

A Schema-only Approach to Validate
XML Schema Mappings

(Preliminary Version)

Guillem Rull grull@essi.upc.edu
Carles Farré farre@essi.upc.edu
Ernest Teniente teniente@essi.upc.edu
Toni Urpí urpi@essi.upc.edu

March 2010

Report ESSI-TR-10-3

Departament d’Enginyeria de Serveis i Sistemes d’Informació

 2

ABSTRACT
Since the emergence of the Web, the ability to map XML data between different data sources has become crucial. Defining a mapping is
however not a fully automatic process. The designer needs to figure out whether the mapping is what was intended. Our approach to this
validation consists of defining and checking certain desirable properties of mappings. We translate the XML schemas and the mapping into
first-order logic formalism and apply a reasoning mechanism to check the desirable properties automatically, without assuming any
particular instantiation of the schemas.

 3

1. INTRODUCTION
Schema mappings are specifications that model a relationship between two data schemas, and are key elements in any system that requires
the interaction of heterogeneous data and applications [11, 14]. The need of mappings has become more important with the emergence of
the Web. The increasing number of data sources, each one independently developed and with a particular way of representing data, has
made the ability to map between different data schemas, and in particular the ability to map not only relational but also XML data [17], a
crucial one.

The process of defining a mapping is however not fully automatic in the general case. It requires human feedback at some point,
fundamentally to resolve semantic heterogeneities. The designer thus needs to check whether the mapping he produced is in fact what was
intended. That is, he must find a way to validate the mapping.

Our approach to mapping validation consists of the definition of certain desirable properties that the mapping should satisfy and providing
a reasoning mechanism that allows checking them automatically. Fulfillment of these properties will provide information on whether the
mapping adequately matches the intended needs and requirements. In this paper, we focus on the validation of mappings between XML
schemas. Since the relational setting can be seen as a particular case of XML, our approach can also be used to validate any combination of
relational and XML.

As example, consider the mapping scenario depicted in Figure 1. Schema S1 models documents about purchase orders in which the
information about items is nested inside the corresponding order. Schema S2 has a relational structure; it represents orders and items
separately, related by means of a keyref constraint (i.e. a foreign key). Mapping M is defined through a single assertion QS1 = QS2, where
QS1 and QS2 are queries over the schemas S1 and S2. M maps item, shipping and billing information of all purchase orders in S1 having two
addresses with those orders in S2 that only have items with a price greater than 5000.

This mapping may seem correct because it relates orders in S1 with orders in S2. However, only those orders in S1 that have no items can
satisfy the assertion, because the price of all items in those orders is lower or equal than 5000. That is, the restriction in the range of the
price in S1 contradicts with the “where” clause of the QS2 query in the mapping assertion. Our approach helps the designer discover this
kind of semantic flaws. In particular, testing the strong mapping satisfiability property we propose in Section 4.1 would reveal this
problem.

We consider schemas defined by means of a subset (see Section 2.1) of the XML Schema Definition language (XSD) [22]. In particular,
we allow cardinality constraints, range restrictions and the use of the <choice> construct, which are not considered on nested relational.
In this way, we extend the expressivity of previous work on XML mapping validation [1, 6, 7] that focuses on nested relational schemas
and [3] that considers DTDs.

Mapping M between S1 and S2: M = {QS1 = QS2}
QS1: for $po in //purchaseOrder[.//twoAddresses]
 return <order>{$po//shipTo, $po//billTo, for $it in $po/item return $it}</order>

QS2: for $o in /orderDB/order
 where not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() <= 5000])
 return <order>{ $o/shipTo, $o/billTo,
 for $it in //item[./order/text() = $o/id/text()] return
 <item><productName>{$it/name/text()}</productName>{$it/quantity, $it/price}</item>}
 </order>

keyref

Schema S1:
orderDoc: sequence
 purchaseOrder minOccurs=0, maxOccurs=unbounded: sequence
 customer: string
 item minOccurs=0, maxOccurs=unbounded: sequence
 productName: string
 quantity: integer
 price: decimal
 between 0 and 5000
 shipAddress: choice
 singleAddress: string
 twoAddresses: sequence
 shipTo: string
 billTo: string

Schema S2:
orderDB: sequence
 order minOccurs=0, maxOccurs=unbounded: sequence
 id key: integer
 shipTo: string
 billTo: string
 item minOccurs=0, maxOccurs=unbounded: sequence
 order: integer
 name: string
 quantity: integer
 price: decimal

Figure 1: Example mapping scenario.

 4

Our mappings are global-and-local-as-view (GLAV) mappings [14], where queries are expressed in a subset of the XQuery language [23].
So, negations and order comparisons are allowed in the mapping definition as shown in Figure 1. This is also a significant extension with
regards to previous work which focuses only on tuple-generating dependencies [6, 7], nested mappings [1] and implications (tgds) of tree
patterns [3].

In our approach, we only reason from the mapping and the mapped schemas without assuming any particular instantiation of the schemas.
On the contrary, existing approaches [1, 6, 7] require users to provide a given set of schema instances to perform the validation. However,
the fact that a certain property is not satisfied in a particular instance does not necessarily imply the inexistence of an instance in which the
property is satisfied. Furthermore, if the property is definitely not satisfiable, the user could successively provide several instantiations
without having the certainty that the property does not hold.

Our approach is based on translating the validation problem from the XML setting into first-order logic formalism. In this way, we extend
our previous work on validating relational mappings [18] while taking advantage of it. First, we translate the XML schemas and the
mapping into logic, which results in a logic database schema. Then, for each desirable property, the outcome of the translation is a
distinguished query, defined in terms of the former logic schema. The desirable property will hold if and only if the distinguished query is
satisfiable over the schema, and that can be checked by means of the CQC method [12]. Our XML-to-logic translation is not done from
scratch since it incorporates previous proposals to translate parts of the XML schemas and the mapping.

The intuition behind our approach is that the database schema that results from the proposed translation is equivalent to the original XML
mapping scenario, that is, there is a consistent database instance for each consistent instantiation of the mapping scenario and vice versa.
And, similarly, the distinguished query is equivalent to the definition of the property being tested. Then, if the query is satisfiable over the
logic schema, that means there is an instantiation of the mapping scenario that exemplifies the satisfaction of the tested property. If there is
no such example, then the property does not hold and the query cannot be satisfied.

2. PRELIMINARIES

2.1 XML Schemas and Mappings
We consider XML schemas defined by means of a subset of the XML Schema Definition language (XSD) [22]. Basically, these schemas
consist in a root element definition followed by a collection of type definitions. Complex types can be defined either as a <sequence> of
element definitions, or as a <choice> among element definitions. Elements can also be defined as of simple type. We consider the
integrity constraints key and keyref, and the possibility to restrict the range of a simple type for a certain element definition. What we
do not consider is the order of the elements inside a type definition.

In order to avoid the verbose XML representation, we use a more compact notation. We represent an XML schema as a tuple (r, T, Σ),
where r is an element definition (the root), T is a set of type definitions, and Σ is a set of integrity constraints. An element definition is also
a tuple (name, type_name, min_occurs, max_occurs), where the components are: the element’s name, the element’s type, and the
cardinality constraints. A type definition is in the form of (type_name, sequence/choice, {e1, ..., en}), where the second component
indicates whether the type is defined as a sequence of element definitions e1, ..., en (n ≥ 1), or as a choice among element definitions e1, e2,
... en (n ≥ 2). The root’s definition must be like r = (root_name, root_type, 0, 1), where root_type must be defined in T. We assume
minOccurs = 0 for the root in order to allow the empty instance to be a valid instance of the schema.

