what was intended. Our approach to this 
validation consists of defining and checking certain desirable properties of mappings. We translate the XML schemas and the mapping into 
first-order logic formalism and apply a reasoning mechanism to check the desirable properties automatically, without assuming any 
particular instantiation of the schemas. 
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1. INTRODUCTION 
Schema mappings are specifications that model a relationship between two data schemas, and are key elements in any system that requires 
the interaction of heterogeneous data and applications [11, 14]. The need of mappings has become more important with the emergence of 
the Web. The increasing number of data sources, each one independently developed and with a particular way of representing data, has 
made the ability to map between different data schemas, and in particular the ability to map not only relational but also XML data [17], a 
crucial one. 

The process of defining a mapping is however not fully automatic in the general case. It requires human feedback at some point, 
fundamentally to resolve semantic heterogeneities. The designer thus needs to check whether the mapping he produced is in fact what was 
intended. That is, he must find a way to validate the mapping. 

Our approach to mapping validation consists of the definition of certain desirable properties that the mapping should satisfy and providing 
a reasoning mechanism that allows checking them automatically. Fulfillment of these properties will provide information on whether the 
mapping adequately matches the intended needs and requirements. In this paper, we focus on the validation of mappings between XML 
schemas. Since the relational setting can be seen as a particular case of XML, our approach can also be used to validate any combination of 
relational and XML. 

As example, consider the mapping scenario depicted in Figure 1. Schema S1 models documents about purchase orders in which the 
information about items is nested inside the corresponding order. Schema S2 has a relational structure; it represents orders and items 
separately, related by means of a keyref constraint (i.e. a foreign key). Mapping M is defined through a single assertion QS1 = QS2, where 
QS1 and QS2 are queries over the schemas S1 and S2. M maps item, shipping and billing information of all purchase orders in S1 having two 
addresses with those orders in S2 that only have items with a price greater than 5000. 

This mapping may seem correct because it relates orders in S1 with orders in S2. However, only those orders in S1 that have no items can 
satisfy the assertion, because the price of all items in those orders is lower or equal than 5000. That is, the restriction in the range of the 
price in S1 contradicts with the “where” clause of the QS2 query in the mapping assertion. Our approach helps the designer discover this 
kind of semantic flaws. In particular, testing the strong mapping satisfiability property we propose in Section 4.1 would reveal this 
problem. 

We consider schemas defined by means of a subset (see Section 2.1) of the XML Schema Definition language (XSD) [22]. In particular, 
we allow cardinality constraints, range restrictions and the use of the <choice> construct, which are not considered on nested relational. 
In this way, we extend the expressivity of previous work on XML mapping validation [1, 6, 7] that focuses on nested relational schemas 
and [3] that considers DTDs. 

Mapping M between S1 and S2:  M = {QS1 = QS2} 
QS1: for $po in //purchaseOrder[.//twoAddresses] 
 return <order>{$po//shipTo, $po//billTo, for $it in $po/item return $it}</order> 

QS2: for $o in /orderDB/order 
 where not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() <= 5000]) 
 return <order>{ $o/shipTo, $o/billTo,  
 for $it in //item[./order/text() = $o/id/text()] return  
 <item><productName>{$it/name/text()}</productName>{$it/quantity, $it/price}</item>} 
 </order> 

keyref 

Schema S1: 
orderDoc: sequence 
 purchaseOrder minOccurs=0, maxOccurs=unbounded: sequence 
  customer: string 
  item minOccurs=0, maxOccurs=unbounded: sequence 
   productName: string 
   quantity: integer 
   price: decimal 
              between 0 and 5000 
  shipAddress: choice 
   singleAddress: string 
   twoAddresses: sequence 
    shipTo: string 
    billTo: string 

Schema S2: 
orderDB: sequence 
 order minOccurs=0, maxOccurs=unbounded: sequence 
  id key: integer 
  shipTo: string 
  billTo: string 
 item minOccurs=0, maxOccurs=unbounded: sequence 
  order: integer 
  name: string 
  quantity: integer 
  price: decimal 

Figure 1: Example mapping scenario. 
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Our mappings are global-and-local-as-view (GLAV) mappings [14], where queries are expressed in a subset of the XQuery language [23]. 
So, negations and order comparisons are allowed in the mapping definition as shown in Figure 1. This is also a significant extension with 
regards to previous work which focuses only on tuple-generating dependencies [6, 7], nested mappings [1] and implications (tgds) of tree 
patterns [3]. 

In our approach, we only reason from the mapping and the mapped schemas without assuming any particular instantiation of the schemas. 
On the contrary, existing approaches [1, 6, 7] require users to provide a given set of schema instances to perform the validation. However, 
the fact that a certain property is not satisfied in a particular instance does not necessarily imply the inexistence of an instance in which the 
property is satisfied. Furthermore, if the property is definitely not satisfiable, the user could successively provide several instantiations 
without having the certainty that the property does not hold. 

Our approach is based on translating the validation problem from the XML setting into first-order logic formalism. In this way, we extend 
our previous work on validating relational mappings [18] while taking advantage of it. First, we translate the XML schemas and the 
mapping into logic, which results in a logic database schema. Then, for each desirable property, the outcome of the translation is a 
distinguished query, defined in terms of the former logic schema. The desirable property will hold if and only if the distinguished query is 
satisfiable over the schema, and that can be checked by means of the CQC method [12]. Our XML-to-logic translation is not done from 
scratch since it incorporates previous proposals to translate parts of the XML schemas and the mapping. 

The intuition behind our approach is that the database schema that results from the proposed translation is equivalent to the original XML 
mapping scenario, that is, there is a consistent database instance for each consistent instantiation of the mapping scenario and vice versa. 
And, similarly, the distinguished query is equivalent to the definition of the property being tested. Then, if the query is satisfiable over the 
logic schema, that means there is an instantiation of the mapping scenario that exemplifies the satisfaction of the tested property. If there is 
no such example, then the property does not hold and the query cannot be satisfied. 

2. PRELIMINARIES 

2.1 XML Schemas and Mappings 
We consider XML schemas defined by means of a subset of the XML Schema Definition language (XSD) [22]. Basically, these schemas 
consist in a root element definition followed by a collection of type definitions. Complex types can be defined either as a <sequence> of 
element definitions, or as a <choice> among element definitions. Elements can also be defined as of simple type. We consider the 
integrity constraints key and keyref, and the possibility to restrict the range of a simple type for a certain element definition. What we 
do not consider is the order of the elements inside a type definition. 

In order to avoid the verbose XML representation, we use a more compact notation. We represent an XML schema as a tuple (r, T, Σ), 
where r is an element definition (the root), T is a set of type definitions, and Σ is a set of integrity constraints. An element definition is also 
a tuple (name, type_name, min_occurs, max_occurs), where the components are: the element’s name, the element’s type, and the 
cardinality constraints. A type definition is in the form of (type_name, sequence/choice, {e1, ..., en}), where the second component 
indicates whether the type is defined as a sequence of element definitions e1, ..., en (n ≥ 1), or as a choice among element definitions e1, e2, 
... en (n ≥ 2). The root’s definition must be like r = (root_name, root_type, 0, 1), where root_type must be defined in T. We assume 
minOccurs = 0 for the root in order to allow the empty instance to be a valid instance of the schema. 

