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ABSTRACT

Discontinuities in the local velocity distribution associated with stellar populations are studied using the Maximum Entropy of the
Mixture Probability from Hlerarchical Segregation (MEMPHIS) improved statistical method, by combining a sampling parameter,
an optimisation of the mixture approach, and a maximisation of the partition entropy for the constituent populations of the stellar
sample. The sampling parameter is associated with isolating integrals of the stellar motion and is used to build a hierarchical family
of subsamples. We provide an accurate characterisation of the entropy graph, in which a local maximum of entropy takes place
simultaneously with a local minimum of the y? error. By analysing different sampling parameters, the method is applied to samples
from the HIPPARCOS and Geneva-Copenhagen survey (GCS) to determine the kinematic parameters and the stellar population
mixture of the thin disc, thick disc, and halo. The sampling parameter P = |(U, V, W)|, which is the absolute heliocentric velocity,
allows us to build an optimal subsample containing both thin and thick disc stars, omitting most of the halo population. The sampling
parameter P = |W/|, which is absolute perpendicular velocity, allows us to create an optimal subsample of all disc and halo stars,
although it does not allow an optimal differentiation of thin and thick discs. Other sampling parameters, such as P = |[(U, W)| or
P = |V|, are found to provide less information about the populations. By comparing both samples, HIPPARCOS provides more
accurate estimates for the thick disc and halo, and GCS for the total disc. In particular, the radial velocity dispersion of the halo fits
perfectly into the empirical Titius-Bode-like law oy = 6.6 (%)3”*2, previously proposed for discrete kinematical components, where
the values n = 0, 1, 2, 3 represent early-type stars, thin disc, thick disc, and halo populations, respectively. The kinematic parameters
are used to segregate thin disc, thick disc, and halo stars, and to obtain a more accurate Bayesian estimation of the population fractions.
To check the reliability of our results, an alternative segregation approach is used. GCS stars are classified into different kinematical
populations in terms of their orbital parameters. The population fractions and velocity moments obtained by both methods are in

excellent agreement.
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1. Introduction

Observations in velocity space are particularly useful in identi-
fying Galactic structures that have long since dispersed in con-
figuration space (Freeman & Bland-Hawthorn 2002), and could
provide near-field cosmology with some clues as to how indi-
vidual stellar populations can be associated with elements of the
protocloud from which the Galaxy was formed. However, the
way in which a stellar sample is selected may obviously yield
very different parameter estimates for classifying stellar popu-
lations. In general, a sample may contain stars belonging to the
principal Galactic components of bulge, disc, and halo, although
each component can be decomposed into several subcomponents
or stellar populations related to various astrophysical properties
and, in particular, kinematics. Usually the so-called population
representative samples are drawn from large catalogues, such as
the Geneva-Copenhagen survey (GCS) of the Solar neighbour-
hood (Nordtrom et al. 2004), where the stars are chosen or re-
jected by means of individual inspection to obtain a sample that
corresponds, for example, to particular disc features. However,
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star selection based on astrophysical criteria, such as metalicity,
may produce kinematically biased samples and population esti-
mates, which would then match what theoretically we believe is
a disc sample, but may then lead to the error described by the
well known Conan Doyle’s character, “Insensibly one begins to
twist the facts to suit theories, instead to theories to suit facts”.

To avoid this interactive inspection of star catalogues Alcobé
& Cubarsi (2005) (hereafter Paper I) developed a purely statisti-
cal method called the MEMPHIS algorithm (Maximum Entropy
of Mixture Probability from Hlerarchical Segregation), which
is based on the principle of insufficient reason. Our objective
was to obtain population-representative subsamples, in terms of
kinematics, and to segregate them. In Paper I, for a local sample
drawn from the HIPPARCOS catalogue (ESA 1998), that con-
tained a full set of space velocities, the neighbourhood stars were
classified as belonging to either the thin or thick discs, although
within the thin disc it was also possible to distinguish between
early-type, young-disc, and old-disc stars. The possibility of an
intermediate population between the major disc components was
rejected, since the appearance of a continuous transition between
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them was proven to be caused by the overlapping wings of the
major disc components. However, since halo stars are scarce in
the solar neighbourhood, it would have anyway been impossible
to identify such a Galactic component.

In the current paper, the MEMPHIS algorithm is analysed
further and improved to characterise the local halo. We com-
pare the population estimates obtained from the GCS disc-
representative catalogue, compiled from improved radial veloc-
ity data, with the non-preselected HIPPARCOS sample used in
Paper 1. Furthermore, the resulting population samples drawn
from the GCS catalogue are checked using an alternative kine-
matical method, based on the computation of the Galactocentric
orbits of the stars.

Hereafter, the paper is organised as follows. In Sect. 2, the
segregation algorithm is briefly reviewed. The reader interested
in the kinematical description of the local populations can go di-
rectly to Sect. 4. In Sect. 3, the main definitions and procedures
of the maximum entropy method are revised. Although the main
concepts are the same as in Paper I, some new details have been
added to the interpretation of the sampling parameter, as well as
the description of the entropy graph, which allows us to improve
the algorithm. In Sect. 4, the y? error of the mixture approach
and its relationship with the partition entropy are studied. This is
a totally new statistical analysis focusing on the sampling param-
eter interval where a segregation between populations becomes
meaningful. The combination of both criteria is used in Sect. 5
to analyse two local samples, from which kinematical estimates
of thin disc, thick disc, and halo are obtained. Several sampling
parameters are compared and a precise estimation of the mix-
ture proportions is carried out. In Sect. 6, an improved method
based on the Galactocentric orbits of stars is used to check the
GCS sample moments and fractions of the populations. Finally,
in Sect. 7, the kinematic results, sampling parameters, and stellar
composition of the samples are discussed.

2. Methods

MEMPHIS allows us to identify more representative mixtures
of populations among a number of feasible mixtures. It relies
on the entropy of the partition induced by two statistical pop-
ulations, assumed to be contained in the whole sample: Pop-I,
for the population of greater size and Pop-II, the smaller one.
Instead of adapting the velocity distribution function to the
whole sample, we choose the stellar subsample that is more ac-
curately described by a two-normal trivariate mixture, that is
“a priori” less informative distributions (from a Bayesian view-
point). For more than two populations, the process is iterated
with a cumulative component in Pop-I. Therefore, in the cur-
rent approach, a stellar population is identified with a trivariate
Gaussian distribution as a consequence of the adopted mixture
model, which attempts to describe a superposition of popula-
tions using a simple and plausible basis of functions. To describe
the major Galactic components, the Schwarzschild density func-
tion remains a good approximation, although a minor number
of coeval stars could be erroneously assigned to the more likely
population. However, with our model it is impossible to iden-
tify the individual subpopulations of the thin disc (it is possi-
ble to distinguish between sufficiently large subpopulations, but
these are not well fitted by normal distributions). For these stars,
other approaches are more suitable. For example, we can employ
a more complex distribution function that makes no distinction
between populations, such as the Shu distribution function (Shu
1969), other modified Schwarzschild distributions for non-cold
discs (e.g., Dehnen 1999; Bienaymé 1999), or a single maximum
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entropy density function obtained by fitting a set of moment con-
straints (Cubarsi 2010). Non-parametric mixture models with a
free number of Gaussian distributions to describe relevant mov-
ing groups (e.g., Bovy et al. 2009 and references therein) are also
usual approaches.

2.1. How the segregation works

We provide a brief outline of the procedure, explained in detail
in Paper I and reviewed in Sect. 3. Firstly, a sampling parame-
ter is defined to introduce a hierarchy into the sample, so that a
set of nested subsamples can be recursively drawn from the total
sample, each one containing at least the same or an increasing
number of stellar populations than previous subsamples. Some
properties, which are associated with isolating integrals of the
star motion (such as the velocity component perpendicular to
the Galactic plane, the rotational velocity, or the absolute value
of the total velocity) can be used as sampling parameters to sort
or to discriminate between populations. The bimodal pattern of
two Gaussian distributions is then applied to identify the dif-
ferent kinematic behaviours within the selected subsample, by
associating them with Pop-I and Pop-II populations. The segre-
gation method is applicable where, by entering stars of a third
population into the subsample, the populations are recursively
redefined by joining both previously existing populations into
Pop-1, and by reserving Pop-II for the newer population. This
redistribution produces a discontinuity in the entropy of the mix-
ture probability, which is seen as a steep decline in the entropy
graph. The subsample corresponding to a sampling parameter
providing the maximum entropy of the partition is taken as the
more representative subsample to describe the true population
mixture among all the set of nested subsamples containing the
same number of stellar populations. In general, the criterion of
maximum entropy of the population mixture can be applied in a
way that is independent of the segregation method.

The algorithm was proposed as a more accurate alternative
to choosing the partition that minimises the y? fitting error of
the mixture approach, as in Cubarsi & Alcobé (2004), hereafter
Paper II. The y? error basically provides the uncertainty in ex-
pressing the whole sample as a mixture of two Gaussian distribu-
tions, and allows us to describe mixtures of populations that are
close to being in statistical equilibrium, such as the main disc
components, in contrast to other subpopulations, such as early
and young-disc stars, which have greater y? errors.