Regarding integrity constraints, the XSD’s key and keyref constraints are represented as (key, name, selector, (field1, ..., fieldn)) and
(keyref, name, selector, (field1, ..., fieldn), referenced_key), where selector and fieldi are XPath expressions. The selector indicates the
element that we want to identify, and field1, ..., fieldn the elements that form the key. keyref is just a referential constraint to an existing
key.

The XSD language allows deriving new simple types by restricting existing simple types. In particular, the range of valid values of a
simple type can be restricted by means of the facets: minInclusive, minExclusive, maxInclusive and maxExclusive. We model this feature
as an integrity constraint: (restriction, selector, valid_range), where selector is an XPath expression that indicates the element of
basic type we are going to restrict its range, and valid_range is the new range of values.

As an example, the XML schema S1 in Figure 1 would be represented as follows:
S1 = (r1, T1, Σ1), where r1 = (orderDoc, orderDocType, 0, 1),
T1 = {(orderDocType, sequence, {(purchaseOrder, purchaseOrderType, 0, unbounded)}),

(purchaseOrderType, sequence, {(costumer, string, 1, 1), (item, itemType, 0, unbounded), (shipAddress, shipAddressType, 1, 1)}),
(itemType, sequence, {(productName, string, 1, 1), (quantity, integer, 1, 1), (price, decimal, 1, 1)}),
(shipAddressType, choice, {(singleAddress, string, 1, 1), (twoAddresses, twoAddressesType, 1, 1)}),
(twoAddressesType, sequence, {(shipTo, string, 1, 1), (billTo, string, 1, 1)})}

Σ1 = {(restriction, //price, ./text() >= 0 and ./text() <= 5000)}.

We consider an XML schema mapping to be defined as a set of assertions M = {m1, ..., mk} that specify a relationship between two XML
schemas. Each assertion mi is of the form QS1

i opi QS2
i, where QS1

i and QS2
i are queries expressed in a subset of the XQuery language [23],

S1 and S2 are the two mapped schemas, and opi is ⊑ or =.

 5

We say that two instances of the XML schemas being mapped are consistent with the mapping if all the mapping assertions are evaluated
true. A mapping assertion QS1 ⊑ (=) QS2 is true if the answer to QS1 is contained in (equivalent to) the answer to QS2 when the queries are
evaluated over the pair of mapped schema instances.

We assume that the two queries of a certain mapping assertion return a result of the same type, that is, the answers to these queries are
XML documents with the same structure and element names. Therefore, and for the sake of simplicity, we skip the concrete element names
in the return clause and just indicate the structure. The syntax is the following:

MappingAssertion ::= Query1 (⊑ | =) Query2
Query ::= for (Var in Path)+ (where Cond)? return ‘[’ Result+ ‘]’
Result ::= Path1/text() | Query | Const | ‘[’ Result+ ‘]’
Path ::= (Var | ‘.’)? ((/ | //) ElementName2 (‘[’ Cond ‘]’)?)+
Cond ::= (Path1/text() | Const1) (eq | ne | lt | le | gt | ge)
 (Path2/text() | Const2) |
 Path | Cond1 and Cond2 | Cond1 or Cond2 |
 not Cond | ‘(’ Cond ‘)’

where Var denotes a variable, Const denotes a constant, ElementName must match one of the elements defined in the corresponding
schema, and “/text()” must be applied to a path that returns one simple-type node.

We consider containment and equivalence of nested structures under set semantics [10, 15]. The answer to a query will be thus a set of
records {[R1,1, ..., R1,m], ..., [Rn,1, ..., Rn,m]}, where each Ri,j is either a simple type value, a record, or a set of records.

The containment of two nested structures R1, R2 of the same type T, i.e. R1 ⊑ R2, can be defined by induction on T as follows [15]:
(1) If T is a simple type, R1 ⊑ R2 iff R1 = R2.
(2) If T is a record type, R1 = [R1,1, ..., R1,n] ⊑ R2 = [R2,1, ..., R2,n] iff R1,1 ⊑ R2,1 ∧ ... ∧ R1,n ⊑ R2,n.
(3) If T is a set type, R1 = {R1,1, ..., R1,n} ⊑ R2 = {R2,1, ..., R2,n} iff ∀i ∃j R1,i ⊑ R2,j.

Equivalence can be defined similarly:
(1) If T is a simple type, R1 = R2.
(2) If T is a record type, [R1,1, ..., R1,n] = [R2,1, ..., R2,n] iff R1,1 = R2,1 ∧ ... ∧ R1,n = R2,n.
(3) If T is a set type, {R1,1, ..., R1,n} = {R2,1, ..., R2,n} iff ∀i ∃j R1,i = R2,j ∧ ∀j ∃i R2,j = R1,i.

2.2 Logic Database Schemas and the CQC Method
A logic database schema is a tuple (DR, IC), where DR is a finite set of deductive rules, and IC is a finite set of constraints. A deductive
rule has the form:

p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧ … ∧ Ct,

and a constraint takes one of the following two forms:
r1(X̄1) ∧ … ∧ rn(X̄n) → C1 ∨ … ∨ Ct,

r1(X̄1) ∧ … ∧ rn(X̄n) ∧ C1 ∧ … ∧ Ct → ∃V̄1 rn+1(Z̄1) ∨ … ∨ ∃V̄s rm(Z̄s).

Symbols p, ri are predicates. Tuples X̄, X̄i, Ȳi contain terms, which are either variables or constants. Each V̄i is a tuple of distinct variables.
Each Ci is a built-in literal in the form of t1 θ t2, where t1 and t2 are terms and the operator θ is <, ≤, >, ≥, = or ≠. Atom p(X̄) is the head of
the rule, and ri(X̄i), ¬ri(Ȳi) are positive and negative ordinary literals (those that are not built-in). Every rule and constraint must be safe
[21], that is, every variable that occurs in X̄, Ȳi, Ci must also appear in some X̄j. Each variable in Z̄i is either from V̄i or from some X̄j.
Variables in X̄i are assumed to be universally quantified over the whole formula. Predicates that appear in the head of a rule are derived
predicates (views or queries). The rest are base predicates (tables). They correspond to tables. A database violates a constraint L1 ∧ ... ∧ Ln
→ Ln+1 ∨ ... ∨ Lm if the implication (L1 ∧ ... ∧ Ln → Ln+1 ∨ ... ∨ Lm)σ is false for some ground substitution σ.

Given a query Q defined by means of a set of deductive rules, and a logic database schema S, we can use the CQC method [12] to check
whether Q is satisfiable in S, that is, whether there exists an instance of S in which Q returns a non-empty answer.

The CQC method is a constructive method. It tries to build a database instance that does not violate any constraint in the schema, and that
serves as example of the given query Q being satisfiable. To instantiate the tuples in this instance, the method uses a set of Variable
Instantiation Patterns (VIPs) according to the syntactic properties of the schema and the query. If the method ends and no instance has
been built, that means query Q is not satisfiable.

3. TRANSLATING XML SCHEMAS AND MAPPINGS INTO LOGIC
To validate XML schema mappings, we translate the problem from the initial XML setting into a first-order logic formalism. The main
goal of this section is to define such a translation for both the original XML schemas and the mapping.