Regarding integrity constraints, the XSD’s key and keyref constraints are represented as (key, name, selector, (field1, ..., fieldn)) and 
(keyref, name, selector, (field1, ..., fieldn), referenced_key), where selector and fieldi are XPath expressions. The selector indicates the 
element that we want to identify, and field1, ..., fieldn the elements that form the key. keyref is just a referential constraint to an existing 
key. 

The XSD language allows deriving new simple types by restricting existing simple types. In particular, the range of valid values of a 
simple type can be restricted by means of the facets: minInclusive, minExclusive, maxInclusive and maxExclusive. We model this feature 
as an integrity constraint: (restriction, selector, valid_range), where selector is an XPath expression that indicates the element of 
basic type we are going to restrict its range, and valid_range is the new range of values. 

As an example, the XML schema S1 in Figure 1 would be represented as follows: 
S1 = (r1, T1, Σ1), where  r1 = (orderDoc, orderDocType, 0, 1), 
T1 = {(orderDocType, sequence, {(purchaseOrder, purchaseOrderType, 0, unbounded)}), 

(purchaseOrderType, sequence, {(costumer, string, 1, 1), (item, itemType, 0, unbounded), (shipAddress, shipAddressType, 1, 1)}), 
(itemType, sequence, {(productName, string, 1, 1), (quantity, integer, 1, 1), (price, decimal, 1, 1)}), 
(shipAddressType, choice, {(singleAddress, string, 1, 1), (twoAddresses, twoAddressesType, 1, 1)}), 
(twoAddressesType, sequence, {(shipTo, string, 1, 1), (billTo, string, 1, 1)})} 

Σ1 = {(restriction, //price, ./text() >= 0 and ./text() <= 5000)}. 

We consider an XML schema mapping to be defined as a set of assertions M = {m1, ..., mk} that specify a relationship between two XML 
schemas. Each assertion mi is of the form QS1

i opi QS2
i, where QS1

i and QS2
i are queries expressed in a subset of the XQuery language [23], 

S1 and S2 are the two mapped schemas, and opi is ⊑ or =. 
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We say that two instances of the XML schemas being mapped are consistent with the mapping if all the mapping assertions are evaluated 
true. A mapping assertion QS1 ⊑ (=) QS2 is true if the answer to QS1 is contained in (equivalent to) the answer to QS2 when the queries are 
evaluated over the pair of mapped schema instances. 

We assume that the two queries of a certain mapping assertion return a result of the same type, that is, the answers to these queries are 
XML documents with the same structure and element names. Therefore, and for the sake of simplicity, we skip the concrete element names 
in the return clause and just indicate the structure. The syntax is the following: 

MappingAssertion ::= Query1 (⊑ | =) Query2 
Query ::= for (Var in Path)+ (where Cond)? return ‘[’ Result+ ‘]’ 
Result ::= Path1/text()   |   Query   |   Const   |   ‘[’ Result+ ‘]’ 
Path ::= (Var | ‘.’)? ((/ | //) ElementName2 (‘[’ Cond ‘]’)?)+ 
Cond ::= (Path1/text() | Const1) (eq | ne | lt | le | gt | ge)  
   (Path2/text() | Const2)  |   
   Path  |  Cond1 and Cond2  |  Cond1 or Cond2  |   
   not Cond  |  ‘(’ Cond ‘)’ 

where Var denotes a variable, Const denotes a constant, ElementName must match one of the elements defined in the corresponding 
schema, and “/text()” must be applied to a path that returns one simple-type node. 

We consider containment and equivalence of nested structures under set semantics [10, 15]. The answer to a query will be thus a set of 
records {[R1,1, ..., R1,m], ..., [Rn,1, ..., Rn,m]}, where each Ri,j is either a simple type value, a record, or a set of records. 

The containment of two nested structures R1, R2 of the same type T, i.e. R1 ⊑ R2, can be defined by induction on T as follows [15]: 
(1) If T is a simple type, R1 ⊑ R2 iff R1 = R2. 
(2) If T is a record type, R1 = [R1,1, ..., R1,n] ⊑ R2 = [R2,1, ..., R2,n] iff R1,1 ⊑ R2,1 ∧ ... ∧ R1,n ⊑ R2,n. 
(3) If T is a set type, R1 = {R1,1, ..., R1,n} ⊑ R2 = {R2,1, ..., R2,n} iff ∀i ∃j R1,i ⊑ R2,j. 

Equivalence can be defined similarly: 
(1) If T is a simple type, R1 = R2. 
(2) If T is a record type, [R1,1, ..., R1,n] = [R2,1, ..., R2,n] iff R1,1 = R2,1 ∧ ... ∧ R1,n = R2,n. 
(3) If T is a set type, {R1,1, ..., R1,n} = {R2,1, ..., R2,n} iff ∀i ∃j R1,i = R2,j ∧ ∀j ∃i R2,j = R1,i. 

2.2 Logic Database Schemas and the CQC Method 
A logic database schema is a tuple (DR, IC), where DR is a finite set of deductive rules, and IC is a finite set of constraints. A deductive 
rule has the form: 

p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧ … ∧ Ct, 

and a constraint takes one of the following two forms: 
r1(X̄1) ∧ … ∧ rn(X̄n) → C1 ∨ … ∨ Ct, 

r1(X̄1) ∧ … ∧ rn(X̄n) ∧ C1 ∧ … ∧ Ct → ∃V̄1 rn+1(Z̄1) ∨ … ∨ ∃V̄s rm(Z̄s). 

Symbols p, ri are predicates. Tuples X̄, X̄i, Ȳi contain terms, which are either variables or constants. Each V̄i is a tuple of distinct variables. 
Each Ci is a built-in literal in the form of t1 θ t2, where t1 and t2 are terms and the operator θ is <, ≤, >, ≥, = or ≠. Atom p(X̄) is the head of 
the rule, and ri(X̄i), ¬ri(Ȳi) are positive and negative ordinary literals (those that are not built-in). Every rule and constraint must be safe 
[21], that is, every variable that occurs in X̄, Ȳi, Ci must also appear in some X̄j. Each variable in Z̄i is either from V̄i or from some X̄j. 
Variables in X̄i are assumed to be universally quantified over the whole formula. Predicates that appear in the head of a rule are derived 
predicates (views or queries). The rest are base predicates (tables). They correspond to tables. A database violates a constraint L1 ∧ ... ∧ Ln 
→ Ln+1 ∨ ... ∨ Lm if the implication (L1 ∧ ... ∧ Ln → Ln+1 ∨ ... ∨ Lm)σ is false for some ground substitution σ. 

Given a query Q defined by means of a set of deductive rules, and a logic database schema S, we can use the CQC method [12] to check 
whether Q is satisfiable in S, that is, whether there exists an instance of S in which Q returns a non-empty answer. 