The segregation method that we used in Papers I and II was
a variant of the moments method, which considered the entire
space of the heliocentric velocities v € R*, employing no ad-
ditional hypotheses about the symmetry of the distribution. We
review the way in which the y? error was computed. For two nor-
mal populations with mixture proportions n’ and n”, such that
n’ +n” = 1, and normalised probability density functions f”
and f”, the total velocity distribution is given by

f)=n"f'()+n" f"(v). (1)

The elements of the p-order tensor of moments are evaluated ac-
cordingly to the expected value of the p-tensor powers of the
velocity as E[v;, ...vip], for velocity component indices iy €
{1,2,3}. In general, up to a given order, a set of R relationships
between total and partial moments is obtained, which can be
written as a vector of R equations in the form

M =n'M, +n" M, 2)

where M, are data computed from a working sample with known
sampling errors, and the right-hand side contains the moment
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estimates of both populations assumed to be contained in the
sample. The partial moments are computed from a set of v
mixture parameters, which are the unknowns of the segregation
problem. These parameters are the mixture proportions, popu-
lation means and covariance matrices, and nineteen in total are
unknown. Thus, if & denotes the standard error in M, the ap-
proximation can be calibrated from the weighted mean of the
squared errors,

R
1 2
2 rAq " Aq
X = E — My —n'M, —n"M/|". 3)
k:1‘9?|

The random variable y? is expected to have a chi-squared distri-
bution with n = R — v degrees of freedom. A detailed analysis of
the method can be found in Paper II, where, instead of working
from the sample moments, we used the k-statistics of the sam-
ple, which are unbiased estimators of the distribution cumulants.
Equation (1) was considered up to order four, which is a set of
34 scalar equations. The standard errors were computed by us-
ing up to eighth-order k-statistics, which are also proportional
to a factor that, for large samples, depends on the inverse of the
sample size.

For either or both criteria, i.e., maximum entropy or mini-
mum y? error, the procedure for obtaining population representa-
tive subsamples can be recursively applied under some minimal
conditions. By continuously increasing the sampling parameter
until the whole sample is exhausted, more than two populations
can be segregated.

2.2. Optimal samples

For any subsample, mixture proportions and population kine-
matical parameters are computed. They can differ slightly be-
tween subsamples, even when describing the same mixture of
populations. Therefore, we must choose an optimal subsample
between them. If this subsample is selected according to the min-
imum /\(2 error of the fit, we then adhere to the best mixture ap-
proach, which has two disadvantages. When increasing the size
of the sample, the quadratic error dramatically decreases, which,
in a natural way, blinds other feasible and perhaps more accu-
rately determined mixtures with minor subsample size. On the
other hand, the quadratic error may have several local minima
from which to choose. If the selection is performed using the
maximum partition entropy, the optimal subsample is then the
most representative of those containing similar populations, i.e.,
the least informative subsample that is consistent with the parti-
tion induced by the stellar populations. However, the entropy cri-
terion can also cause problems. For example, if the means of the
partial distributions are too close in value, or their wings over-
lap too much, the inclusion of a new population in the nested
subsamples does not produce a significant decline in entropy.
In addition, the entropy graph may also have several local max-
ima. Fortunately, by combining both of these preceding criteria
it is possible to obtain an optimal segregation sample. We con-
sider optimal conditions in which the new stars that are merged
to produce the subsamples with increasing sampling parameter
introduce no significant variation in the population parameters
and, therefore, the newly entering stars only contribute to build
a more representative mixture. In these conditions, it is possible
to obtain simultaneous local extremes of fitting error and en-
tropy. Of course, both criteria work on the basis of an appropri-
ate sampling parameter. Moreover, it is possible to use differ-
ent sampling parameters depending on the populations that are
segregated.

In the present work, two new aspects of MEMPHIS algo-
rithm are analysed. First, we study the use of several isolating
integrals of the stellar motion as sampling parameters. The in-
tegrals of motion univocally determine the orbit of each star in
the phase space, so that we may expect that stars of the same
stellar population have integrals that smoothly vary within a
characteristic range of values, which may sensibly differ from
stars belonging to other populations. However, when continu-
ously scanning a stellar sample in terms of an integral of motion,
discontinuities can only be observed if we are able to create a
discrete partition of stellar populations. Second, joint variations
in entropy and y? error are studied. Once a new population is
merged with the cumulative subsample, there is an interval of the
sampling parameter where the entropy smoothly increases and,
sometimes, remains nearly constant until the complete incorpo-
ration of the new population. We call this the “plateau region”
of the entropy graph. It occurs when the core distribution of the
new entering population has already merged with the subsam-
ple. This nearly constant entropy allows a good estimation of the
population parameters, since their computation is very stable. In
this plateau region, it is shown that a local maximum of entropy
occurs simultaneously with a local minimum of y?. Moreover,
while for large samples the minimum fitting error can be nearly
undetectable, the entropy maximum is much more visible.

Therefore, a principle of insufficient reason is now converted
into a complementary criterion for choosing a significant local
minimum of the quadratic fitting error. Similarly, to refine the se-
lection of the more representative subsample within the plateau
region, we choose the sampling parameter with the minimum
fitting error.

3. Maximum partition entropy

We define P to be a sampling parameter associated with a prop-
erty defining a stellar sample, in the sense that it determines the
boundary for the constituent stars of the sample. Thus, it can then
be obtained from the basic isolating integrals of motion (e.g.,
Gilmore et al. 1989), i.e., the energy integral, the integral for
the axial component of the angular momentum, and the third in-
tegral or so-called Oort’s integral. For example, in a particular
volume of the Galaxy we may consider the maximum absolute
value of the perpendicular velocity to the Galactic plane; this in
turn depends on the third integral, or the greatest absolute value
of the Galactocentric star velocity, which is computed from the
energy integral. Similarly, we may work with local quadratic in-
tegrals, referred to the local standard of rest (LSR) of the popula-
tion mixture, which are obtained as a combination of energy and
angular momentum integrals, or, depending on the dynamical
model, from the above three isolating integrals. Specific require-
ments for this parameter are discussed later.

3.1. Entropy of the mixture

By scanning the entire stellar sample with a sampling parame-
ter P, a subsample S (P) may be drawn, with a number of stars
given by #S (P). We assume that a finite number c of stellar pop-
ulations is present in S (P), according to a population partition
A={A, A, ..., A}

For fixed time and position, the velocity density function
f(v) is therefore expressed as a mixture of c-partial density
functions f®(v|X), which are associated with stellar populations
depending on a set of mixture constants, namely X. In Cubarsi
(1992), it was proven that the mixture proportions and the kine-
matic parameters of each population depend on some mixture
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constants, which are obtained in terms of the total cumulants of
the sample. Thus, we can write

F@) =" pAlX) fOE), @)
i=1

where p(A;|X) is the mixture proportion of the ith population.
Obviously Y] p(A;|X) = 1. We however wish to emphasise the
i=1

relationship between the mixture constants and the sampling pa-
rameter. Hence, for a subsample S (P), we write X = X(P) and
P(AiIX(P)) = n?(P). Thus, the density function becomes,

C

FlPy =" n(P) fO@IX(P)).

i=1

)

Then, the entropy H(A) of the partitiqn A = {A,A, .. AL,
where each subset has a probability n?(P), can be written ex-
plicitly depending on the parameter P as

c

H(A|P) = Z —nD(P) In(n(P)).

i=1

(6)

The above equation can be interpreted as the expected value of
the uncertainty I(A;|P) = — In(n”(P)) for which the entropy vari-
ations measure the uncertainty variations in the mixture propor-
tions (e.g., Papoulis 1989). The greater the entropy, the smaller
the amount of information about the population partition and,
therefore, of their population parameters. In general, the most
meaningful parameters are those describing the largest popula-
tions, instead of those describing an excessively informative par-
tition, for example with very few stars in a component (or even
with one star alone). Hence, we are interested to determine a
sample S (P) that provides some mixture parameters associated
with maximum values of H. This is performed by tuning the pa-
rameter P.

Indeed, only a two-component mixture model is needed,
since the entropy-based algorithm detects entropy discontinu-
ities every time that a new population is merged with the sample.
In a two-component partition {A;, A,}, for a fixed sampling pa-
rameter P and by writing n = nV, n® = 1 — n, we can express
the entropy as

H(n(P)) = —n(P) In(n(P)) — (1 = n(P)) In(1 — n(P)). )

We assume hereafter that the first population A; is the more
prominent one, n > % Then, H as a function explicitly depend-
ing on n is a positive, decreasing, and differentiable function that
satisfies

0<H(m)<In2 and for

dH
— <0, 8
an S ®)

1
—<n<l.
n 2 "

In the following section, we examine the behaviour of H in the
case of a three-component partition.

3.2. Sampling parameter

The sampling parameter, associated with an isolating integral,
induce an order into the velocity space so that, as its value is in-
creased, a set of new stars are merged with the sample. However,
the new stars may belong to a single population or, in most cases,
may be a mixture of several populations. Although it is not pos-
sible to find a sampling parameter that always distinguishes be-
tween different populations, based on minor assumptions it is
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feasible to use a parameter that, depending on its value, gives
higher priority to stars of some particular populations than of
others. Thus, we wish to use sampling parameters that contain, in
some way, population information. These parameters must fulfil
some properties, which we tried to synthesise in Paper I in the
four following conditions, which we now reproduce and improve
to provide a clearer explanation of the entropy graph.