 6

3.1 Translating the Nested Structure of the Mapped Schemas
Each element definition e = (name, type, ...) in a schema S is translated into a base predicate along the lines defined in [24]. If e is a root
element, it is translated into the predicate name(id). Otherwise, the predicate will be either name(id, parentId) if type is complex, or
name(id, parentId, value) if it is simple. The terms of the predicates represent: the id of the XML node, the id of the parent node, and the
simple type value, when required. For instance, the translation until the second level of nesting of S1 is:

orderDoc(id), purchaseOrder(id, parentId), customer(id, parentId, value), item(id, parentId) and shipAddress(id, parentId).

Moreover, to ensure the original semantics of element definitions at the logical level, we have to define a set of integrity constraints that
make explicit some of the XML assumptions and structure.

First of all, we must guarantee that there cannot be two different instances of an element definition with the same id. For example, we need
the constraint:

purchaseOrder(id, pid1) ∧ purchaseOrder(id, pid2) → pid1 = pid2,
to make term id unique in the context of purchaseOrder.

We also need additional constraints to make explicit the parent-child relationship between element definitions. Consider two element
definitions e1, e2 and a type t1, such that e1 = (n1, t1, min1, max1), t1 = (tn, sc, E), e2 = (n2, t2, min2, max2), and e2 ∈ E. Then, we define a
referential constraint from the parentId term of predicate n2 to the id term of predicate n1. For example:

customer(id, pid, val) → ∃id2 purchaseOrder(pid, id2).

Ensuring enforcement of the maxOccurs and minOccurs facets of each element definition is also achieved by additional constraints.
Consider again the two generic element definitions e1 and e2. In order to enforce the maxOccurs facet of e2, and if max2 ≠ unbounded,
we must define the following constraint:

n1(idn1, ...) ∧ n2(idn2,1, idn1, ...) ∧ ... ∧ n2(idn2,max2+1, idn1, ...) → idn2,1 = idn2,2 ∨ ... ∨ idn2,1 = idn2,max2+1 ∨... ∨ idn2,max2 = idn2,max2+1.
The enforcement of minOccurs facet of e2 depends however on whether type t1 is defined as a sequence or a choice. If sc = sequence
and min2 > 0, we must define the constraint:

n1(id, ...) → minseq
n2(id), where

minseq
n2(pid) ← n2(id1, pid, ...) ∧ ... ∧ n2(idmin2, pid, ...) ∧ id1 ≠ id2 ∧ ... ∧ id1 ≠ idmin2 ∧ ... ∧ idmin2-1 ≠ idmin2.

Instead, if sc = choice, min2 > 1 and all element definitions in E have minOccurs > 0, the following constraint is needed:
n1(idn1, ..) ∧ n2(idn2,1, idn1, ...) → minchoice

n2(idn1, idn2,1), where
minchoice

n2(pid, id1) ← n2(id2, pid, ...) ∧ ... ∧ n2(idmin2, pid, ...) ∧ id1 ≠ id2 ∧ ... ∧ id1 ≠ idmin2 ∧ ... ∧ idmin2-1 ≠ idmin2.
For example, the implicit facet maxOccurs=1 of the singleAddress element definition in schema S1 would be translated as follows:

shipAddress(id, pid) ∧ singleAddress(id1, id, val1) ∧ singleAddress(id2, id, val2) → id1 = id2.

Additionally, to make explicit the semantics of the <choice> construct, we must guarantee that one and only one element definition is
chosen. Consider an element definition e = (n, t, min, max), where t1 = (tn, sc, E), sc = choice and E = {e1 = (n1, t1, min1, max1), ..., ek =
(nk, tk, mink, maxk)}. In order to state that at least one element definition from E must be chosen, and if all element definitions in E have
minOccurs > 0, we need the constraint:

n(id, ...) → ∃id1 n1(id1, id ...) ∨... ∨ ∃idk nk(idk, id...).

In order to state that no more than one element definition from E can be chosen, the following constraints are required:
name1(id1, pid1, ...) ∧ name2(id2, pid2, ...) → pid1 ≠ pid2,
..., name1(id1, pid1, ...) ∧ namek(idk, pidk, ...) → pid1 ≠ pidk,
..., namek-1(idk-1, pidk-1, ...) ∧ namek(idk, pidk, ...) → pidk-1 ≠ pidk.

For example, the shipAddress choice in S1 would be translated:
shipAddress(id, pid) → ∃(id1, value) singleAddress(id1, id, value)∨ ∃(id2) twoAddresses(id2, id),
singleAddress(id1, pid1, val) ∧ twoAddresses(id2, pid2) → pid1 ≠ pid2.

Finally, we also have to make explicit that there must be only one instance of each root element. We do that by means of two constraints.
In our example:

orderDoc(id1) ∧ orderDoc(id2) → id1 = id2,
 orderDB(id1) ∧ orderDB(id2) → id1 = id2.

It is worth mentioning that since a mapping scenario involves two schemas, we assume, for the sake of clarity, that all element definitions
have a different name. If this is not the case, we need to rename, without loss of generality, the colliding elements before applying our
approach. For instance, in our example, both mapped schemas have an element named price. Those elements could easily be renamed as
priceS1 and priceS2, respectively.

 7

3.2 Translating the Integrity Constraints
A schema S may contain key and keyref integrity constraints as well as range restrictions on simple type elements. Each constraint in S
is defined by means of a certain XPath expression that specifies the elements to constrain. Since we assume all elements in S have unique
names, we can remove all “//” axis (i.e. all “descendant” axis) appearing in the XPath expression. Then, all resulting XPath expressions
will have the form: /name1[cond1]/name2[cond2]/ ... /namen[condn], where n ≥ 1, and [condi] is a condition that may or may not appear in
the original expression.

We translate each XPath expression path into a derived predicate along the lines suggested in [9]. The main difference is that we allow
conditions with negations and order comparisons, which are not handled in [9]. The translated path of path, denoted by T-path(path, id), is
defined by means of the predicate Ppath(idn) according to the equivalence: T-path(path, id) = Ppath(idn). Now, Ppath(idn) is the derived
predicate we obtain as a result of our translation, and it is defined by the following rule:
P/name1[cond1]/name2[cond2]/.../namen[condn](idn) ← name1(id1) ∧ T-cond(cond1, id1) ∧ name2(id2, id1) ∧ T-cond(cond2, id2)

∧ ... ∧ namen(idn, idn-1, ...) ∧ T-cond(condn, idn).
If the path ends with “/text()”, the literal about namen should be namen(idn, idn-1, value), and the argument in the head of the rule should be
value instead of idn. In the formula, T-cond stands for the translation of a condition in path. It is defined according to the following rules:
(1) T-cond(cond1 and cond2, pid) = T-cond(cond1, pid) ∧ T-cond(cond2, pid).
(2) T-cond(cond1 or cond2, pid) = auxcond1 or cond2(pid), where

auxcond1 or cond2(pid) ← T-cond(cond1, pid),
auxcond1 or cond2(pid) ← T-cond(cond2, pid).

(3) T-cond(not cond, pid) = ¬auxcond(pid), where auxcond(pid) ←T-cond(cond, pid).
(4) T-cond(path1/text() op path2/text(), pid) = T-relpath(path1/ text(), pid, value1) ∧T-relpath(path2/text(), pid, value2) ∧ value1 op value2,

where value1 and value2 are the simple-type results of the relative path expressions.
(5) T-cond(path, pid) = T-relpath(path, pid, res).