The CQC method is a constructive method. It tries to build a database instance that does not violate any constraint in the schema, and that 
serves as example of the given query Q being satisfiable. To instantiate the tuples in this instance, the method uses a set of Variable 
Instantiation Patterns (VIPs) according to the syntactic properties of the schema and the query. If the method ends and no instance has 
been built, that means query Q is not satisfiable. 

3. TRANSLATING XML SCHEMAS AND MAPPINGS INTO LOGIC 
To validate XML schema mappings, we translate the problem from the initial XML setting into a first-order logic formalism. The main 
goal of this section is to define such a translation for both the original XML schemas and the mapping. 
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3.1 Translating the Nested Structure of the Mapped Schemas 
Each element definition e = (name, type, ...) in a schema S is translated into a base predicate along the lines defined in [24]. If e is a root 
element, it is translated into the predicate name(id). Otherwise, the predicate will be either name(id, parentId) if type is complex, or 
name(id, parentId, value) if it is simple. The terms of the predicates represent: the id of the XML node, the id of the parent node, and the 
simple type value, when required. For instance, the translation until the second level of nesting of S1 is: 

orderDoc(id), purchaseOrder(id, parentId), customer(id, parentId, value), item(id, parentId) and shipAddress(id, parentId). 

Moreover, to ensure the original semantics of element definitions at the logical level, we have to define a set of integrity constraints that 
make explicit some of the XML assumptions and structure. 

First of all, we must guarantee that there cannot be two different instances of an element definition with the same id. For example, we need 
the constraint: 

purchaseOrder(id, pid1) ∧ purchaseOrder(id, pid2) → pid1 = pid2, 
to make term id unique in the context of purchaseOrder. 

We also need additional constraints to make explicit the parent-child relationship between element definitions. Consider two element 
definitions e1, e2 and a type t1, such that e1 = (n1, t1, min1, max1), t1 = (tn, sc, E), e2 = (n2, t2, min2, max2), and e2 ∈ E. Then, we define a 
referential constraint from the parentId term of predicate n2 to the id term of predicate n1. For example: 

customer(id, pid, val) → ∃id2 purchaseOrder(pid, id2). 

Ensuring enforcement of the maxOccurs and minOccurs facets of each element definition is also achieved by additional constraints. 
Consider again the two generic element definitions e1 and e2. In order to enforce the maxOccurs facet of e2, and if max2 ≠ unbounded, 
we must define the following constraint: 

n1(idn1, ...) ∧ n2(idn2,1, idn1, ...) ∧ ... ∧ n2(idn2,max2+1, idn1, ...) → idn2,1 = idn2,2 ∨ ... ∨ idn2,1 = idn2,max2+1  ∨... ∨ idn2,max2 = idn2,max2+1. 
The enforcement of minOccurs facet of e2 depends however on whether type t1 is defined as a sequence or a choice. If sc = sequence 
and min2 > 0, we must define the constraint: 

n1(id, ...) → minseq
n2(id), where  

minseq
n2(pid) ← n2(id1, pid, ...) ∧ ... ∧ n2(idmin2, pid, ...) ∧ id1 ≠ id2 ∧ ... ∧ id1 ≠ idmin2 ∧ ... ∧ idmin2-1 ≠ idmin2. 

Instead, if sc = choice, min2 > 1 and all element definitions in E have minOccurs > 0, the following constraint is needed: 
n1(idn1, ..) ∧ n2(idn2,1, idn1, ...) → minchoice

n2(idn1, idn2,1), where  
minchoice

n2(pid, id1) ← n2(id2, pid, ...) ∧ ... ∧ n2(idmin2, pid, ...) ∧ id1 ≠ id2 ∧ ... ∧ id1 ≠ idmin2 ∧ ... ∧ idmin2-1 ≠ idmin2. 
For example, the implicit facet maxOccurs=1 of the singleAddress element definition in schema S1 would be translated as follows: 

shipAddress(id, pid) ∧ singleAddress(id1, id, val1) ∧ singleAddress(id2, id, val2) → id1 = id2. 

Additionally, to make explicit the semantics of the <choice> construct, we must guarantee that one and only one element definition is 
chosen. Consider an element definition e = (n, t, min, max), where t1 = (tn, sc, E), sc = choice and E = {e1 = (n1, t1, min1, max1), ..., ek = 
(nk, tk, mink, maxk)}. In order to state that at least one element definition from E must be chosen, and if all element definitions in E have 
minOccurs > 0, we need the constraint: 

n(id, ...) → ∃id1 n1(id1, id ...) ∨... ∨ ∃idk nk(idk, id...). 

In order to state that no more than one element definition from E can be chosen, the following constraints are required: 
name1(id1, pid1, ...) ∧ name2(id2, pid2, ...) → pid1 ≠ pid2, 
..., name1(id1, pid1, ...) ∧ namek(idk, pidk, ...) → pid1 ≠ pidk, 
..., namek-1(idk-1, pidk-1, ...) ∧ namek(idk, pidk, ...) → pidk-1 ≠ pidk. 

For example, the shipAddress choice in S1 would be translated: 
shipAddress(id, pid) → ∃(id1, value) singleAddress(id1, id, value)∨ ∃(id2) twoAddresses(id2, id), 
singleAddress(id1, pid1, val) ∧ twoAddresses(id2, pid2) → pid1 ≠ pid2. 

Finally, we also have to make explicit that there must be only one instance of each root element. We do that by means of two constraints. 
In our example: 

orderDoc(id1) ∧ orderDoc(id2) → id1 = id2, 
   orderDB(id1) ∧ orderDB(id2) → id1 = id2. 

It is worth mentioning that since a mapping scenario involves two schemas, we assume, for the sake of clarity, that all element definitions 
have a different name. If this is not the case, we need to rename, without loss of generality, the colliding elements before applying our 
approach. For instance, in our example, both mapped schemas have an element named price. Those elements could easily be renamed as 
priceS1 and priceS2, respectively. 
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3.2 Translating the Integrity Constraints 
A schema S may contain key and keyref integrity constraints as well as range restrictions on simple type elements. Each constraint in S 
is defined by means of a certain XPath expression that specifies the elements to constrain. Since we assume all elements in S have unique 
names, we can remove all “//” axis (i.e. all “descendant” axis) appearing in the XPath expression. Then, all resulting XPath expressions 
will have the form: /name1[cond1]/name2[cond2]/ ... /namen[condn], where n ≥ 1, and [condi] is a condition that may or may not appear in 
the original expression. 