If a stellar sample consists of a set of populations
{A,As, ..., A}, then a hierarchical family of subsamples S (P)
should progressively incorporate the populations A;, A,, and so
on — by preserving an order — as continuously increasing the pa-
rameter P. For a two-component partition {A, A,}, the sampling
parameter P should satisfy the following properties:

(I)  the number of stars in the subsample S (P) increases with P
without losing a single star. In other words, for two param-
eter values P and P,, we have

Py <Py = S(P1) CS(Py) = #S(P)) <#S(P2) C))

P should incorporate stars in order into the subsample
S (P), so that, as P increases, stars of population A; are
firstly included into the sample and, afterwards, stars of
population A, are progressively merged with it. Hence, the
mixture proportion of the first population satisfies

Py < P, = n(Py) > n(P»).

1)

(10)

This condition may also be fulfilled if stars of both popula-
tions are merged simultaneously with the subsample S (P).
Obviously, while the A;-population alone represents the
subsample S (P), there exists a constant population fraction
n(P) =1;

if we assume that the transition between populations is
smooth enough, then n(P) is a continuous and differen-

(I11)

d
tiable function of P. Thus Eq. (10) is equivalent to d—Z <0,

n(P) being a non-increasing function. Based on the pre-
vious assumptions and taking Eq. (8) into account, the
entropy H(n(P)), or simply H(P), is a non-decreasing
function of P in the interval % <n<l:

dH dH dn

— =——2>0. 11
dP dn dP — (n
Therefore, the entropy evolves, in terms of the parameter P,
accordingly to the property

Pi < P> = H(P)) < H(P»). (12)

Thus, for a stellar sample consisting of two populations, if the
second population is merged with a subsample containing only
the first population, according to the hierarchy induced by the
ideal sampling parameter, the entropy of the mixture probability
must be a non-decreasing function of the sampling parameter.
However, for a sample with three populations {A;, As, A3}
the behaviour of the function H(P) is as follows. We assume
that stars are continuously incorporated into the subsample S (P)
by increasing P. We also assume that all of the A;-population
has been completely merged with the subsample and that the
Aj-population is partially present in the subsample. Then, if
a number of new stars is added to S(P), one of the follow-
ing situations may occur: either the stars belong (or are very
similar) to the population A,, in agreement with the situation
described above; or, obviously, the new stars belong to a new
Asz-population. In the latter case, when the number of stars be-
longing to the new population is sufficiently significant and their
kinematic parameters are significantly different from those of the
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Fig. 1. (Left) Stellar density N(P) in terms of the sampling parameter for a simulated univariate distribution, consisting of a superposition of four
Gaussian populations. (Right) Entropy graph of the mixture produced by scanning the whole sample.

A, and A;-populations, the bimodal segregation model should
mix the two closest populations A; and A; into the first com-
ponent Pop-I, and should reserve the second component Pop-II
for the population Az. Therefore, a fourth condition for an ideal
sampling parameter is required:

(IV) a partition {A;, A, A3} is reduced to the two-component
partition {A]; UA,, A3}, for a cumulative population A; UA;.
In this case the relationship Eq. (10) is no more fulfilled.
Instead, the initial values n = 1 and H(P) = 0 are reset.

The failure of the above conditions would indicate that the sam-
pling parameter is unable to induce the desired hierarchy into the
subsamples.

3.3. Entropy graph

The entropy may be plotted in terms of the sampling parame-
ter so that, each time that a new population enters the increasing
subsamples S (P), a characteristic behaviour may be recognised
in the graph. This can be easily explained with an example of a
three-population partition, {A;, A, A3}. There exist a couple of
values P4 and Pp corresponding to sampling parameter values
for which the second and third populations are recognised, re-
spectively. Then, according to the conditions of the preceding
section, the following characteristic shapes are produced:

(a) if P < P4, then H(P) = 0. The subsample S (P) then consists
only of A stars;

(b) if P € R = (P, Py), then H(P) > 0 and 9% > 0. Thus, during
the mixture of two populations A and A,, there is an interval
with continuously increasing entropy;

(c) if P = Pp, then H(P) = 0 and n(P) = 1. An entropy decline
occurs when the cumulative population A} UA; forms, that is
when the new As-population, which is different enough from
previous populations, is recognised.

Indeed, the cases (a) and (b) are only the boundaries, beginning
and end, of an interval R where the non-vanishing entropy devel-
ops continuously, accordingly to an active mixture. In practice,
the case (c) shows only an entropy drop, and the null entropy is
usually not reached, since the population As is always detected
after a sufficient number of the new population stars are merged
with the sample S (P).

If the above process occurs smoothly, increasing the size of
the sample within the interval R defined in case (b), we should

also be able to identify two specific behaviours that are associ-
ated with the following two regions:

(R;) an interval of the sampling parameter for which H(P) is
rapidly increasing, with a relatively high slope.

This occurs for values of the sampling parameter that allow
stars to be incorporated up to the core of the A,-population
distribution. Therefore, in this region the mixing propor-
tion varies significantly. Similarly, the kinematic estimates
of the A,-population, Pop-II, will probably be unstable,
since this population is just being detected, while those of
Pop-I will remain mostly stable;

an interval of the sampling parameter where H(P) slowly
increases, or has a nearly vanishing slope. It resembles a
plateau, where, towards the end, H(P) reaches a local max-
imum. This occurs when the sampling parameter scans the
farther wing of the A,-population distribution. In this re-
gion, the mixing proportions may vary slightly depending
on the width of the wings. For example, for very flattened
distributions we could expect significant variations in the
mixing proportion. In general, after incorporating the core
distribution of the A,-population we obtain some stable
kinematic parameters for Pop-I as well as for Pop-II within
the plateau region.

(R2)

This type of entropy graph is shown in Fig. 1 by using a numeri-
cal simulation from univariate Gaussian distributions. The shape
of the graph is reproduced three times, according to a four pop-
ulation mixture, {A;, A;, A3, A4}, where three consecutive segre-
gations, {A1, Az}, {A; U Ay, Az} and {A] U Ay U A3, Ayg} are car-
ried out. Both types of regions R; and R, are differentiated. The
region R; appears at the beginning of a new population being
merged with a rapidly increasing entropy. The region R», the so-
called plateau region, takes place after the new population have
merged with the core distribution. Several Monte-Carlo simula-
tions, even with non-Gaussian distributions, were performed in
Paper L.

This behaviour for a true stellar sample drawn from the
HIPPARCOS catalogue is shown in Fig. 2. A detailed view of the
entropy graph and the population kinematical parameters are dis-
played in terms of the sampling parameter, in this case the abso-
lute heliocentric velocity. The plots are similar to those obtained
for the segregation of thin and thick discs in Paper I. The plateau
region allowing an optimal segregation of thin and thick discs
(left plot) takes place for a sampling parameter between P = 160
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Fig. 2. (Left) Detailed entropy graph for a HIPPARCOS sample (Paper I). (Right) In a logarithmic plot, total dispersion ¢ in terms of the sampling

parameter P.

and 270 kms~! (absolute heliocentric velocity). The total ve-
locity dispersion (trace of the covariance matrix) for both disc
populations is displayed (right plot). For 160 < P < 270, the
thin disc (dashed line) exhibits an almost constant dispersion (in
logarithmic scale), while the thick disc (continuous line) shows
a slightly increasing rate, which is far more stable and smooth
than before and after the plateau region of the entropy graph.
In addition, the entropy H(P) exhibits several relative maxima
along the plateau region, which are caused by the non-absolute
continuity of the merging process.

The foregoing features can be easily extended to a greater
number of populations, so that each entropy decline indicates
a newly emerging population. For more than two populations,
the information containing population is the entering one, which
produces the entropy drop, while the previous populations be-
come indistinguishable in the cumulative component Pop-1.

4. Minimum x? error of the mixture approach

As explained in the introduction, a y? test, according to Eq. (3),
may be used to estimate the goodness of the approximation of
the total moments in terms of the mixture obtained for each set
of values of the sampling parameter. The segregation method
adopted in this study works with velocity moments of up to
fourth order (3 first-order moments, 6 second moments, 10 third
moments, and 15 fourth moments, which consists of 34 relation-
ships in total). The total moments are represented by a vector
M; of R = 34 components, and are fitted with the kinematic
parameters of populations (2 X 3 means and 2 X 6 covariances)
together with the mixture proportions, to fulfil the overdetermi-
nate set of relationships in Eq. (2). Thus, an amount of v = 19
mixture parameters have to be estimated. If &; denotes the er-
ror of moment M;, the approximation can be calibrated using
the weighted mean of the squared errors, so that, when defining
Ai = M; —n'M] —n”" M}, we can write

34

1
K=, S I

=1 i

13)

The quadratic error s?, associated with a total sample moment

M; and usually called sampling variance, may be estimated as a
sum of terms that are proportional to % and ﬁ, and depends
also on higher distribution cumulants (e.g., Stuart & Ord 1987).

. o2
For a large enough sample, we may write &> ~ == where the
i N

quantity o-l.2 represents some intrinsic quantity of the distribu-
tion, which can be interpreted as the variance in a distribution
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mean value y; corresponding to a sample estimate M;. Thus, for
the given set of computed values A;, and in terms of the quan-
tity N, the greater the sample size, the greater the y? fitting error.
Similarly, we discuss in the next section how the quadratic er-
ror sl.z can be estimated in terms of the sampling variances of the
partial moments, and how the y? error depends on them.