The relative paths that may appear in the conditions have the following translation:
(1) T-relpath(./name1[cond1]/ ... /namen[condn], pid, idn) = name1(id1, pid) ∧ T-cond(cond1, id1) ∧ ... ∧ namen(idn, idn-1)

∧ T-cond(condn, idn).
(2) T-relpath(./name1[cond1]/ ... /namen[condn]/text(), pid, value) = name1(id1, pid) ∧ T-cond(cond1, id1) ∧ ... ∧ namen(idn, idn-1, value)

∧ T-cond(condn, idn).

As an example, the path expression:
/orderDoc/purchaseOrder[not(./item[./price/text()< 1000])]/customer
would be translated as:

P/orderDoc/purchaseOrder[not(./item[./price/text()<1000])]/customer(id) ← orderDoc(id1) ∧ purchaseOrder(id2, id1) ∧ ¬aux./item[./price/text() < 1000](id2) ∧ costumer(id, id2)
aux./item[./price/text() < 1000](id2) ← item(id3, id2) ∧ price(id4, id3, val) ∧ val < 1000.

Once the XPath expressions have been translated, the integrity constraints are translated in logic as follows:
− A key constraint (key, name, selector, (field1, ..., fieldn)) is translated into:

T-path(selector, id1) ∧ T-path(selector, id2) ∧ T-relpath(field1, id1, val1) ∧ T-relpath(field1, id2, val1)
∧ ... ∧ T-relpath(fieldn, id1, valn) ∧ T-relpath(fieldn, id2, valn) → id1 = id2.

− Let (keyref, name, selector, (field1, ..., fieldn), key_name) be a keyref constraint, and let (key, key_name, ref_selec, (ref_field1, ...,
ref_fieldn)) be the referenced key. The keyref constrain is translated as follows:
T-path(selector, id) ∧ T-relpath(field1, id, val1) ∧ ... ∧ T-relpath(fieldn, id, valn) → auxname(val1, ..., valn),
auxname(val1, ..., valn) ← T-path(ref_selec, id) ∧ T-relpath(ref_field1, id, val1) ∧ ... ∧ T-relpath(ref_fieldn, id, valn).

− Finally, a range restriction like (restriction, /orderDoc/ purchaseOrder/item/ price, ./text() >= 0 and ./text() <= 5000) is translated
into:
T-path(/orderDoc/purchaseOrder/item/price, value) → value ≥ 0
T-path(/orderDoc/purchaseOrder/item/price, value) → value ≤5000

3.3 Translating the Mapping Assertions
A mapping assertion consists in two nested XML queries related by means of an = or ⊑ operator. We will translate each of these queries as
a collection of “flat” queries. Following the lines of [15], there will be one flat query for each nested block. For example, let us consider
the query QS1 in Figure 1. It has two “for ... return ...” blocks. We translate the outermost block as follows:

QS1
0(po, st, bt) ← T-path(//purchaseOrder[.//twoAddresses], po) ∧ T-relpath(.//shipTo/text(), po, st) ∧ T-relpath(.//billTo/text(), po, bt)

 8

Each flat query will have one term in its head for each variable in the “for” clause, plus one term for each simple type expression in the
“return” clause of the block. If the return clause contains record type expressions, those must be flattened before the translation. For
example, let V be the following query:

V: for $po in //purchaseOrder[.//twoAddresses]
 return [$po/customer/text(),

 [$po//shipTo/text(), $po//billTo/text(), for... return...]].

Its outermost block would be translated as follows:

V0(po, c, st, bt) ← T-path(//purchaseOrder[.//twoAddresses], po) ∧
 T-relpath(./customer/text(), po, c) ∧
 T-relpath(.//shipTo/text(), po, st) ∧
 T-relpath(.//billTo/ text(), po, bt).

The translation of an inner block requires taking into account its inherited variables, e.g. $po in QS1. We use access patterns [8] to deal with
this kind of variables. In particular, we consider derived predicates with “input-only” terms. We denote these predicates Q<t1, ..., tn>(tn+1,
..., tm), where t1, ..., tn are the input-only terms, and tn+1, ..., tm are the usual “input-output” terms. This way, the inner block of QS1 is
translated:

QS1
1<po>(it, pn, q, p) ← T-relpath(./item, po, it) ∧ T-relpath(./productName, it, pn) ∧ T-relpath(./quantity, it, q) ∧ T-relpath(./price, it, p).

The input-only variables that appear in the head of a deductive rule are not required to appear in a positive ordinary literal in the rule’s
body. However, the input-only variables that appear in a body’s literal and do not appear in the head are still required to appear in some
positive ordinary literal in the same body. The last condition allows the CQC method to deal with these predicates as if they were normal
derived predicates.

The translation of the “where” clause of a query block is very similar to the translation of a path condition. The only difference is that a
path condition involves a single variable that denotes the node which the condition is applied to, while a where clause potentially involves
all the variables in the “for” clause (plus the variables inherited from its ancestor blocks). For example, consider the outermost block of the
query QS2 in Figure 1. It would be translated as follows:

QS2
0(o, st, bt) ← T-path(/orderDB/order, o) ∧ ¬auxwhere<o>() ∧ T-relpath(.//shipTo/text(), po, st) ∧ T-relpath(.//billTo/text(), po, bt)

auxwhere<o>() ← T-path(/orderDB/item, it) ∧ T-relpath(./order/text(), it, id1) ∧ T-relpath(./id/text(), o, id2) ∧id1 = id2 ∧
 T-relpath(./price/text(), it, pr) ∧ pr <= 5000

To translate a mapping assertion Q1 ⊑ (=) Q2 we have to express the containment (equivalence) definition from Section 2.1 in our logic
formalism. We will rely on the flat queries that result from the translation of Q1 and Q2.

Let QA, QB be two generic (sub-)queries with the same return type:

QA: for $v1 in path1, ..., $vna in pathna where cond
return [A1, ..., Am, B1, ..., Bk]

QB: for $v1’ in path1’,...,$vnb’ in pathnb’ where cond’
return [A1’,..., Am’, B1’,..., Bk’],

where Ai, Ai’ are simple-type expressions, and Bi, Bi’ are sub-queries. Let us assume the outermost block of QA is translated into predicate
QA0<x1, ..., xka>(v1, ..., vna, r1, ..., rm), where x1, ..., xka denote the variables inherited from the ancestor query blocks, v1, ..., vn denote the
variables in the “for” clause, and r1, ..., rm denote the simple-type values returned by the block. Similarly, let us also assume the outermost
block of QB is translated into QB0<x1’, ..., xkb’>(v1’, ..., vnb’, r1’, ..., rm’).

The translation of QA ⊑ QB into first-order logic is:

T-containment(QA, QB, {i1,...,ih}) =
∀(v1,...,vna, r1,...,rm) (QA0<x1,...,xka>(v1,...,vna, r1,...,rm) → ∃(v1’,...,vnb’) (QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)

∧ T-containment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})
∧ ... ∧ T-containment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}))),

where {i1,...,ih} is the union of the inherited variables of QA and QB, and {x1,...,xka}∪{x1’,...,xkb’} ⊆ {i1,...,ih}.

The above expression, however, does not fit the syntactic requirements of the class of logic database schemas the CQC method works on
(see Section 2.2). To address that, the first thing we need to do is get rid of the universal quantifiers. To do so, we perform a double
negation on T-containment, and move one of the negations inwards:
¬¬T-containment(QA, QB, {i1,...,ih}) =
¬∃(v1,...,vna, r1,...,rm) (QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬∃(v1’,...,vnb’) (QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)

∧ ¬¬T-containment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})
∧ ... ∧ ¬¬T-containment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}))).