We translate each XPath expression path into a derived predicate along the lines suggested in [9]. The main difference is that we allow 
conditions with negations and order comparisons, which are not handled in [9]. The translated path of path, denoted by T-path(path, id), is 
defined by means of the predicate Ppath(idn) according to the equivalence: T-path(path, id) = Ppath(idn). Now, Ppath(idn) is the derived 
predicate we obtain as a result of our translation, and it is defined by the following rule: 
P/name1[cond1]/name2[cond2]/.../namen[condn](idn) ← name1(id1) ∧ T-cond(cond1, id1) ∧ name2(id2, id1) ∧ T-cond(cond2, id2)  

∧ ... ∧ namen(idn, idn-1, ...) ∧ T-cond(condn, idn). 
If the path ends with “/text()”, the literal about namen should be namen(idn, idn-1, value), and the argument in the head of the rule should be 
value instead of idn. In the formula, T-cond stands for the translation of a condition in path. It is defined according to the following rules: 
(1) T-cond(cond1 and cond2, pid) = T-cond(cond1, pid) ∧ T-cond(cond2, pid). 
(2) T-cond(cond1 or cond2, pid) = auxcond1 or cond2(pid), where  

auxcond1 or cond2(pid) ← T-cond(cond1, pid),  
auxcond1 or cond2(pid) ← T-cond(cond2, pid). 

(3) T-cond(not cond, pid) = ¬auxcond(pid), where auxcond(pid) ←T-cond(cond, pid). 
(4) T-cond(path1/text() op path2/text(), pid) = T-relpath(path1/ text(), pid, value1) ∧T-relpath(path2/text(), pid, value2) ∧ value1 op value2, 

where value1 and value2 are the simple-type results of the relative path expressions. 
(5) T-cond(path, pid) = T-relpath(path, pid, res). 

The relative paths that may appear in the conditions have the following translation: 
(1) T-relpath(./name1[cond1]/ ... /namen[condn], pid, idn) = name1(id1, pid) ∧ T-cond(cond1, id1) ∧ ... ∧ namen(idn, idn-1)  

∧ T-cond(condn, idn). 
(2) T-relpath(./name1[cond1]/ ... /namen[condn]/text(), pid, value) = name1(id1, pid) ∧ T-cond(cond1, id1) ∧ ... ∧ namen(idn, idn-1, value)  

∧ T-cond(condn, idn). 

As an example, the path expression: 
/orderDoc/purchaseOrder[not(./item[./price/text()< 1000])]/customer 
would be translated as: 

P/orderDoc/purchaseOrder[not(./item[./price/text()<1000])]/customer(id) ← orderDoc(id1) ∧ purchaseOrder(id2, id1) ∧ ¬aux./item[./price/text() < 1000](id2) ∧ costumer(id, id2) 
aux./item[./price/text() < 1000](id2) ← item(id3, id2) ∧ price(id4, id3, val) ∧ val < 1000. 

Once the XPath expressions have been translated, the integrity constraints are translated in logic as follows: 
− A key constraint (key, name, selector, (field1, ..., fieldn)) is translated into: 

T-path(selector, id1) ∧ T-path(selector, id2) ∧ T-relpath(field1, id1, val1) ∧ T-relpath(field1, id2, val1)  
∧ ... ∧ T-relpath(fieldn, id1, valn) ∧ T-relpath(fieldn, id2, valn) → id1 = id2. 

− Let (keyref, name, selector, (field1, ..., fieldn), key_name) be a keyref constraint, and let (key, key_name, ref_selec, (ref_field1, ..., 
ref_fieldn)) be the referenced key. The keyref constrain is translated as follows: 
T-path(selector, id) ∧ T-relpath(field1, id, val1) ∧ ... ∧ T-relpath(fieldn, id, valn) →  auxname(val1, ..., valn), 
auxname(val1, ..., valn) ← T-path(ref_selec, id) ∧ T-relpath(ref_field1, id, val1) ∧ ... ∧ T-relpath(ref_fieldn, id, valn). 

− Finally, a range restriction like (restriction, /orderDoc/ purchaseOrder/item/ price, ./text() >= 0 and ./text() <= 5000) is translated 
into: 
T-path(/orderDoc/purchaseOrder/item/price, value) →  value ≥ 0 
T-path(/orderDoc/purchaseOrder/item/price, value) →  value ≤5000 

3.3 Translating the Mapping Assertions 
A mapping assertion consists in two nested XML queries related by means of an = or ⊑ operator. We will translate each of these queries as 
a collection of “flat” queries. Following the lines of [15], there will be one flat query for each nested block. For example, let us consider 
the query QS1 in Figure 1. It has two “for ... return ...” blocks. We translate the outermost block as follows: 

QS1
0(po, st, bt) ← T-path(//purchaseOrder[.//twoAddresses], po) ∧ T-relpath(.//shipTo/text(), po, st) ∧ T-relpath(.//billTo/text(), po, bt) 
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Each flat query will have one term in its head for each variable in the “for” clause, plus one term for each simple type expression in the 
“return” clause of the block. If the return clause contains record type expressions, those must be flattened before the translation. For 
example, let V be the following query: 

V: for $po in //purchaseOrder[.//twoAddresses]  
     return [$po/customer/text(), 

  [$po//shipTo/text(), $po//billTo/text(), for... return...]]. 

Its outermost block would be translated as follows: 

V0(po, c, st, bt) ← T-path(//purchaseOrder[.//twoAddresses], po) ∧ 
 T-relpath(./customer/text(), po, c) ∧  
 T-relpath(.//shipTo/text(), po, st) ∧  
 T-relpath(.//billTo/ text(), po, bt). 

The translation of an inner block requires taking into account its inherited variables, e.g. $po in QS1. We use access patterns [8] to deal with 
this kind of variables. In particular, we consider derived predicates with “input-only” terms. We denote these predicates Q<t1, ..., tn>(tn+1, 
..., tm), where t1, ..., tn are the input-only terms, and tn+1, ..., tm are the usual “input-output” terms. This way, the inner block of QS1 is 
translated: 

QS1
1<po>(it, pn, q, p) ← T-relpath(./item, po, it) ∧ T-relpath(./productName, it, pn) ∧ T-relpath(./quantity, it, q) ∧ T-relpath(./price, it, p). 

The input-only variables that appear in the head of a deductive rule are not required to appear in a positive ordinary literal in the rule’s 
body. However, the input-only variables that appear in a body’s literal and do not appear in the head are still required to appear in some 
positive ordinary literal in the same body. The last condition allows the CQC method to deal with these predicates as if they were normal 
derived predicates. 

The translation of the “where” clause of a query block is very similar to the translation of a path condition. The only difference is that a 
path condition involves a single variable that denotes the node which the condition is applied to, while a where clause potentially involves 
all the variables in the “for” clause (plus the variables inherited from its ancestor blocks). For example, consider the outermost block of the 
query QS2 in Figure 1. It would be translated as follows: 

QS2
0(o, st, bt) ← T-path(/orderDB/order, o) ∧ ¬auxwhere<o>() ∧ T-relpath(.//shipTo/text(), po, st) ∧ T-relpath(.//billTo/text(), po, bt) 

auxwhere<o>() ← T-path(/orderDB/item, it) ∧ T-relpath(./order/text(), it, id1) ∧ T-relpath(./id/text(), o, id2) ∧id1 = id2 ∧ 
 T-relpath(./price/text(), it, pr) ∧ pr <= 5000 

To translate a mapping assertion Q1 ⊑ (=) Q2 we have to express the containment (equivalence) definition from Section 2.1 in our logic 
formalism. We will rely on the flat queries that result from the translation of Q1 and Q2. 