To apply the x? test, we assume that the total error has a
34-Gaussian probability distribution, so that the random variate
expressed in Eq. (13) is expected to be a y? distribution with
q = R — v = 15 degrees of freedom. Also, if the errors are not
represented by a Gaussian but by a Poisson distribution, Eq. (13)
obeys the y? distribution anyway in the large limit g. It is then
known that, if P(y?;g) denotes its probability distribution, the
relevant quantity for making decisions about the goodness of the
fit is the 2 probability, given by the integral

m(x*;q) = f P q)dd, (14)
X

2

which infers the probability that a function describing a set of
g data points would give a value of y? as large, or larger, than
the one we already have. Nevertheless, while comparing the fit-
ting errors, more than the values y? and &, what is more sig-
nificant and easy to visualise is the increase or decrease in the
quantity y? itself.

4.1. Fitting error

Our objective is to establish how the total quadratic error siz

depends on the sampling variances of the mixture parameters,
that is, on the quadratic errors associated with either the mix-
ture proportions or the partial moment estimates. It is first stud-
ied in two simple cases, depending on whether the parameter
P scanning the sample S (P) provides a sequence of subsam-
ples that (a) maintain a nearly constant mixture proportion, but
produce some slightly unstable kinematical estimates of popu-
lations, or (b) produce some constant kinematic parameters, al-
though the mixture proportion may slightly vary.

We recall that just after detecting a new population, we may
expect in the region R; of the entropy graph to see a significant
variation in both mixture proportion and population kinematical
parameters. Thus, the above cases may be expected in particular
in the plateau region R, of the entropy graph.

(a) We assume that a sample consists of a mixture of N stars,
of constant population sizes N’ = Nn’ and N” = Nn",
where n” > n”. The sample partial moments M; and M} of
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each population may differ from their true distribution mo-
ments y; and p accordmgly to the approx1mate sampling

variances V[M]] = (M]'] = N,, , respectively, for
large enough N’ and N" Those quantities are the sampling
variances of each partial moment, and the values o-lf and
o could be computed from higher-order distribution cumu-
lants, if known. Hence, as in the complete sample, the quan-
tities o} and o]’ may be interpreted as population standard
deviations, which are associated with the mean values y; and
u of the real populations, whose sample estimates are M
and M. Total sampling variance sf = V[M;] may be ob-
tained by writing Eq. (2) in the form

NMy = N'M}, + N" M} (15)

and by taking the variances,
N*VIM)=N"?V[M1+N"*V[M/1+2N'N" cov[M,M/'].(16)

17

By using the proportions n’, n”,

7 7" pPio;0;
cov[M], M"] = NN
relation factor p;, we have

and by writing

in terms of the corresponding cor-

g = % [n'O'lfz +n0)" + 2Nn'n"p; o-,fo-;'] . (17)
Hence, the calibration of the quadratic error obtained in
Eq. (15) distributes the total error in terms of the popula-
tion variances of the partial moments. Furthermore, it takes
the likely dependence on each other into account.

We point out a particular situation applying to our algorithm
procedure. We assume that the variates M and M’ are inde-
pendent, as happens in the plateau region R, of the entropy
graph, where M is nearly constant and M;” varies depending
on the Pop-II stars entering the sample S (P). We then have
p; = 0. Thus, we can simply write 552 = %(n’(rl’.2 + n”(rl’.’z). It
is however useful to obtain an approximate expression of this
error in terms of the product n’n”, which takes values in the
interval [0, 4] (when assuming that n” < n’). Obviously, we
can write n’ = % + % 1 —-4n'n” andn” = % - % V1 —4n'n".
The square root can be approximated by a first degree poly-
nomial in terms of n’n’”’, so that V1 —4n’n” ~ 1 — 2n'n”,
corresponding to the two first terms of a McLaurin series'.
‘We then derive the calibration error,

1
2 //2 ’2 ’om
g = N[O— +( o-i)nn].
On the other hand, Eq. (2) can be interpreted in terms of
the true distribution moments, instead of sample moments,

with constant mixture proportions. The exact total distribu-
tion moments y; are estimated from their partial values as

19)

(18)

Wi =n'wp+n"
Therefore, the value y; must be considered to be constant,
although there may be some uncertainty between the partial
moments. In addition, the partial moments are assumed to
be independent. Hence, distributing the error between both
populations may be achieved by differentiating Eq. (18), so
that n’dy’; = —n”’du”’;, and by taking the variances,

2 22 2 2
n'“o;” =n""c}".

(20)

(b)

Thus, the population variance 0';2 of the moment y, corre-
sponding to the major population Pop-I, has a smaller error,
while the population variance 0';’2 of the moment ", corre-
sponding to the minor population Pop-I1, is expected to have
a greater uncertainty 0';’2. Therefore, we may assume that
the following relationship is satisfied

72

o? — a2 0. (21)

We now assume some constant partial moment estimates,
but a varying mixture proportion along the plateau region.
The calibration error sf may then be estimated in terms of
the variance of mixture proportion as follows. By increasing
the sampling parameter, we select a number of stars to pro-
duce a sample S (P). If the sample is large enough, for the
ith entering star, we can define a Bernoulli random variate /;
with two possible outcomes, 1 or 0, depending on whether
the star belongs to either Pop-I, the major population, or
Pop-I1, the minor population. Obviously, the expected value
of 1; is n’ and the variance is n’n”’. The cumulative frequency
of stars belonging to Pop-I, Xy = Zflv I; = N’, then fol-
lows a binomial distribution with mean E[Xy] = Nn’ = N’
and variance V[Xy] = Nn’n”. Similarly, for stars belong-
ing to Pop-II, the random variate Yy = N — Xy = N”
verifies that E[Yy] = Nn” = N”, V[Yy] = Nn’'n”, and
cov[Xy, Yn] = —=Nn'n"”

We note that this is not exactly as stated, since the sample
is finite. The true distribution of the variate X should be of
hypergeometric type, but since the size N is large we can
assume the binomial hypothesis in nearly all the continu-
ous regions of the entropy graph. In any case, when all the
population Pop-II stars are merged with the subsample, the
variances V[Xy] and V[Yy] are null.

Thus, in a region of the entropy graph where the kinematic
population parameters remain approximately constant, if the
error associated with Eq. (15) is caused only by the uncer-
tainty in the mixture proportion, by applying the law of the
combination of errors, we obtain

N*V[M;] = M*V[N']+ M/*V[N"]

+2M M cov[N',N"], (22)
which may be written as
2VIM; = MPVIXy]+ M/*V[Yy]
+2M] M/ cov[Xy, Yn]. (23)
Hence
N*VIM;) = M{>Nn'n” + M/*Nn'n” = 2MM}'Nn'n". (24)

By dividing the above equation by N? and rearranging the
terms, we obtain the calibration error

& = %(M; - M/ n'n”. (25)
In this case, we also obtain a sampling variance that is pro-
portional to the inverse of the sample size, but, in addition,
this calibration error depends on two factors, one of them in-
volving the sample estimates of the mixture. It increases as
both partial moments become more differentiated. Another
factor is, again, the product n’n”. At the end of the plateau
region, slz vanishes since n’”” = 0.

A more general situation could be described by a combination of
the above cases, where mixing proportion and partial moments
vary considerably.

L If needed, depending on the working interval for n’, we can use a

more accurate approximation, such as V1 —4n'n” ~ 1 — an’'n”, with
2 < @ <4, which produces the same qualitative result.
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4.2. x? graph
In the plateau region of the entropy graph, we may assume that

(i) the mixture proportion and the kinematic parameters are in-
dependent variables, where both population parameters and
mixture proportion may vary separately, depending on the
randomly entering stars;

(ii) the kinematic parameters of the major population Pop-I
are nearly constant, while the Pop-II kinematic parameters
may vary slightly and smoothly, as shown in Fig. 2 for the
HIPPARCOS sample. Therefore, both le and le’ are also
independent variates, with vanishing covariances.

As shown in the previous section, the total squared calibration
error can be written as the sum of equations Egs. (18) and (25)

& = % (07 +[(o7? = o) + (M7 = M} | w'n”).
To express the calibration error in terms of the entropy, the fac-
tor n’n” can be written in the following form. If the entropy
H(n') of Eq. (7) is approximated by a Lagrange polynomial
L(n’) with matching values at points (0, H(0)), (%,H(%)), and
(1,H(1)), we have H(n') ~ L(n’) = 4 In2n'(n’ — 1). The equal-

ity

(26)

1
1.1 ~ H !’
e )

then allows Eq. (26) to be approximated in terms of the entropy
H(n’). In this case, the calibration error in Eq. (15) becomes

1
£=—|c?+

27)

l

=l 4m2Kdﬂ—af%{Mf—MﬁﬂHm».Q&
By taking into account Eq. (21) and the positiveness of the terms
in Eq. (28), we can write the above equation in terms of the en-
tropy associated with the sampling parameter P in the simpler
form

& =~ [42+ B H(P)|. (29)

' N
The above quantities defined as A? = 0';2 and B? =

411]2 [(0';’2 - 0';2) + (M - Mi’)z] are expected to be signifi-
cantly stable within the plateau region of the entropy graph.
Therefore, based on those assumptions, and after combining
Egs. (13) and (29) in the region R, the behaviour of y? as a
function of either the sampling parameter P or the entropy H
can be explained. Thus, by taking the derivative of Eq. (13) and

considering Eq. (29), we have

5 ) 34
dy*(P)  dy (P)d—H——NZ( (30)

AIB; ) dH
dP =~ dH dP

A2+ BXH(P)) dP

i=1

Since the summation terms are always positive, we then have the
relationship

d*(P) dH _
P dP ~

Therefore, while varying the sampling parameter P in a plateau
region, an increasing entropy is always associated with a de-
creasing y? error, and conversely. Furthermore, within the re-
gion in which the MEMPHIS algorithm was designed to achieve
optimal segregation, accordingly to Eq. (30), local maxima of
entropy occur coincidently with the local minima of y2.