 9

Now, we fold each existentially quantified (sub-)expression and get the following constraint:
T-noncontainment(QA, QB, ∅) → ⊥

where ⊥ denotes any contradiction, e.g. 1 = 0, and

T-noncontainment(QA, QB, {i1,...,ih}) = QA-not-contained-in-QB<i1,...,ih>()

where QA-not-contained-in-QB is a derived predicate defined by the following deductive rules:

QA-not-contained-in-QB<i1,...,ih>() ← QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬auxQA⋢QB<i1,...,ih, v1,...,vna, r1,...,rm>()

auxQA⋢QB<i1,...,ih, v1,...,vna, r1,...,rm>() ← QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)
∧ ¬T-noncontainment(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})
∧ ... ∧ ¬T-noncontainment(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}).

As an example, consider the mapping assertion QS1 ⊑ QS2, where QS1, QS2 are the queries in Figure 1. It would be translated into the
constraint QS1-not-contained-in-QS2<>() → ⊥, where

QS1-not-contained-in-QS2<>() ← QS1
0(po, st, bt) ∧ ¬auxQS1⋢QS2<po, st, bt>(),

auxQS1⋢QS2<po, st, bt>() ← QS2
0(o, st, bt) ∧ ¬QS1

1-not-contained-in-QS2
1<po, st, bt, o>(),

QS1
1-not-contained-in-QS2

1<po, st, bt, o>() ← QS1
1<po>(it, pn, q, p) ∧ ¬auxQS11⋢QS21<po, st, bt, o, it, pn, q, p>(),

auxQS11⋢QS21<po, st, bt, o, it, pn, q, p>() ← QS2
1<o>(it’, pn, q, p).

Similarly, the translation of an equivalence assertion Q1 = Q2 results in two constraints:
T-nonequivalence(Q1, Q2, ∅) → ⊥
T-nonequivalence(Q2, Q1, ∅) → ⊥

where T-nonequivalence is generically defined as follows:

T-nonequivalence(QA, QB, {i1,...,ih}) = QA-not-eq-to-QB<i1,...,ih>()

and QA-not-eq-to-QB is a derived predicate defined by the rules:

QA-not-eq-to-QB<i1,...,ih>() ← QA0<x1,...,xka>(v1,...,vna, r1,...,rm) ∧ ¬auxQA≠QB<i1,...,ih, v1,...,vna, r1,...,rm>()
auxQA≠QB<i1,...,ih, v1,...,vna, r1,...,rm>() ← QB0<x1’,...,xkb’>(v1’,...,vnb’, r1,...,rm)

∧ ¬T-nonequivalence(B1, B1’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}),
∧ ¬T-nonequivalence(B1’, B1, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})
∧ ... ∧ ¬T-nonequivalence(Bk, Bk’, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’})

∧ ¬T-nonequivalence(Bk’, Bk, {i1,...,ih, v1,...,vna, r1,...,rm, v1’,...,vnb’}).

As an example, consider the mapping assertion QS1 = QS2 from Figure 1. It would be translated into QS1-not-eq-to-QS2<>() → ⊥ and QS2-not-
eq-to-QS1<>() → ⊥, where:

QS1-not-eq-to-QS2<>() ← QS1
0(po, st, bt) ∧ ¬auxQS1≠QS2<po, st, bt>()

auxQS1≠QS2<po, st, bt> ← QS2
0(o, st, bt) ∧ ¬QS1

1-not-eq-to-QS2
1<po, st, bt, o>() ∧ ¬QS2

1-not-eq-to-QS1
1<po, st, bt, o>()

QS1
1-not-eq-to-QS2

1<po, st, bt, o>() ← QS1
1<po>(it, pn, q, p) ∧ ¬auxQS11≠QS21<po, st, bt, o, it, pn, q, p>()

auxQS11≠QS21<po, st, bt, o, it, pn, q, p>() ← QS2
1<o>(it’, pn, q, p)

QS2
1-not-eq-to-QS1

1<po, st, bt, o>() ← QS2
1<o>(it’, pn’, q’, p’) ∧ ¬auxQS21≠QS11<po, st, bt, o, it’, pn’, q’, p’>()

auxQS21≠QS11<po, st, bt, o, it’, pn’, q’, p’>() ← QS1
1<po>(it, pn’, q’, p’)

QS2-not-eq-to-QS1<>() ← QS2
0(o, st’, bt’) ∧ ¬auxQS2≠QS1<o, st’, bt’>()

auxQS2≠QS1<o, st’, bt’>() ← QS1
0(po, st’, bt’) ∧ ¬QS2

1-not-eq-to-QS1
1<po, st’, bt’, o>() ∧ ¬QS1

1-not-eq-to-QS2
1<po, st’, bt’, o>()

4. CHECKING DESIRABLE PROPERTIES OF XML MAPPINGS
Our approach to validation of XML mappings is aimed at providing the designer with a set of desirable properties that the mapping should
satisfy. For each property to be tested, a query that formalizes the property is defined. Then, the CQC method [12] is used to determine
whether the property is satisfied, i.e. whether the query is satisfiable. In addition to the query stating the property, the CQC method
requires also the logic database schema for which satisfiability of the query should be tested.

4.1 Strong Mapping Satisfiability
A mapping is strongly satisfiable if there is a pair of schema instances that make all mapping assertions true in a non-trivial way. In the
relational setting [18], the trivial case is that in which all queries in the assertion return an empty answer. In XML, however, queries may

 10

return a nested structure. Therefore, testing this property must make sure that all levels of nesting can be satisfied non-trivially, as shown in
our example in the introduction. Then, strong satisfiability of XML schema mapping must be formalized as follows:

Definition 1. An XML schema mapping M between schemas S1, S2 is strongly satisfiable if ∃IS1, IS2 instances of S1 and S2, respectively,
such that IS1 and IS2 satisfy the assertion in M, and for each assertion QS1

i opi QS2
i in M, the answer to QS1

i in IS1 is a strong answer. We
say that R is a strong answer if: (1) R is a simple type value, (2) R is a record [R1, ..., Rn] and R1, ..., Rn are all strong answers, or (3) R is
a non-empty set {R1, ..., Rn} and R1, ..., Rn are all strong answers.

The query that specifies strong satisfiability of a mapping M is defined as follows:

QstronglySat ← StrongSat(QS1
1, ∅) ∧ ... ∧ StrongSat(QS1

n, ∅),

where StrongSat is a function generically defined as follows. Let V be a generic (sub-)query in M:

V: for $v1 in path1, ..., $vs in paths where cond
return [A1, ..., Am, B1, ..., Bk],

where A1, ..., Am are simple-type expressions and B1, ..., Bk are query blocks, and let V0 be the translation of the outermost block of V
(obtained as explained in Section 3.3). Then,

StrongSat(V, inheritedVars) = V0<x1,...,xr>(v1,...,vs, r1,...,rm) ∧ StrongSat(B1, inheritedVars ∪ {v1,...,vs, r1,...,rm})
∧ ... ∧ StrongSat(Bk, inheritedVars ∪ {v1,...,vs, r1,...,rm}),

where {x1,...,xr} ⊆ inheritedVars.

The logic schema DB that must be considered to check satisfiability of QstronglySat is obtained as follows. Let DRM, ICM be the deductive
rules and denial constraints that result from the translation of the assertions of mapping M = {QS1

1 op1 QS2
1, ..., QS1

n opn QS2
n}. Let DRS1,

ICS1 and DRS2, ICS2 be the rules and constraints from the translation of mapped schemas S1 and S2, respectively. Then, DB =
(DRS1∪DRS2∪DRM, ICS1∪ICS2∪ICM).