Let QA, QB be two generic (sub-)queries with the same return type: 

QA: for $v1 in path1, ..., $vna in pathna where cond  
return [A1, ..., Am, B1, ..., Bk] 

QB: for $v1’ in path1’,...,$vnb’ in pathnb’ where cond’  
return [A1’,..., Am’, B1’,..., Bk’], 

where Ai, Ai’ are simple-type expressions, and Bi, Bi’ are sub-queries. Let us assume the outermost block of QA is translated into predicate 
QA0<x1, ..., xka>(v1, ..., vna, r1, ..., rm), where x1, ..., xka denote the variables inherited from the ancestor query blocks, v1, ..., vn denote the 
variables in the “for” clause, and r1, ..., rm denote the simple-type values returned by the block. Similarly, let us also assume the outermost 
block of QB is translated into QB0<x1’, ..., xkb’>(v1’, ..., vnb’, r1’, ..., rm’). 

The translation of QA ⊑ QB into first-order logic is: 

T-containment(QA, QB, {i1,...,ih}) =  
∀(v1,...,vna, r1,...,rm) (QA0<x1,...,xka>(v1,...,vna, r1,...,rm) → ∃(v1’,...,vnb’) (QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm) 

∧ T-containment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}) 
∧ ... ∧ T-containment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}))), 

where {i1,...,ih} is the union of the inherited variables of QA and QB, and {x1,...,xka}∪{x1’,...,xkb’} ⊆ {i1,...,ih}. 

The above expression, however, does not fit the syntactic requirements of the class of logic database schemas the CQC method works on 
(see Section 2.2). To address that, the first thing we need to do is get rid of the universal quantifiers. To do so, we perform a double 
negation on T-containment, and move one of the negations inwards: 
¬¬T-containment(QA, QB, {i1,...,ih}) =  
¬∃(v1,...,vna, r1,...,rm) (QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬∃(v1’,...,vnb’) (QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm) 

∧ ¬¬T-containment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}) 
∧ ... ∧ ¬¬T-containment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}))). 
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Now, we fold each existentially quantified (sub-)expression and get the following constraint: 
T-noncontainment(QA, QB, ∅) → ⊥ 

where ⊥ denotes any contradiction, e.g. 1 = 0, and  

T-noncontainment(QA, QB, {i1,...,ih}) = QA-not-contained-in-QB<i1,...,ih>( ) 

where QA-not-contained-in-QB is a derived predicate defined by the following deductive rules: 

QA-not-contained-in-QB<i1,...,ih>( ) ← QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬auxQA⋢QB<i1,...,ih, v1,...,vna, r1,...,rm>( ) 

auxQA⋢QB<i1,...,ih, v1,...,vna, r1,...,rm>( ) ← QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)  
∧ ¬T-noncontainment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}) 
∧ ... ∧ ¬T-noncontainment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}). 

As an example, consider the mapping assertion QS1 ⊑ QS2, where QS1, QS2 are the queries in Figure 1. It would be translated into the 
constraint QS1-not-contained-in-QS2<>() → ⊥, where 

QS1-not-contained-in-QS2<>() ← QS1
0(po, st, bt) ∧ ¬auxQS1⋢QS2<po, st, bt>(), 

auxQS1⋢QS2<po, st, bt>() ← QS2
0(o, st, bt) ∧ ¬QS1

1-not-contained-in-QS2
1<po, st, bt, o>(), 

QS1
1-not-contained-in-QS2

1<po, st, bt, o>() ← QS1
1<po>(it, pn, q, p) ∧ ¬auxQS11⋢QS21<po, st, bt, o, it, pn, q, p>(), 

auxQS11⋢QS21<po, st, bt, o, it, pn, q, p>() ← QS2
1<o>(it’, pn, q, p). 

Similarly, the translation of an equivalence assertion Q1 = Q2 results in two constraints: 
T-nonequivalence(Q1, Q2, ∅) → ⊥ 
T-nonequivalence(Q2, Q1, ∅) → ⊥ 

where T-nonequivalence is generically defined as follows: 

T-nonequivalence(QA, QB, {i1,...,ih}) = QA-not-eq-to-QB<i1,...,ih>( ) 

and QA-not-eq-to-QB is a derived predicate defined by the rules: 

QA-not-eq-to-QB<i1,...,ih>( ) ← QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬auxQA≠QB<i1,...,ih, v1,...,vna, r1,...,rm>( ) 
auxQA≠QB<i1,...,ih, v1,...,vna, r1,...,rm>( ) ← QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)  

∧ ¬T-nonequivalence(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}), 
∧ ¬T-nonequivalence(B1’, B1, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})  
∧ ... ∧ ¬T-nonequivalence(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})  

∧ ¬T-nonequivalence(Bk’, Bk, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}). 

As an example, consider the mapping assertion QS1 = QS2 from Figure 1. It would be translated into QS1-not-eq-to-QS2<>() → ⊥ and QS2-not-
eq-to-QS1<>() → ⊥, where: 

QS1-not-eq-to-QS2<>() ← QS1
0(po, st, bt) ∧ ¬auxQS1≠QS2<po, st, bt>() 

auxQS1≠QS2<po, st, bt> ← QS2
0(o, st, bt) ∧ ¬QS1

1-not-eq-to-QS2
1<po, st, bt, o>() ∧ ¬QS2

1-not-eq-to-QS1
1<po, st, bt, o>() 

QS1
1-not-eq-to-QS2

1<po, st, bt, o>() ← QS1
1<po>(it, pn, q, p) ∧ ¬auxQS11≠QS21<po, st, bt, o, it, pn, q, p>() 

auxQS11≠QS21<po, st, bt, o, it, pn, q, p>() ← QS2
1<o>(it’, pn, q, p) 

QS2
1-not-eq-to-QS1

1<po, st, bt, o>() ← QS2
1<o>(it’, pn’, q’, p’) ∧ ¬auxQS21≠QS11<po, st, bt, o, it’, pn’, q’, p’>() 

auxQS21≠QS11<po, st, bt, o, it’, pn’, q’, p’>() ← QS1
1<po>(it, pn’, q’, p’) 

QS2-not-eq-to-QS1<>() ← QS2
0(o, st’, bt’) ∧ ¬auxQS2≠QS1<o, st’, bt’>() 

auxQS2≠QS1<o, st’, bt’>() ← QS1
0(po, st’, bt’) ∧ ¬QS2

1-not-eq-to-QS1
1<po, st’, bt’, o>() ∧ ¬QS1

1-not-eq-to-QS2
1<po, st’, bt’, o>() 

4. CHECKING DESIRABLE PROPERTIES OF XML MAPPINGS 
Our approach to validation of XML mappings is aimed at providing the designer with a set of desirable properties that the mapping should 
satisfy. For each property to be tested, a query that formalizes the property is defined. Then, the CQC method [12] is used to determine 
whether the property is satisfied, i.e. whether the query is satisfiable. In addition to the query stating the property, the CQC method 
requires also the logic database schema for which satisfiability of the query should be tested. 