€19
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Outside the plateau region, different results are obtained. At
the beginning of the region R, where there is a sudden influx of
a new population, the above assumptions may not be valid.

Therefore, the optimal sampling parameter should provide:
(1) one or several local maxima of entropy within the plateau
region of the entropy graph, which are indicative of the least
informative subsamples associated with the more representative
mixture parameters; and (2) one or several simultaneous mini-
mums of the y? fitting error, associated with the optimal segre-
gations. Thus, in the preceding circumstances, the “more repre-
sentative” subsample is also the one providing the least error in
the mixture approach.

5. Application

The described procedure is first applied to the HIPPARCOS
sample used in Paper I to illustrate the improvement that it pro-
vides in the results. Furthermore, it is also applied to the disc-
representative GCS sample, which has a similar number of stars
to the HIPPARCOS sample, but with more accurate estimations
of the radial velocities.

5.1. HIPPARCOS sample

This sample was obtained by cross-correlating the HIPPARCOS
Catalogue (ESA 1997) with radial velocities from the
HIPPARCOS Input Catalogue (ESA 1992) (see details in
Paper II). To obtain a typical sample of stars in the Galactic disc,
the sample was limited to a trigonometric distance of 300 pc.
The resulting total sample consisted of 13 678 stars, where the
only input data were the three velocity components (U, V, W), in
a cartesian heliocentric coordinate system, U pointing towards
the Galactic centre, V in the Galactic rotational direction, and W
perpendicular to the Galactic plane and positive in the direction
of the north Galactic pole.

The application of the MEMPHIS algorithm to the
HIPPARCOS sample in Paper I provided a precise kinematic
description of the thin and thick disc populations. The abso-
lute value of the total space motion referred to either the Sun
or the centroid of the major population were used as sampling
parameters, although the qualitative results were similar. Within
the thin disc, two non-Gaussian subpopulations, early-type and
young-disc stars, were found to have a strong asymmetry in their
radial velocity distribution. These populations, in addition to the
background old disc stars, represent the entire thin disc with a
nearly Gaussian distribution. Since no previous selection to ex-
clude non-typical disc stars was attempted, the total thin disc
population represented stars affected by several different phe-
nomena over its stars, such as moving groups originating in other
Galactic regions, produced cluster evaporation, disc heating, spi-
ral bar perturbations, so that its final normal distribution provides
a good example of what the Central Limit Theorem predicts.

5.1.1. Sampling parameters P = (U, V, W)l and P = |W/|

By using the heliocentric velocity P = |(U, V, W)| as a sampling
parameter, from the value P = 145 km s~! onward, both disc
populations were described well by a mixture of two Gaussian
populations, where the thin disc velocity dispersions become
saturated around (28 + 1,16 + 2,13 + 1) kms~!. For those sub-
samples, increasing the sampling parameter leads to new stars
entering contribute only to increase the dispersion in the thick
disc. An entropy maximum at P = 209 provides an optimal
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Table 1. Optimal mixture parameters’ for the HIPPARCOS (HIP) and GCS samples.

Sample #S(P) P Pop. oy oy ow U % w e[°]
HIP 13551 |(U,V,W)| =230 t92% 284+ 0.6 156+25 12.8+0.7 -10.7+£03 -13.9+ 04 -72+02 10+2
T 8% 66.8+23 394+106 41.8+19 -13.0+0.6 -68.6+3.1 -85+02 5+3

13671 W =180 D98% 32.7+1.1 152+10.7 164+04 -10.8+03 -16.6+ 04 -72+02 8=*5
H2% 1564+ 104 88.5+532 705+43 -53+25 -233.1+ 204 —-13.7+3.6 -4+5

GCS 13185 |(U,V,W)| =230 t96% 30.6+0.4 17.5+14 152+03 -10.0+£03 -152+03 -69+02 9=x1
T 4% 68.8+2.7 300150 40.0+2.0 -8.6+0.7 -81.8+43 -11.6+£05 6=+2

13235 W =170 D99% 32.5+0.7 17857 165+03 -99+03 -169+03 -7.1+£02 8+4
H1% 151.0+14.7 1079+ 54.0 70.3+ 5.7 —12.2+2.1 -230.0+24.1 -18.3+ 3.3 -3+7

Notes. (V The displayed quantities are: size of the optimal sample, sampling parameter, segregated population (t = thin disc, T = thick disc, D =
total disc, H = halo) and mixture proportion, velocity dispersions, mean velocities (both in kms™!), and vertex deviation.

140 220 300 380 460 540 620
P

Fig. 3. Entropy graph (continuous line) and x? error of the mixture ap-
proach (dashed line, scaled to one tenth) for the HIPPARCOS sample,
extended up to halo stars, for the sampling parameter P = |(U, V, W)|.

mixture consisting of about 9% of thick disc stars with disper-
sions of (65 + 2,39 + 9,41 + 2). However, we were unable to
detect the halo population.

By combining both optimal criteria, the whole sample can be
scanned with the improved algorithm up to P = 600 kms~'. We
identify local extremes of y? and entropy at P = 230, just before
a steep decline in entropy, and we also find a local minimum of
x* at P = 410, as shown in Fig. 3. We note the opposite trend
of y? and entropy around those values, mainly around P = 230,
in what can be considered a plateau region of the entropy graph.
Nevertheless, after P = 300 there is no plateau region, since the
entropy mostly decreases. For P > 230, stars originating in the
new halo population are merged with the increasingly large sub-
samples, an entropy decline occurring around P = 280, in accor-
dance with a peak of y?. Afterwards, the component Pop-I wraps
around the entire disc, while halo stars are confined to Pop-II.
Therefore, the value P = 230 provides an improved optimal mix-
ture estimate for thin and thick discs. The mixture proportion,
dispersions, differential mean velocity, and vertex deviation are
shown in Table 1. The value P = 410 might represent a first esti-
mate for a total disc and halo mixture. The variation in the diago-
nal central velocity moments with sampling parameter is shown
in Fig. 4 (in a logarithmic plot), where we see that the disc heat-
ing process remains nearly constant after P = 410 (Pop-I, dashed
line). The halo moments do not reach steady values.

If we use the alternative sampling parameter P = |W|, which
is the absolute value of the star velocity perpendicular to the
Galactic plane, we obtain the entropy and y? plots displayed in
Fig. 5. There is a small plateau region in the entropy graph with
a small local minimum of y? around P = 65 kms~!, although

no significant corresponding trend in both graphs. The y? graph
mainly decreases up to P = 90. For P = 65, the velocity mo-
ments measure the typical perpendicular velocity dispersion of
thin and thick disc stars, whereas the other velocity dispersions
have values that correspond to a mixture of disc stars, Pop-I, and
halo stars Pop-II. On the other hand, contrasting behaviour is ev-
ident in both plots around P = 170, where a plateau region in the
entropy graph clearly begins. In this region, both graphs become
stable, and around P = 180 and P = 250 small local extrema
are evident. The diagonal central moments plotted in terms of
the sampling parameter (not shown) indicate that halo and disc
velocity dispersions clearly reach asymptotic values. Therefore,
we can take P = 180, and its minimum )(2 error, to be the op-
timal sampling parameter characterising the mixture of disc and
halo stars (Table 1), although there is no significant difference in
our results when other neighbouring values are used instead.

Thus, P = |W| is inappropriate for distinguishing between
thin and thick discs but is suitable for discriminating between
total disc and halo stars. This behaviour is also observed for the
differential mean velocities, where the estimation provided by
the parameter P = |W]| is completely stable from P = 80 onward.

5.1.2. Titius-Bode-like law for the halo

It is interesting that the estimate of the radial velocity disper-
sion of the halo obtained from the HIPPARCOS sample confirms
the Titius-Bode-like law (TBLL) proposed in Paper I (Table 6)
for the same sample. This empirical law was written there as

oy(x) = 6.6 (%)x. The value x = 2 corresponds to the radial

velocity dispersion of the early-type stars, 12 kms~!, the value
x = 5 to the radial velocity dispersion of the thin disc, 28 km s~
which has now been verified, the value x = 8 to the radial veloc-
ity dispersion of the thick disc, 66 km s~!, which has also been
confirmed, and the value x = 11 to the radial velocity dispersion
of the halo, 156 kms™', which is exactly the value presented in
Table 1. We are still unable to provide any additional comment
to those of Paper I about a physical explanation of this empirical
law, but we may certainly certify this relationship, and associate
the discrete local stellar populations with the radial dispersions
expressed by the equation

4 3n+2
ou(n) = 6.6 (—) . n=0,1,2,3.