As an example, consider the mapping M in Figure 1. Strong satisfiability of this mapping is defined by the query: QstronglySat ← QS1
0(po, st,

bt) ∧ QS1
1<po>(it, pn, q, p). Note that the second literal in the body of this query may never be satisfied because every possible instantiation

either violates the range restriction on price element of schema S1 or it violates the mapping assertion (more specifically, the definition of
QS2). Therefore, and as we have also mentioned in the introduction, M is not strongly satisfiable. Such unsatisfiability is determined by
applying the CQC method to QstronglySat.

4.2 Mapping Losslessness
The mapping losslessness property [18] allows the designer to provide a query defined over one of the mapped schemas and check whether
all the data needed to answer that query is mapped. It can be used, for example, to know whether a mapping that may be partial or
incomplete suffices for the intended task, or to be sure that certain private information is not made public by the mapping.

Definition 2. Let Q be a query posed on schema S1. Let M be an XML mapping between schemas S1, S2 with assertions: {QS1
1 op1 QS2

1,
..., QS1

n opn QS2
n}. We say that M is lossless with respect to Q if ∀IS1

1, IS1
2 instances of S1 both

(1) ∃IS2 instance of S2 such that IS1
1 and IS1

2 are both mapped into IS2, and
(2) ∀ QS1

i opi QS2
i mapping assertion from M, the answer of QS1

i over IS1
1 is equal to the answer of QS1

i over IS1
2,

imply that the answer of Q over IS1
1 is equal to the answer of Q over IS1

2.

Instance of S2:
<orderDB>
 <order>
 <id>0</id>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </order>
 <item>
 <order>0</order>
 <name>product1</name>
 <quantity>2</quantity>
 <price>50</price>
 </item>
</orderDB>

Instance 2 of S1:
<orderDoc>
 <purchaseOrder>
 <customer>Joan</customer>
 <shipAddress>
 <singleAddress>Address4
 </singleAddress>
 </shipAddress>
 </purchaseOrder>
 <purchaseOrder>
 <customer>Mary</customer>
 <item>
 <productName>product1
 </productName>
 <quantity>2</quantity>
 <price>50</price>
 </item>
 <shipAddress>
 <twoAddresses>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </twoAddresses>
 </shipAddress>
 </purchaseOrder>
</orderDoc>

Instance 1 of S1:
<orderDoc>
 <purchaseOrder>
 <customer>Andy</customer>
 <shipAddress>
 <singleAddress>Address1
 </singleAddress>
 </shipAddress>
 </purchaseOrder>
 <purchaseOrder>
 <customer>Mary</customer>
 <item>
 <productName>product1
 </productName>
 <quantity>2</quantity>
 <price>50</price>
 </item>
 <shipAddress>
 <twoAddresses>
 <shipTo>Address2</shipTo>
 <billTo>Address3</billTo>
 </twoAddresses>
 </shipAddress>
 </purchaseOrder>
</orderDoc>

Figure 2: Counterexample for mapping losslessness.

 11

In other words, mapping M is lossless w.r.t. Q if the answer to Q is determined by the extension of the QS1
i queries, where these extensions

must be the result of evaluating the queries over an instance of S1 that is mapped into some consistent instance of S2.

As an example, consider the mapping M in Figure 1. Suppose that we have changed “./price/text() <= 5000” by “./price/text() > 5000” in
the definition of QS2 in order to make M strongly satisfiable. Consider also the following query Q:

Q: for $sa in //singleAddress return [$sa/text()].

Intuitively, mapping M is not lossless w.r.t. Q because it maps the purchase orders with twoAddresses, but not the ones with singleAddress.
More formally, we can find a counterexample that shows M is lossy w.r.t. Q. This counterexample is depicted in Figure 2, and it consists in
two instances of S1 that have the same extension for QS1, that are both mapped to a consistent instance of S2, and that have different
answers for Q.

Let M = {QS1
1 op1 QS2

1, ..., QS1
n opn QS2

n} be a mapping between schemas S1 and S2, and let Q be a query over S1. The query that specifies
losslessness of mapping M with respect to query Q is defined as follows:

Qlossy ← T-noncontainment(Q, Q’, ∅),

where Q’ is a copy of Q in which each element name n has been renamed n’.

The logic schema DB that must be considered to check satisfiability of Qlossy is defined as follows. Let DRS1, ICS1 and DRS2, ICS2 be the
rules and constraints from the translation of S1 and S2, respectively; let DRS1’, ICS1’ be a copy of DRS1, ICS1 in which each predicate p has
been renamed p’; and let DRL, ICL be the result of translating the assertions: QS1

1 = QS1
1’, ..., QS1

n = QS1
n’. Then, DB = (DRS1∪DRS2∪DRM

∪DRS1’∪DRL, ICS1∪ICS2∪ ICM ∪ICS1’∪ICL).

If the CQC method can build an instance of DB in which Qlossy is true, this instance can be partitioned in three instances: one for S1, one for
S1’, and one for S2. Since S1 and S1’ are actually two copies of the same schema, we can say that we have two instances of S1. Both are
map to the instance of S2 (because ICM), and share the same answer for the QS1

i queries in mapping M (because ICL). Also, since Qlossy is
true and its definition requires that Q ⋢ Q’, the two instances of S1 have different answers for query Q. In conclusion, we have got a
counterexample that shows M is lossy w.r.t. query Q.

4.3 Mapping Inference
The mapping inference property [16] checks whether a given mapping assertion is inferred from a set of others assertions. It can be used,
for instance, to detect redundant assertions or to test equivalence of mappings.

Definition 3. Let M be an XML mapping between schemas S1, S2. Let F be a mapping assertion between S1 and S2. We say that F is
inferred from M if ∀IS1, IS2 instances of schemas S1 and S2, respectively, such that IS1, IS2 satisfy the assertions in M, then IS1, IS2 also
satisfy assertion F.

The query that specifies the mapping inference property with respect to a given assertion F is defined as follows:
− If F is a containment assertion, i.e. Q1 ⊑ Q2, query QnotInferred will be defined by a single rule:

QnotInferred ← T-noncontainment(Q1, Q2, ∅).
− Otherwise, if F is like Q1 = Q2, there will be two rules:

QnotInferred ← T-nonequivalence(Q1, Q2, ∅)
QnotInferred ← T-nonequivalence(Q2, Q1, ∅).

The logic schema DB to be used to test the satisfiability of query QnotInferred is DB = (DRS1 ∪DRS2∪DRM, ICS1∪ICS2∪ICM).

As an example, let F be Q1 = Q2, and let Q1, Q2 be the following queries defined over the schemas shown in Figure 1:
Q1: for $po in //purchaseOrder
 return [for $sa in $po/shipAddress/singleAddress return [$sa/text()],
 for $ta in $po/shipAddress/twoAddresses return
 [$ta/shipAddress/text(), $ta/billTo/text()]
 for $it in $po/item return
 [$it/productName/text(), $it/quantity/text(), $it/price/text()]]
Q2: for $o in /orderDB/order where
 not(/orderDB/item[./order/text() = $o/id/text() and ./price/text() > 5000])
 return [for $st in $o/shipTo, $bt in $o/billTo where $st/text() = $bt/text()
 return [$st/text()],
 for $st in $o/shipTo, $bt in $o/billTo where $st/text() ≠ $bt/text()
 return [$st/text(), $bt/text()],
 for $it in //item[./order/text() = $o/id/text()]
 return [$it/name/text(), $it/quantity/text(), $it/price/text()]]

Assertion F maps both the purchase orders that have a twoAddresses node, and also those with a singleAddress node. It fixes thus the
problem of mapping M not being lossless w.r.t. the singleAddress information (see Section 4.2). Let us suppose that we want to see
whether F is inferred from M. We apply the CQC method over QnotInferred and we obtain a counterexample, which consists in a pair of

 12

schema instances that satisfy M (because ICM), that is, they share the twoAddresses nodes, but do not satisfy F (because the definition of
QnotInferred), that is, they do not have the same singleAddress nodes. Therefore, F is not inferred from M.