4.1 Strong Mapping Satisfiability 
A mapping is strongly satisfiable if there is a pair of schema instances that make all mapping assertions true in a non-trivial way. In the 
relational setting [18], the trivial case is that in which all queries in the assertion return an empty answer. In XML, however, queries may 
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return a nested structure. Therefore, testing this property must make sure that all levels of nesting can be satisfied non-trivially, as shown in 
our example in the introduction. Then, strong satisfiability of XML schema mapping must be formalized as follows: 

Definition 1. An XML schema mapping M between schemas S1, S2 is strongly satisfiable if ∃IS1, IS2 instances of S1 and S2, respectively, 
such that IS1 and IS2 satisfy the assertion in M, and for each assertion QS1

i opi QS2
i in M, the answer to QS1

i in IS1 is a strong answer. We 
say that R is a strong answer if: (1) R is a simple type value, (2) R is a record [R1, ..., Rn] and R1, ..., Rn are all strong answers, or (3) R is 
a non-empty set {R1, ..., Rn} and R1, ..., Rn are all strong answers. 

The query that specifies strong satisfiability of a mapping M is defined as follows: 

QstronglySat ← StrongSat(QS1
1, ∅) ∧ ... ∧ StrongSat(QS1

n, ∅), 

where StrongSat is a function generically defined as follows. Let V be a generic (sub-)query in M: 

V: for $v1 in path1, ..., $vs in paths where cond  
return [A1, ..., Am, B1, ..., Bk], 

where A1, ..., Am are simple-type expressions and B1, ..., Bk are query blocks, and let V0 be the translation of the outermost block of V 
(obtained as explained in Section 3.3). Then, 

StrongSat(V, inheritedVars) = V0<x1,...,xr>(v1,...,vs, r1,...,rm) ∧ StrongSat(B1, inheritedVars ∪ {v1,...,vs, r1,...,rm})  
∧ ... ∧ StrongSat(Bk, inheritedVars ∪ {v1,...,vs, r1,...,rm}), 

where {x1,...,xr} ⊆ inheritedVars. 

The logic schema DB that must be considered to check satisfiability of QstronglySat is obtained as follows. Let DRM, ICM be the deductive 
rules and denial constraints that result from the translation of the assertions of mapping M = {QS1

1 op1 QS2
1, ..., QS1

n opn QS2
n}. Let DRS1, 

ICS1 and DRS2, ICS2 be the rules and constraints from the translation of mapped schemas S1 and S2, respectively. Then, DB = 
(DRS1∪DRS2∪DRM, ICS1∪ICS2∪ICM). 

As an example, consider the mapping M in Figure 1. Strong satisfiability of this mapping is defined by the query: QstronglySat ← QS1
0(po, st, 

bt) ∧ QS1
1<po>(it, pn, q, p). Note that the second literal in the body of this query may never be satisfied because every possible instantiation 

either violates the range restriction on price element of schema S1 or it violates the mapping assertion (more specifically, the definition of 
QS2). Therefore, and as we have also mentioned in the introduction, M is not strongly satisfiable. Such unsatisfiability is determined by 
applying the CQC method to QstronglySat. 

4.2 Mapping Losslessness 
The mapping losslessness property [18] allows the designer to provide a query defined over one of the mapped schemas and check whether 
all the data needed to answer that query is mapped. It can be used, for example, to know whether a mapping that may be partial or 
incomplete suffices for the intended task, or to be sure that certain private information is not made public by the mapping. 

Definition 2. Let Q be a query posed on schema S1. Let M be an XML mapping between schemas S1, S2 with assertions: {QS1
1 op1 QS2

1, 
..., QS1

n opn QS2
n}. We say that M is lossless with respect to Q if ∀IS1

1, IS1
2 instances of S1 both 

(1) ∃IS2 instance of S2 such that IS1
1 and IS1

2 are both mapped into IS2, and  
(2) ∀ QS1

i opi QS2
i mapping assertion from M, the answer of QS1

i over IS1
1 is equal to the answer of QS1

i over IS1
2, 

imply that the answer of Q over IS1
1 is equal to the answer of Q over IS1

2. 

Instance of S2: 
<orderDB> 
 <order> 
  <id>0</id> 
  <shipTo>Address2</shipTo> 
  <billTo>Address3</billTo> 
 </order> 
 <item> 
  <order>0</order> 
  <name>product1</name> 
  <quantity>2</quantity> 
  <price>50</price> 
 </item> 
</orderDB> 

Instance 2 of S1: 
<orderDoc> 
 <purchaseOrder> 
  <customer>Joan</customer> 
  <shipAddress> 
   <singleAddress>Address4 
   </singleAddress> 
  </shipAddress> 
 </purchaseOrder> 
 <purchaseOrder> 
  <customer>Mary</customer> 
  <item> 
   <productName>product1 
   </productName> 
   <quantity>2</quantity> 
   <price>50</price> 
  </item> 
  <shipAddress> 
   <twoAddresses> 
    <shipTo>Address2</shipTo> 
    <billTo>Address3</billTo> 
   </twoAddresses> 
  </shipAddress> 
 </purchaseOrder> 
</orderDoc> 

Instance 1 of S1: 
<orderDoc> 
 <purchaseOrder> 
  <customer>Andy</customer> 
  <shipAddress> 
   <singleAddress>Address1 
   </singleAddress> 
  </shipAddress> 
 </purchaseOrder> 
 <purchaseOrder> 
  <customer>Mary</customer> 
  <item> 
   <productName>product1 
   </productName> 
   <quantity>2</quantity> 
   <price>50</price> 
  </item> 
  <shipAddress> 
   <twoAddresses> 
    <shipTo>Address2</shipTo> 
    <billTo>Address3</billTo> 
   </twoAddresses> 
  </shipAddress> 
 </purchaseOrder> 
</orderDoc> 

Figure 2: Counterexample for mapping losslessness. 
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In other words, mapping M is lossless w.r.t. Q if the answer to Q is determined by the extension of the QS1
i queries, where these extensions 

must be the result of evaluating the queries over an instance of S1 that is mapped into some consistent instance of S2. 

As an example, consider the mapping M in Figure 1. Suppose that we have changed “./price/text() <= 5000” by “./price/text() > 5000” in 
the definition of QS2 in order to make M strongly satisfiable. Consider also the following query Q: 

Q: for $sa in //singleAddress return [$sa/text()]. 

Intuitively, mapping M is not lossless w.r.t. Q because it maps the purchase orders with twoAddresses, but not the ones with singleAddress. 
More formally, we can find a counterexample that shows M is lossy w.r.t. Q. This counterexample is depicted in Figure 2, and it consists in 
two instances of S1 that have the same extension for QS1, that are both mapped to a consistent instance of S2, and that have different 
answers for Q. 