3 (32)
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Fig. 4. Diagonal central velocity moments (in logarithmic plots) in terms of the sampling parameter P = |(U, V, W)| for populations segregated
from several nested HIPPARCOS subsamples (dashed line for Pop-I and continuous line for Pop-II). The diagonal moments correspond to the
velocity components U (left), V (centre), and W (right). The value P = 230 km s~! (squares) provides optimal mixture estimates for thin and thick

discs.

Fig. 5. Entropy (continuous line) and y? error (dashed line, scaled to
one twentieth) for the HIPPARCOS sample extended up to halo stars,
for the sampling parameter P = |W|.

5.2. GCS sample

We compare the previous results with those of the Geneva-
Copenhagen survey catalogue (Nordtrom et al. 2004). The same
cartesian heliocentric coordinates system (U, V, W) is used. The
sample represents the velocity space of 13240 F and G dwarf
stars, which are considered to be optimal tracer populations for
studying the stellar evolutionary history of the disc. According
to its authors, the GCS catalogue might be a kinematically unbi-
ased sample, containing about 97% of stars in the thin disc and
3% in the thick disc. Nevertheless, according to Famaey et al.
(2007), some contamination by the halo may exist, which could
be removed by considering only stars with [Fe/H] > —0.5. For
our purposes, and as for the HIPPARCOS sample, this contami-
nation could be useful when measuring the kinematic parameters
of the three populations.

We now comment on the composition of the sample. At first,
the selection of stars of only specific spectral types could be in-
dicative of kinematical bias in the sample. The velocity distribu-
tion in the V component is not as bell-shaped and bimodal as it
is in the HIPPARCOS sample. In contrast, the U and W velocity
distributions are quite bell-shaped, although the HIPPARCOS
distributions have higher peaks. In any case, the MEMPHIS
method may provide a good approximation for slightly non-
Gaussian partial distributions and robust estimates of the mix-
ture proportions and velocity moments of populations. For the
GCS samples, it is also possible to recognise the substructure of
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early-type and young disc stars within the thin disc, as described
in Paper I for the HIPPARCOS sample. The discontinuity be-
tween these populations also occurs at [(U, V, W)| = 51 kms~!,
although the subpopulations are strongly non-Gaussian, mainly
in the radial direction. However, once the number of thin disc
stars that has been added to the nested subsamples is sufficiently
high for it to resemble a Gaussian distribution, and the number of
thick disc stars is also enough high to allow us to identify an in-
dependent population, the segregation can be reliably performed.

5.2.1. Sampling parameters P = |(U, V, W)| and P = |W|

If we use the sampling parameter P = |[(U, V, W)|, we identify
a local minimum of ,\(2 at P = 230 kms~!, that coincides with
a local maximum of entropy. An opposite trend in both graphs
does not appear until P = 300. After the initial high entropy
levels there is not any plateau region in the entropy graph. For
the diagonal moments, by comparing with HIPPARCOS results
we find that at P = 230 the algorithm really detects, but not
in the same stable way, a mixture of thin (96%) and thick (4%)
discs (Table 1), while for P > 350 the algorithm indeed detects
continuously merging of halo stars in the Pop-II component, up
to the end of the whole sample (ca. 1% of halo stars).

If the absolute velocity perpendicular to the Galactic plane
P = |W| is used as sampling parameter, improvements are
achievable. The entropy graph shows a peak at P = 60 kms™!
and a clear plateau region for P > 140, with simultaneous ex-
trema x> and entropy at P = 170, where both plots exhibit op-
posite trends. As for the HIPPARCOS sample, the value P = 60
only separates thin and thick disc stars in terms of the W-velocity
component, while in other velocity components it assigns a mix-
ture of thick disc and halo to the second population Pop-II. In
contrast, for P = 170 and higher values, the algorithm provides
an optimal segregation of disc (99%) and halo (1%). The optimal
estimates are listed in Table 1. This segregation is consistent with
the measured differential mean velocities, where the stability of
estimates for P = |W| contrasts with those of P = (U, V, W)|.

5.2.2. Sampling parameters P = |(U, W)|and P = |V/|

We present the results obtained by using alternative sampling
parameters. The sampling parameter P = |(U, W)|, which is
related to a combination of the two basic integrals. Around
P = 200 kms™! and for P > 250, the entropy and the y? er-
ror exhibit opposite trends, although there is no clear plateau
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Table 2. Segregation of populations’ for HIPPARCOS and GCS samples.

Sample #S Pop. oy oy ow U \% w e[°]
HIP 12516  t91.5% 282 +0.2 16.9 £ 0.2 125+ 0.1 -11.2+0.3 -14.7+0.2 -7.1+£0.1 131
1003 T7.3% 69.3+1.3 37.9+09 429+09 -7.1+£22 -60.8 1.2 -97+14 4+2
159 H1.2% 179.6 + 7.8 89.0+6.3 90.8 + 6.0 -0.61+142 -2349+7.0 -10.8+7.2 -6+3
GCS 12415  t93.8% 29.7+0.2 17.8 +0.2 13.9 £ 0.1 -10.4+0.3 -152+0.2 -7.1+0.1 11 +1
763 T5.7% 65.7+1.5 36.7+ 1.1 41.5+0.9 -34+24 -59.3+1.3 -7.1+1.5 5+£2
62 H05% 178.6+122 113.7+150 1105+ 14.2 1.6 £22.7 -230.8+ 144 -164+140 -5+10

Notes. ¥ The velocity dispersions are computed from the population sample moments and are obtained by segregating the whole sample according

to the population distribution moments of Table 1.

region in the entropy graph. The two local extrema, at P = 200
and 280, reflect the mixture of thin disc stars in Pop-I and thick
disc plus halo stars in Pop-II. This is consistent with the diago-
nal central moments. On the other hand, the rotation differential
mean velocities between populations is typical of halo stars in
all of the plateau region of the entropy graph. Around P = 320,
there are some moving groups with antigalactic rotation (the null
rotation would correspond to V ~ 200 km s™!). This is similar to
the behaviour that we find when we use the perpendicular ve-
locity as a sampling parameter between P = 80 and 100. Once
more, for the greatest values of the sampling parameter, the halo
is approximately at rest.

Alternatively, the sampling parameter P = |V/|, which is re-
lated to the angular momentum integral, provides a y? error that
decreases, while the entropy has a distinctive local maximum at
P = 100 kms~!. Hereafter, both plots exhibit the same decreas-
ing trend. There is no clear plateau region in the entropy graph.
In terms of the velocity moments, the segregation obtained from
this maximum entropy value corresponds to a mixture of thin
and thick disc, similar to that obtained when using the sampling
parameter P = |(U, V, W)|. Moments that are typical of a disc and
halo mixture are obtained for the entire scanned sample. A simi-
lar interpretation applies to the differential mean velocities. The
differential rotation velocity basically increases up to a typical
value of about 220 km s, or closer to values such as 235 kms™!
(Orlov et al. 2006).

5.3. Precise determination of mixture proportions

Determining the relative importance of the different kinematical
components has an intrinsic uncertainty caused by the segrega-
tion method itself. For mixtures of pure normal populations, the
segregation is performed with a high degree of accuracy, of about
0.5-1%, as tested by using simulated samples in Paper II. In gen-
eral, the error depends on the Gaussianity of the components.
Otherwise, if a non-pure normal population is approximated by
a Gaussian distribution alone, as in the case of a cumulative pop-
ulation Pop-I, containing thin and dick discs, the uncertainty in
the mixture proportion may increase. Once the kinematic param-
eters of the three populations have been determined, to ascer-
tain mixture proportions more accurately we apply an iterative
method based on the Bayesian probability of a star belonging to
any particular population.

By using the mixture proportions given in Table 1 as initial
values, we describe the total velocity distribution function as the
mixture

3

f@) = ) p(A) WA,

i=1

(33)

where the populations {A, A, A3} refers to the halo, thick disc,
and thin disc, respectively. We note the notation f(v|4;) =
FP]X) according to Eq. (4). Each Gaussian component f(v|A;)
is evaluated according to its six central second moments Z; (the
covariance matrix), whose determinant is denoted by |%;|, and
according to its mean velocity m;. Thus, we write

et =—m) X (w—my)

SOlA) = a1
(2m)2 %2

(34)

By applying Bayes’ theorem, we then compute the probability
for each star of the sample of belonging to any of these popula-
tions, on the basis of its actual velocity,

p(Ai) f(v|A)
f()

and then evaluate the expected value y = E(i|v) of the index i
representing the populations,

p(Ailv) = (35)

3
y =i p(Aiv), (36)
i=1

which takes continuous values in the interval [1, 3].

We may assume that the value y is uniformly distributed
within the interval [1,3]. Then, if 1 < y < 1.67 the star has
a higher probability of belonging to the halo population A, if
1.67 < y < 2.33 the star should belong to the thin disc A,, and
if 2.33 < y < 3 it is assigned to the thin disc A3. Thus, the stars
are now labelled according to their most likely population. We
then determine the mixture proportions. These values are substi-
tuted into Egs. (33) and (35), and the process is iterated up to
convergence.