5. EXPERIMENTS
To show the feasibility of our approach, we perform a series of experiments and report the results in this section. We perform the
experiments on an Intel Core2 Duo machine with 2GB RAM and Windows XP SP3.

The mapping scenarios we use for the experiments are adapted from the STBenchmark [2]. From the basic mapping scenarios proposed in
this benchmark, we consider those that can be easily rewritten into the class of mapping scenarios described in Section 2.1 and that have at
least one level of nesting. These scenarios are the ones called: unnesting and nesting. We also consider one of the flat relational scenarios,
namely the one called self joins, to show that our approach generalizes the relational case. These mapping scenarios are depicted in Figure
3.

For each one of these three mapping scenarios we validate the three properties discussed in the paper, i.e., strong mapping satisfiability,
mapping losslessness and mapping inference. In order to do this, we apply the translation presented in this paper to transform each
mapping scenario into a logic database schema and the mapping validation test into a query satisfiability test over the logic schema. Note
that although [2] expresses the mappings in the global-as-view formalism, they can be easily rewritten into the formalism we consider in
this paper as mapping assertions in the form of Qsource ⊑ Qtarget. Since we have not yet implemented the automatic XML-to-logic
translation, we perform it manually. The number of constraints and deductive rules in the resulting logic schemas are shown in Table 1.

To execute the corresponding query satisfiability tests, we use the implementation of the CQC method that is the core of our existing
relational mapping validation tool (MVT) [19].

We perform two series of experiments, one in which the three properties hold for each mapping scenario, and one in which they do not.
The results of these series are shown in Figure 4(a) and 4(b), respectively.

Source
 Reference [0..*]
 title
 year
 publishedIn
 Author [1..*]
 name

Target
 Publication [0..*]
 Title
 Year
 PublishedIn
 Name

Source
 Reference [0..*]
 title
 year
 publishedIn
 name

Target
 Period [0..*]
 Year
 Author [0..*]
 Name
 Publication [0..*]
 Title
 PublishedIn

Source
 Gene [0..*]
 name
 type
 protein

Target
 Gene [0..*]
 Name
 Protein
 Synonym [0..*]
 Name
 WID

(i) Unnesting

(ii) Nesting

(iii) Self joins

Figure 3: Mapping scenarios taken from the
STBenchmark [2].

 strong map. satisfiability mapping inference mapping losslessness
 #constraints #rules #constraints #rules #constraints #rules
unnesting 50 28 50 43 78 62
nesting 51 33 51 37 76 57
self joins 46 30 46 38 68 66

Table 1: Size of the logic database schemas that result from the translation of the mapping scenarios in Figure 3.

 13

In Figure 4(a), since the properties of mapping inference and mapping losslessness must be checked with respect to a user-provided
parameter, and given that we want the mappings to satisfy these properties, we check whether a “strengthened” version of one of the
mapping assertions is inferred from the mapping in each case, and whether each mapping is lossless with respect to a strengthened version
of one of its mapping queries. These strengthened queries and assertions are built by taking the original ones and adding an additional
arithmetic comparison. Similarly, in Figure 4(b), we strengthen the assertions/queries in the mapping and use one of the original ones as
parameter for mapping inference and mapping losslessness, respectively. Regarding strong mapping satisfiability, we introduce two
contradictory range constraints, one in each mapped schema, in order to ensure the property will “fail”.

We can see in Figure 4(a) that the three properties are checked fast in the unnesting and self joins scenarios, while mapping inference and
mapping losslessness require much more time to be tested in the nesting scenario. This is not unexpected since the mapping queries of the
nesting scenario have two levels of nesting, while those from the other two scenarios are flat. To understand why mapping inference and
mapping losslessness are the most affected by the increment in the level of nesting, we must recall how the properties are reformulated in
terms of query satisfiability. In particular, the query to be tested for satisfiability in both mapping losslessness and mapping inference
reformulation encodes the negation of a query containment assertion that depends on the parameter query/assertion, as shown in Section 4.
Therefore, an increment of the level of nesting of the mapping scenario is likely to cause an increment of the level of nesting of the tested
query, which is what happens in the nesting scenario; and a higher level of nesting means a more complex translation into logic, involving
multiple levels of negation, as shown in Section 3.3.

In Figure 4(b), we can see that all three properties run fast and that there is no much difference between the mapping scenarios. It is also
remarkable the performance improvement of the nesting scenario with respect to Figure 4(a). To understand these results we must
remember that mapping inference and mapping losslessness are both check by means of searching for a counterexample. That means its
checking can stop now as soon as the counterexample is found, while, in Figure 4(a), all relevant counterexample candidates had to be
evaluated. The behavior of strong mapping satisfiability is exactly the opposite; however, the results of this property in this series of
experiments are very similar to those in Figure 4(a). The intuition to this is that strong satisfiability requires all mapping assertions to be
non-trivially satisfied; thus, as soon as one of them cannot be so, the checking process can stop.

6. RELATED WORK
Existing approaches for validating mappings are [1, 6, 7], which focus on mappings between nested relational schemas. In this paper, we
consider a more general class of XML schemas since we also allow the use of <choice>, range restrictions, and mapping assertions with
negations and order comparisons. The mapping formalism used in [6, 7] is the one of tuple-generating dependencies (TGDs). These are
logic formulas in the form of ∀X̄ (p(X̄) → ∃Ȳ q(X̄, Ȳ)), where p and q are conjunctive queries. In [1], the more recent formalism of nested
mappings [13] is considered. This formalism allows nesting TGDs, which results in more expressive and compact mappings. In both cases,
the mappings can be reformulated into the class of mapping assertions that we consider in this paper, in particular into assertions of the
form of Q1 ⊑ Q2.

As an example, consider the nested relational schemas in Figure 5(a) and the following nested mapping (taken from [13]):

N: for p in projs exists d’ in depts
where d’.dname = p.dname ∧ d’.emps = E[p.dname]

∧ (for e in p.emps exists e’ in d’.emps
where e’.ename=e.ename ∧ e’.salary=e.salary)

Notice the use of the Skolem function E to express that employees must be grouped in the target by department name. A straightforward
reformulation can be done as follows. First, we extend the mapped schemas to the ones shown in Figure 5(b). Then, we define mapping
assertion Qsource ⊑ Qtarget as follows:

Qsource: for $p in //proj
return [$p/dname/text(), //E[./input/text()=$p/dname/text()]/output/text(), for $e in $p/emp

return [$e/ename/text(), $e/salary/text()]]
Qtarget: for $d’ in //dept

return [$d’/dname/text(), $d’/empsSetId/text(), for $e’ in $d’/emps/emp
return [$e’/ename/text(), $e’/salary/text()]]

0

2

4

6

8

10

12

14

16

18

20

unnesting nesting self joins

ru
nn

in
g

tim
e

(s
ec

s)

strong mapping satisfiability

mapping inference

mapping losslessness

Figure 4: Experiment results when (a) the mapping properties hold and when (b) they do not.