Let M = {QS1
1 op1 QS2

1, ..., QS1
n opn QS2

n} be a mapping between schemas S1 and S2, and let Q be a query over S1. The query that specifies 
losslessness of mapping M with respect to query Q is defined as follows: 

Qlossy ← T-noncontainment(Q, Q’, ∅), 

where Q’ is a copy of Q in which each element name n has been renamed n’. 

The logic schema DB that must be considered to check satisfiability of Qlossy is defined as follows. Let DRS1, ICS1 and DRS2, ICS2 be the 
rules and constraints from the translation of S1 and S2, respectively; let DRS1’, ICS1’ be a copy of DRS1, ICS1 in which each predicate p has 
been renamed p’; and let DRL, ICL be the result of translating the assertions: QS1

1 = QS1
1’, ..., QS1

n = QS1
n’. Then, DB = (DRS1∪DRS2∪DRM 

∪DRS1’∪DRL, ICS1∪ICS2∪ ICM ∪ICS1’∪ICL). 

If the CQC method can build an instance of DB in which Qlossy is true, this instance can be partitioned in three instances: one for S1, one for 
S1’, and one for S2. Since S1 and S1’ are actually two copies of the same schema, we can say that we have two instances of S1. Both are 
map to the instance of S2 (because ICM), and share the same answer for the QS1

i queries in mapping M (because ICL). Also, since Qlossy is 
true and its definition requires that Q ⋢ Q’, the two instances of S1 have different answers for query Q. In conclusion, we have got a 
counterexample that shows M is lossy w.r.t. query Q. 

4.3 Mapping Inference 
The mapping inference property [16] checks whether a given mapping assertion is inferred from a set of others assertions. It can be used, 
for instance, to detect redundant assertions or to test equivalence of mappings. 

Definition 3. Let M be an XML mapping between schemas S1, S2. Let F be a mapping assertion between S1 and S2. We say that F is 
inferred from M if ∀IS1, IS2 instances of schemas S1 and S2, respectively, such that IS1, IS2 satisfy the assertions in M, then IS1, IS2 also 
satisfy assertion F. 

The query that specifies the mapping inference property with respect to a given assertion F is defined as follows: 
− If F is a containment assertion, i.e. Q1 ⊑ Q2, query QnotInferred will be defined by a single rule: 

QnotInferred ← T-noncontainment(Q1, Q2, ∅). 
− Otherwise, if F is like Q1 = Q2, there will be two rules: 

QnotInferred ← T-nonequivalence(Q1, Q2, ∅) 
QnotInferred ← T-nonequivalence(Q2, Q1, ∅). 

The logic schema DB to be used to test the satisfiability of query QnotInferred is DB = (DRS1 ∪DRS2∪DRM, ICS1∪ICS2∪ICM). 

As an example, let F be Q1 = Q2, and let Q1, Q2 be the following queries defined over the schemas shown in Figure 1: 
Q1: for $po in //purchaseOrder 
 return [ for $sa in $po/shipAddress/singleAddress return [$sa/text()], 
 for $ta in $po/shipAddress/twoAddresses return  
 [$ta/shipAddress/text(), $ta/billTo/text()] 
 for $it in $po/item return  
 [$it/productName/text(), $it/quantity/text(), $it/price/text()] ] 
Q2: for $o in /orderDB/order where  
 not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() > 5000]) 
 return [ for $st in $o/shipTo, $bt in $o/billTo where $st/text() = $bt/text()  
 return [$st/text()], 
 for $st in $o/shipTo, $bt in $o/billTo where $st/text() ≠ $bt/text()  
 return [$st/text(), $bt/text()],  
 for $it in //item[./order/text() = $o/id/text()]  
 return [$it/name/text(), $it/quantity/text(), $it/price/text()] ] 

Assertion F maps both the purchase orders that have a twoAddresses node, and also those with a singleAddress node. It fixes thus the 
problem of mapping M not being lossless w.r.t. the singleAddress information (see Section 4.2). Let us suppose that we want to see 
whether F is inferred from M. We apply the CQC method over QnotInferred and we obtain a counterexample, which consists in a pair of 
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schema instances that satisfy M (because ICM), that is, they share the twoAddresses nodes, but do not satisfy F (because the definition of 
QnotInferred), that is, they do not have the same singleAddress nodes. Therefore, F is not inferred from M. 

5. EXPERIMENTS 
To show the feasibility of our approach, we perform a series of experiments and report the results in this section. We perform the 
experiments on an Intel Core2 Duo machine with 2GB RAM and Windows XP SP3. 

The mapping scenarios we use for the experiments are adapted from the STBenchmark [2]. From the basic mapping scenarios proposed in 
this benchmark, we consider those that can be easily rewritten into the class of mapping scenarios described in Section 2.1 and that have at 
least one level of nesting. These scenarios are the ones called: unnesting and nesting. We also consider one of the flat relational scenarios, 
namely the one called self joins, to show that our approach generalizes the relational case. These mapping scenarios are depicted in Figure 
3. 

For each one of these three mapping scenarios we validate the three properties discussed in the paper, i.e., strong mapping satisfiability, 
mapping losslessness and mapping inference. In order to do this, we apply the translation presented in this paper to transform each 
mapping scenario into a logic database schema and the mapping validation test into a query satisfiability test over the logic schema. Note 
that although [2] expresses the mappings in the global-as-view formalism, they can be easily rewritten into the formalism we consider in 
this paper as mapping assertions in the form of Qsource ⊑ Qtarget. Since we have not yet implemented the automatic XML-to-logic 
translation, we perform it manually. The number of constraints and deductive rules in the resulting logic schemas are shown in Table 1. 

To execute the corresponding query satisfiability tests, we use the implementation of the CQC method that is the core of our existing 
relational mapping validation tool (MVT) [19]. 

We perform two series of experiments, one in which the three properties hold for each mapping scenario, and one in which they do not. 
The results of these series are shown in Figure 4(a) and 4(b), respectively. 

Source 
 Reference [0..*] 
  title 
  year 
  publishedIn 
  Author [1..*] 
   name 

Target 
 Publication [0..*] 
  Title 
  Year 
  PublishedIn 
  Name 

Source 
 Reference [0..*] 
  title 
  year 
  publishedIn 
  name 

Target 
 Period [0..*] 
  Year 
  Author [0..*] 
   Name 
   Publication [0..*] 
    Title 
    PublishedIn 

Source 
 Gene [0..*] 
  name 
  type 
  protein 

Target 
 Gene [0..*] 
  Name 
  Protein 
 Synonym [0..*] 
  Name 
  WID 

(i) Unnesting 

(ii) Nesting 

(iii) Self joins 

Figure 3: Mapping scenarios taken from the 
STBenchmark [2]. 