For both samples, the mixture proportions become stable af-
ter 4 iterations, by leading to the values Table 2. Figure 6 dis-
plays the expected value y in terms of the number of stars on a
logarithmic scale, where three clearly defined levels can be dis-
cerned that correspond to the classification of most of the stars
into three discrete populations.

The resulting thin disc, thick disc, and halo components are
shown in Fig. 7 for the HIPPARCOS sample. We obtain similar
plots for the GCS sample. This classification of stars into popu-
lation samples allows us to compute the sample moments of thin
disc, thick disc, and halo according to Table 2, which provide
very similar values of kinematic parameters to those found for
population samples drawn from both catalogues.

‘We note that the resulting population samples depend on the
way of assigning the population representative range to the ex-
pected value y. Thus, if instead of assuming that the bound-
aries between populations are given by 1, 1.67, 2.33, and 3,
which correspond to a uniform distribution of y, we had as-
sumed boundaries corresponding to equidistant points from 1,
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Fig.6. Expected value y in terms of the
number of stars (in logarithmic scale).
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2 and 3, i.e., ranges between 1, 1.5, 2.5, and 3, we would have
obtained population fractions of t 89.9%, T 9.0%, and H 1.1%
for HIPPARCOS, and t 95.5%, T 4.1%, and H 0.4% for GCS.
However, we propose that the former choice is more plausible.

We note the differences between Tables 1 and 2. Table 1
describes the population distribution parameters that are con-
sistent with the mixture model. In particular, the rotation ve-
locity dispersions have greater uncertainties because they are
constrained by the differential rotation velocity between popu-
lations. Therefore, the uncertainties are the consequence of ap-
plying error propagation techniques to the mixture model. On
the other hand, Table 2 lists the population sample moments,
which are obtained by segregating the whole samples accord-
ing to the population distribution moments of Table 1. Thus,
the standard errors are sampling variances that do not reflect the
mixture model.

6. Method of Galactocentric orbits

A good way of describing the motion of a star belonging to the
Milky Way is to calculate its Galactocentric orbit. This approach
has been used by various authors (e.g., Altmann 2006 and ref-
erences therein). Galactocentric orbits have often been used to
classify stars into Galactic subsystems such as the bulge, the thin
disc, the thick disc, and the halo (e.g., Pauli et al. 2006; Vidojevié
& Ninkovi¢ 2008, 2009).

In our calculation of Galactocentric orbits, we use the model
of the Milky Way proposed by one of us (Ninkovi¢ 1992). This
model assumes three contributors to the potential of the Milky
Way: the bulge, the disc, and the corona (the subsystem con-
sisting of dark matter). The contributions to the Galactic poten-
tial of the former two are described by the same formula, that
of Miyamoto & Nagai (1975). The only difference concerns the
values of the parameters. The potential of the Milky Way, rep-
resented by the sum of its three contributors, must not be ap-
plied beyond the distance of 70 kpc. Outside the Galactocentric
sphere of 70 kpc radius, the formula describing the contribution
of the corona to the Galactic potential is different: it becomes
the point-mass potential with one parameter only, the total mass
of the corona. It should be said that in Nordstrom et al. (2004)
the Galactocentric orbits of the GCS sample were computed, but
the Galactic potential and the parameters are different from those
used here.

For a stationary and axially symmetric potential, the two
classical integrals of motion are valid: those of energy and an-
gular momentum component along the symmetry axis. This cir-
cumstance is taken into account by including the expression for
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HIPPARCOS on the left and GCS on the
right.

the angular momentum in the Lagrange second-order differen-
tial equation describing the motion in R (distance to the symme-
try axis). We have to solve two second-order differential equa-
tions in R and in Z (Z axis is that of symmetry). To obtain the
initial conditions, we convert the heliocentric space coordinates
and the corresponding velocity components, given in the stan-
dard frame along the directions / = 0° and b = 0°, [ = 90°
and b = 0°, and b = 90°, into the corresponding Galactocentric
ones. We assume that the Sun is situated at Ry = 8.5 kpc,
Zs = 0.015 kpc. As for the velocity components, it is assumed
that in the adopted frame the solar motion with respect to the
LSR is given by 10.00 km s™!, 5.23km s™!, and 7.17 km s7!, re-
spectively (Dehnen & Binney 1998). For the LSR speed around
the Galactic centre, it is assumed to be equal to 220 km s (local
circular speed) according to the model developed following the
IAU recommendation (Kerr & Lynden-Bell 1986).

To solve numerically the two differential equations, we apply
the Dormand-Prince algorithm (Dormand & Prince 1980) based
on the fourth-order Runge-Kutta method. The other integral of
motion, that of energy, is used to maintain the precision of the
numerical procedure at AE/E ~ 107°. The numerical integra-
tion covers a time interval of ten billion years. The output data
are the moments of time, the corresponding values of the two
coordinates R and Z, and the values of the energy per unit mass.

The sequence of R, Z values taken for the same time yields
the projection of an orbit onto the meridional plane. As a dimen-
sionless measure of deviations from the plane of symmetry in
the motion of a test particle, one can use the so-called vertical
eccentricity (see Vidojevi¢ & Ninkovi¢ 2009)

Lozl +1z
o - 5(l a1|e | pl)’ a7

where |Z,] and |Z,| are the amplitudes of the distances to the
Galactic plane, which correspond to the extremal distances to the
symmetry axis R, and Ry, respectively, whereas Ry, is the arith-
metic mean between R, and R,. The R domain is divided into
three equal parts, and in the left and right parts the mean dis-
tances to the Galactic plane (|Z]) are determined and doubled. In
this way, the determination of the vertical eccentricity becomes
more robust because many orbits, especially those typical of halo
stars and in some cases of thick-disc ones, have rather compli-
cated forms, and a determination of |Z,| and |Z,|, as performed in
(Vidojevi¢ & Ninkovi¢ 2009), would be inappropriate for these
orbits, unlike typical thin-disc orbits, where the left and right
amplitudes in |Z| are easily recognisable.
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Fig. 7. Distribution of thin disc (left), thick disc (centre), and halo (right) for the HIPPARCOS sample. The distribution on the plane UV of
heliocentric velocities is shown in the first row, and on the plane VW in the second row.

The planar eccentricity, ep, a dimensionless measure of de-
viations from circular motion in the plane of symmetry, is de-
fined as

R, - R,

PTRAR, (38)

6.1. Detachment of halo stars and separation between
the thick disc and the thin disc

‘We assume that any star crossing the boundary of 70 kpc adopted
in the model of the Galaxy is a halo star. There are 13 such stars
in the sample, of which 5 have angular momentum that differs
from that of the Galactic rotation. Also, 26 other sample stars
with a Galactocentric V component of opposite sign to that of the
Galactic rotation are classified as halo stars. Stars of the Galactic
disc are expected to move around the Galactic centre in nearly
planar orbits so their vertical eccentricities should not be signif-
icant. For this reason, 25 stars in the sample with e, > 0.4 are
classified as halo stars. In the case of nearly planar orbits, stars
of the disc are not expected to have a very high interval of R so
a limit to the planar eccentricity should also exist. So 10 sample
stars with e, > 0.8 are classified halo stars. There is one sample
star (HD 80258 = HIP 44800) that, despite belonging to the halo
according to any criterion given above, is assigned to the halo
because its highest Z amplitude takes place almost in the mid-
dle of the interval in R. Therefore, we finally identify 75 (about
0.5%) halo stars.

The remaining stars belong to the Galactic disc. The varia-
tions in the shape and size of Galactocentric orbits for stars of
the Galactic disc are correlated with their eccentricities, and for
sufficiently high values of both e, and ey, the sides of the or-
bital trapezia become curvilinear. We identified an approximate
border where curving of the sides of orbital trapezia begins. We
present this border as a broken line in the e, versus e, plot for the

disc stars (Fig. 8). The equations of the straight lines containing
the segments are

¢, €10,02]: e, =-025¢,+0.15,

ep €10.2.0.5]: ey = ~0.33 ¢y +0.17. (39)

The vertex occurs at (0.2, 0.1). The points lying inside this bro-
ken line, 12,566 (95%), represent the stars of the thin disc, those
lying outside it, 599 (4.5%), the thick-disc ones. The elements
of the velocity ellipsoid, the mean heliocentric velocity compo-
nents, dispersions, and the vertex deviation with their uncertain-
ties for the halo, thick disc and thin disc are given in Table 3.
In the case of the mean values and dispersions, the uncertainties
correspond to the 95% confidence intervals, whereas the uncer-
tainty in the vertex deviation is determined following the formula
for error propagation.

There is no clear boundary between the thin and thick disc.
No abrupt change in the shape and size of their Galactocentric
orbits is found. From a small well-defined trapezium, the orbits
change gradually towards a large, especially in the R coordinate,
curvilinear trapezium. Therefore, the separation between the two
discs seems to be more difficult than the separation between the
thick disc and halo. The reason is that the thick disc belongs to
the Galactic disc, and is the disc population with the highest ve-
locity dispersion, unlike the halo, which is a separate subsystem
of the Milky Way.

7. Conclusions

We have described the properties of a sampling parameter used
to build a set of hierarchical subsamples. It has been related to
isolating integrals of the star motion, which take similar values
for stars of a specific population but that however differs from
those of other populations. However, no isolating integral alone
is capable of describing single populations, since true popula-
tion distributions overlap. In most situations, it is possible to use
a sampling parameter to allow us to build a family of nested sub-
samples, each one containing, at most, one additional population
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Table 3. Segregation of populations for GCS sample from the Galactic orbits of the stars.