0

0,05

0,1

0,15

0,2

0,25

unnesting nesting self joins

ru
nn

in
g

tim
e

(s
ec

s)

strong mapping satisfiability

mapping inference

mapping losslessness

(a) (b)

 14

Notice that the implicit semantics of Skolem functions has been made explicit in Figure 5(b) by means of the introduction of new elements
and constraints into the schemas.

Outside the context of mapping validation, the compilation of an XML mapping into a relational one has been used to solve the problem of
query reformulation [9] (i.e. rewriting a query through a mapping) using a generic relational schema encoding based on predicates such as
child(x, y) and desc(y, z) that model the parent-child and ancestor-descendant relationships, respectively. However, this generic encoding
alone does not model the entire mapped schemas, so [9] assumes that any other information in these schemas is provided already translated
in the form of a set of disjunctive embedded dependencies (DEDs), which are formulas like ∀X̄ (p(X̄) → ∃Ȳ1 q1(X̄, Ȳ1) ∨ ... ∨ ∃Ȳn qn(X̄,
Ȳn)), where p and qi are conjunctive queries with (in)equalities. Alternatively, our translation is more focused on how to translate the
schemas into a class of constraints (see Section 2.2) that includes that of DEDs. Regarding the mapping formalism, [9] deals with global-
as-view and local-as-view queries, that is, a mapping is represented by a set of queries. Although these queries return a nested structure as
the ones we consider, they do not allow order comparisons or negations.

Information preservation in XML mappings has been studied in [4, 5]. The property of query preservation requires that, for a particular
query language, all queries on the source schema can be answered on the target. This property, although related with our mapping
losslessness property, is not the same property. In fact, our losslessness property assumes that mappings may be partial or incomplete, and
thus, not query preserving.

Mapping satisfiability has been studied in [3] for DTD schemas and XML mappings expressed as implications (TGDs) of tree patterns.
However, negation, arithmetic comparisons or integrity constraints are not considered in [3]. Since it is not obvious how the results of [3]
could be applied to the class of schemas and mappings we consider in this paper, we can say that our approach complements the work of
[3].

As we widely discussed in [18, 19], our approach of testing desirable properties is complementary to the existing approaches to mapping
validation [1, 5, 7].

7. CONCLUSIONS AND FURTHER WORK
We have proposed an approach to the validation of XML schema mappings which is based on the translation of the schemas and the
mapping into a first-order logic formalism. In this way, we can take advantage of our previous work on validating relational mappings [18]
and check certain desirable properties of mappings automatically. We do that by means of reasoning over the mapping definition itself
rather than relying on specific instances that may not reveal all the potential pitfalls.

As further work, we plan to implement this work into our mapping validation tool [19], which currently can only deal with relational
mappings. It would also be interesting to consider mapping assertions relating XQuery and SQL/XML [20] queries. That would allow us to
validate mappings between XML and relational schemas directly, without first having to rewrite SQL queries into XQuery.

ACKNOWLEDGEMENTS
This work has been supported in part by Microsoft Research through the European PhD Scholarship Programme, and by the Ministerio de
Ciencia e Innovación under project TIN2008-03863.

8. REFERENCES
[1] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, Wang Chiew Tan: Muse: Mapping Understanding and deSign by Example. ICDE

2008: 10-19.
[2] Bogdan Alexe, Wang Chiew Tan, Yannis Velegrakis: STBenchmark: towards a benchmark for mapping systems. PVLDB 1(1): 230-

244 (2008)
[3] Shun’ichi Amano, Leonid libkin, Filip Murlak: XML Schema Mappings. PODS 2009:33-42.

re
fe

re
nt

ia
l

co
ns

tr
ai

nt
s

Target: Rcd
 depts: Set of
 dept: Rcd
 dname
 budget
 empsSetId key
 emps: Set of
 emp: Rcd
 ename
 salary

Figure 5: (a) A nested mapping scenario and (b) its reformulated version.

Source: Rcd
 projs: Set of
 proj: Rcd
 dname
 pname
 emps: Set of
 emp: Rcd
 ename
 salary
 FunctionE: Set of
 E: Rcd
 input key
 output key

Qsource ⊑ Qtarget

(b)

Target: Rcd
 depts: Set of
 dept: Rcd
 dname
 budget
 emps: Set of
 emp: Rcd
 ename
 salary

Source: Rcd
 projs: Set of
 proj: Rcd
 dname
 pname
 emps: Set of
 emp: Rcd
 ename
 salary

(a)

nested mapping N

 15

[4] Denilson Barbosa, Juliana Freire, Alberto O. Mendelzon: Information Preservation in XML-to-Relational Mappings. XSym 2004: 66-
81.

[5] Philip Bohannon, Wenfei Fan, Michael Flaster, P. P. S. Narayan: Information Preserving XML Schema Embedding. VLDB 2005: 85-
96.

[6] Angela Bonifati, Giansalvatore Mecca, Alessandro Pappalardo, Salvatore Raunich, Gianvito Summa: Schema mapping verification:
the spicy way. EDBT 2008: 85-96.

[7] Laura Chiticariu, Wang Chiew Tan: Debugging Schema Mappings with Routes. VLDB 2006: 79-90.
[8] Alin Deutsch, Bertram Ludäscher, Alan Nash: Rewriting queries using views with access patterns under integrity constraints. Theor.

Comput. Sci. 371(3): 200-226 (2007).
[9] Alin Deutsch, Val Tannen: XML queries and constraints, containment and reformulation. Theor. Comput. Sci. 336(1): 57-87 (2005).
[10] Xin Dong, Alon Y. Halevy, Igor Tatarinov: Containment of Nested XML Queries. VLDB 2004: 132-143.
[11] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa: Data Exchange: Semantics and Query Answering. ICDT 2003:

207-224.
[12] Carles Farré, Ernest Teniente, Toni Urpí: Checking query containment with the CQC method. Data Knowl. Eng. 53(2): 163-223

(2005).
[13] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho, Renée J. Miller, Paolo Papotti, Lucian Popa: Nested Mappings: Schema

Mapping Reloaded. VLDB 2006: 67-78.
[14] Maurizio Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002: 233-246.
[15] Alon Y. Levy, Dan Suciu: Deciding Containment for Queries with Complex Objects. PODS 1997: 20-31.
[16] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, Alon Y. Halevy: Representing and Reasoning about Mappings between

Domain Models. AAAI/IAAI 2002: 80-86.
[17] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, Ronald Fagin: Translating Web Data. VLDB 2002: 598-

609.
[18] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: Validation of mappings between schemas. Data Knowl. Eng. 66(3): 414-437

(2008).
[19] Guillem Rull, Carles Farré, Ernest Teniente, Toni Urpí: MVT: a schema mapping validation tool. EDBT 2009: 1120-1123.
[20] SQLX: SQL/XML. http://www.sqlx.org/.
[21] Jeffrey D. Ullman: Principles of Database and Knowledge-Base Systems, Volume II Computer Science Press 1989.
[22] W3C: XML Schema. http://www.w3.org/TR/xmlschema-0/.
[23] W3C: XQuery Language. http://www.w3.org/TR/xquery/.
[24] Cong Yu, H. V. Jagadish: XML schema refinement through redundancy detection and normalization. VLDB J. 17(2): 203-223

(2008).