 

 strong map. satisfiability mapping inference mapping losslessness 
 #constraints #rules #constraints #rules #constraints #rules 
unnesting 50 28 50 43 78 62 
nesting 51 33 51 37 76 57 
self joins 46 30 46 38 68 66 

Table 1: Size of the logic database schemas that result from the translation of the mapping scenarios in Figure 3. 
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In Figure 4(a), since the properties of mapping inference and mapping losslessness must be checked with respect to a user-provided 
parameter, and given that we want the mappings to satisfy these properties, we check whether a “strengthened” version of one of the 
mapping assertions is inferred from the mapping in each case, and whether each mapping is lossless with respect to a strengthened version 
of one of its mapping queries. These strengthened queries and assertions are built by taking the original ones and adding an additional 
arithmetic comparison. Similarly, in Figure 4(b), we strengthen the assertions/queries in the mapping and use one of the original ones as 
parameter for mapping inference and mapping losslessness, respectively. Regarding strong mapping satisfiability, we introduce two 
contradictory range constraints, one in each mapped schema, in order to ensure the property will “fail”. 

We can see in Figure 4(a) that the three properties are checked fast in the unnesting and self joins scenarios, while mapping inference and 
mapping losslessness require much more time to be tested in the nesting scenario. This is not unexpected since the mapping queries of the 
nesting scenario have two levels of nesting, while those from the other two scenarios are flat. To understand why mapping inference and 
mapping losslessness are the most affected by the increment in the level of nesting, we must recall how the properties are reformulated in 
terms of query satisfiability. In particular, the query to be tested for satisfiability in both mapping losslessness and mapping inference 
reformulation encodes the negation of a query containment assertion that depends on the parameter query/assertion, as shown in Section 4. 
Therefore, an increment of the level of nesting of the mapping scenario is likely to cause an increment of the level of nesting of the tested 
query, which is what happens in the nesting scenario; and a higher level of nesting means a more complex translation into logic, involving 
multiple levels of negation, as shown in Section 3.3. 

In Figure 4(b), we can see that all three properties run fast and that there is no much difference between the mapping scenarios. It is also 
remarkable the performance improvement of the nesting scenario with respect to Figure 4(a). To understand these results we must 
remember that mapping inference and mapping losslessness are both check by means of searching for a counterexample. That means its 
checking can stop now as soon as the counterexample is found, while, in Figure 4(a), all relevant counterexample candidates had to be 
evaluated. The behavior of strong mapping satisfiability is exactly the opposite; however, the results of this property in this series of 
experiments are very similar to those in Figure 4(a). The intuition to this is that strong satisfiability requires all mapping assertions to be 
non-trivially satisfied; thus, as soon as one of them cannot be so, the checking process can stop. 

6. RELATED WORK 
Existing approaches for validating mappings are [1, 6, 7], which focus on mappings between nested relational schemas. In this paper, we 
consider a more general class of XML schemas since we also allow the use of <choice>, range restrictions, and mapping assertions with 
negations and order comparisons. The mapping formalism used in [6, 7] is the one of tuple-generating dependencies (TGDs). These are 
logic formulas in the form of ∀X̄ (p(X̄) → ∃Ȳ q(X̄, Ȳ)), where p and q are conjunctive queries. In [1], the more recent formalism of nested 
mappings [13] is considered. This formalism allows nesting TGDs, which results in more expressive and compact mappings. In both cases, 
the mappings can be reformulated into the class of mapping assertions that we consider in this paper, in particular into assertions of the 
form of Q1 ⊑ Q2. 

As an example, consider the nested relational schemas in Figure 5(a) and the following nested mapping (taken from [13]): 

N:   for p in projs exists d’ in depts  
where d’.dname = p.dname ∧ d’.emps = E[p.dname] 

∧ (for e in p.emps exists e’ in d’.emps  
where e’.ename=e.ename ∧ e’.salary=e.salary) 

Notice the use of the Skolem function E to express that employees must be grouped in the target by department name. A straightforward 
reformulation can be done as follows. First, we extend the mapped schemas to the ones shown in Figure 5(b). Then, we define mapping 
assertion Qsource ⊑ Qtarget as follows: 

Qsource: for $p in //proj  
return [$p/dname/text(), //E[./input/text()=$p/dname/text()]/output/text(), for $e in $p/emp  

return [$e/ename/text(), $e/salary/text()] ] 
Qtarget: for $d’ in //dept  

return [$d’/dname/text(), $d’/empsSetId/text(), for $e’ in $d’/emps/emp  
return [$e’/ename/text(), $e’/salary/text()] ] 
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Notice that the implicit semantics of Skolem functions has been made explicit in Figure 5(b) by means of the introduction of new elements 
and constraints into the schemas. 

Outside the context of mapping validation, the compilation of an XML mapping into a relational one has been used to solve the problem of 
query reformulation [9] (i.e. rewriting a query through a mapping) using a generic relational schema encoding based on predicates such as 
child(x, y) and desc(y, z) that model the parent-child and ancestor-descendant relationships, respectively. However, this generic encoding 
alone does not model the entire mapped schemas, so [9] assumes that any other information in these schemas is provided already translated 
in the form of a set of disjunctive embedded dependencies (DEDs), which are formulas like ∀X̄ (p(X̄) → ∃Ȳ1 q1(X̄, Ȳ1) ∨ ... ∨ ∃Ȳn qn(X̄, 
Ȳn)), where p and qi are conjunctive queries with (in)equalities. Alternatively, our translation is more focused on how to translate the 
schemas into a class of constraints (see Section 2.2) that includes that of DEDs. Regarding the mapping formalism, [9] deals with global-
as-view and local-as-view queries, that is, a mapping is represented by a set of queries. Although these queries return a nested structure as 
the ones we consider, they do not allow order comparisons or negations. 

Information preservation in XML mappings has been studied in [4, 5]. The property of query preservation requires that, for a particular 
query language, all queries on the source schema can be answered on the target. This property, although related with our mapping 
losslessness property, is not the same property. In fact, our losslessness property assumes that mappings may be partial or incomplete, and 
thus, not query preserving. 

Mapping satisfiability has been studied in [3] for DTD schemas and XML mappings expressed as implications (TGDs) of tree patterns. 
However, negation, arithmetic comparisons or integrity constraints are not considered in [3]. Since it is not obvious how the results of [3] 
could be applied to the class of schemas and mappings we consider in this paper, we can say that our approach complements the work of 
[3]. 

As we widely discussed in [18, 19], our approach of testing desirable properties is complementary to the existing approaches to mapping 
validation [1, 5, 7]. 

7. CONCLUSIONS AND FURTHER WORK 
We have proposed an approach to the validation of XML schema mappings which is based on the translation of the schemas and the 
mapping into a first-order logic formalism. In this way, we can take advantage of our previous work on validating relational mappings [18] 
and check certain desirable properties of mappings automatically. We do that by means of reasoning over the mapping definition itself 
rather than relying on specific instances that may not reveal all the potential pitfalls. 

As further work, we plan to implement this work into our mapping validation tool [19], which currently can only deal with relational 
mappings. It would also be interesting to consider mapping assertions relating XQuery and SQL/XML [20] queries. That would allow us to 
validate mappings between XML and relational schemas directly, without first having to rewrite SQL queries into XQuery. 
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