Sample #S  Pop. oy oy oW U % w e[°]
GCS 12566  t95.0% 302+04 190+03 135+02 -96+06 -161+04 -7.1+£0.3 101
599 T4.5% 67.82‘::,) 40.93:; 46.2’:%:2 -164+£55 -524+33 -75+3.7 1+£2
13165 D99.5% 329+04 219+03 165+02 -99+06 -174+04 -7.1+03 10+ 1
75 HO0.5% 1653? 125f%‘7‘ 110fﬂ -69+2.1 -201+24 —-144+33 -9+7

to the others. Thus, by continuously increasing the sampling pa-
rameter, the new stars entering the subsample either belong to
a single population or are a mixture of two nearby populations.
Hence, in addition to the sampling parameter, a segregation al-
gorithm is needed to identify the constituent populations of the
mixture. The entropy of the population partition was studied as
a function of the sampling parameter, so that within a particular
interval of its graph, which we referred to as the plateau region, it
is possible to obtain a stable estimate of the mixture parameters.
The optimal estimation is associated with a local maximum of
entropy. Alternatively, the y? error of the mixture approach may
also be used to obtain an optimal segregation. The relationship
between the fitting error and the population entropy was anal-
ysed in detail. By using an appropriate sampling parameter, we
have proven that within a plateau region of the entropy graph, a
local entropy maximum occurs simultaneously with a local min-
imum of the ,\/2 error. Therefore, the combined statistical method
provides the optimal approximation mixture as well as the least
informative partition for estimating the kinematic parameters of
populations.

Several sampling parameters have been tested for stellar pop-
ulations of the solar neighbourhood. The sampling parameter
P = |(U, V,W)|, which is the absolute value of the heliocentric
velocity and a combination of the three basic integrals of mo-
tion, allows us to build an optimal subsample containing thin and
thick disc stars, by removing, for P = 230 km s~!. most of the
halo population. The sampling parameter P = |W| is the absolute
value of the perpendicular velocity and depends on the so called
Oort’s third integral, which is valid close the Galactic plane. It
can be used to build, for P = 180 kms~!, an optimal subsam-
ple containing a clearly defined mixture of total disc and halo
stars, although without allowing an optimal segregation of thin
and thick discs. The sampling parameter P = |(U, W)|, which is
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related to a combination of energy and angular momentum in-
tegrals, is far less stable than the others in estimating kinematic
populations, and allows us to isolate the thin disc component
from a component containing thick disc and halo stars altogether.
Finally, P = |V|, which is related to the angular momentum in-
tegral, is effective in a similar way as the absolute value of the
heliocentric velocity, but with lower accuracy.

The application of the method to the HIPPARCOS sam-
ple with the sampling parameter P = |(U, V, W)| has been car-
ried out to compare with previous results of Paper 1. The ap-
plication of our combined statistical method to true samples
leads to more accurate results. The optimal sample, obtained for
P =230 kms™', contains nearly all the local disc, while beyond
370 kms~! the samples include a significant part of the halo. We
mention that, according to Papers I and II, the thick disc began to
be included in the nested subsamples at an absolute heliocentric
velocity of about 85 kms~!, although the core of its distribution
started at around a velocity of 125 kms~!. Although they may
slightly vary depending on the sample, these values are consis-
tent with those obtained by Vidojevi¢ & Ninkovié (2008) for a
different stellar sample. According to MEMPHIS, the optimal
sample consists of about 92% of thin disc stars with velocity
dispersions (28.4 +0.6,15.6 +2.5,12.8 + 0.7) km s~! and vertex
deviation 10° + 2, and 8% thick disc stars with velocity disper-
sions (66.8 + 2.3,39.4 + 10.6,41.8 + 1.9) and nearly null ver-
tex deviation, 5° + 3. The differential rotation mean velocity is
54.6+3.4kms™!. On the other hand, the sampling parameter P =
|W| relates to a subsample containing stars with P < 65 kms™!
that includes nearly all the local disc population, while beyond
120 km s~! the samples contain a significant part of the halo. The
optimal sample is obtained for P = 180 kms~!, which represents
a mixture of total disc and halo. It consists of about 98% disc
stars, with velocity dispersions (32.7+1.1, 15.2+10.7, 16.4+0.4)
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and 8° = 5 of vertex deviation, and 2% halo stars, with velocity
dispersions (156.4 + 10.4, 88.5 £ 53.2,70.5 + 4.3) and vanishing
vertex deviation, —4° + 4. The shape of the halo velocity ellip-
soid is radially dominated, as expected near the Sun (Battaglia
et al. 2005; Thom et al. 2005). The differential rotation mean ve-
locity is 216.5 +20.8 km s~!. These population fractions have an
uncertainty of about 1%, which should be improved.

The use of the GCS sample had two motivations. First, the
sample has new and more accurate radial velocity data than the
HIPPARCOS sample. Second, while the HIPPARCOS sample is
unconstrained, in the sense that all available neighbouring stars
are included, the GCS sample should only contain disc repre-
sentative stars. For the sampling parameter P = |(U, V, W)|, the
optimal sample for a thin and thick disc mixture is also ob-
tained for P = 230 kms™!, and consists mostly of disc stars,
while beyond 375 kms™! the samples include a significant part
of the halo. The optimal sample consists of about 96% thin disc
stars, with velocity dispersions (30.6+0.4,17.5+1.4,15.2+0.3)
and 9° + 1 of vertex deviation, and of 4% of thick disc stars,
with velocity dispersions (68.8 +2.7,30.0 + 15.0,40.0 +2.0) and
vertex deviation 6° + 2. The differential rotation mean veloc-
ity is 66.6 + 4.4 kms~!. For the sampling parameter P = |W/|,
a subsample with P = 60 kms~! contains nearly all the disc
population, while beyond 120 km s~! the samples contain a sig-
nificant part of the halo. This values are very similar to those
derived for data from HIPPARCOS. The optimal sample is ob-
tained for P = 170 kms~'. It consists of a mixture of disc and
halo populations, i.e., has a composition of 99% disc stars, with
velocity dispersions (32.5 +0.7,17.8 £ 5.7,16.5 + 0.3) and ver-
tex deviation 8° + 4, and 1% halo stars, with velocity disper-
sions (151.0 + 14.7,107.9 £ 54.0,70.3 £ 5.7) and vanishing ver-
tex deviation, —3° + 7. The differential rotation mean velocity is
213.1 243 kms™.

By comparing the analysis of those results, the HIPPARCOS
sample appears to provide a more robust estimation of thick disc
and halo populations, although GCS provides more accurate es-
timates for the total disc and the thin disc. However, the larger
thin disc velocity dispersions inferred for the GCS sample sug-
gest that there may be a slight kinematic bias in the sample to-
wards older disc stars, as expected from the selection of stars
of F and K spectral types. Therefore, by working from the GCS
sample we do not achieve a dramatic improvement in measuring
the local kinematic parameters, and we preferred to use the mo-
ment estimates obtained from HIPPARCOS data to characterise
the local populations. We now attempt to justify this decision.

First, we note that the errors in the estimates correspond-
ing to the rotation velocity are greater than those of other
components. For GCS samples they are also greater than for
HIPPARCOS samples. There are basically two reasons. On the
one hand, when performing a disc-halo segregation, thin and thin
disc stars are combined into the population Pop-I, while halo
stars remain in Pop-II. Since thin and thick disc stars have a
significantly different rotation mean velocity, the Gaussian ap-
proach given by Pop-I produces error in this velocity compo-
nent. This is not so evident for the other velocity components
because they have almost the same mean values. In addition, the
GCS sample lags a part of the wing of the thin disc distribution,
mainly in the rotation direction, which leads to a greater error
in the Gaussian mixture approach. Holmberg et al. (2007) re-
mark that the velocity distribution is not similar to a two normal
mixture, although we are using a three normal mixture. We also
note that estimates for minor populations always have greater
uncertainties, leading, in this case, to poorer thick disc and halo
kinematic estimates.

For the same reason, the partial lag of early-type or younger
stars within the thin disc component of the GCS sample leads
to slightly greater thin-disc velocity dispersions than for the
HIPPARCOS sample. For the HIPPARCOS sample, those stars
had mostly been included (Paper I) in the nested subsamples up
to an absolute heliocentric velocity P < 51 km s~!. In total, there
are 10128 stars, from which 10 124 stars are contained within
the thin disc component (12 516 stars, Table 2). Therefore, they
represent 81% of the total thin disc. For the GCS sample, there
are instead 9568 stars with P < 51, from which 9564 stars
are also contained within the thin disc component (12415 stars,
Table 2). This is only 77% of the thin disc. Hence, the younger
stars, which are responsible for the lower value of the thin disc
velocity dispersions, are not weighted sufficiently highly in the
GCS catalogue, causing some characteristic dispersions to be bi-
ased towards older disc stars.

If we consider only the total disc and halo segregation ob-
tained either for HIPPARCOS or GCS samples by selecting the
subsamples from the absolute perpendicular velocity P = |W]|,
we see that both populations become saturated when enlarg-
ing the velocity samples, by increasing the sampling parameter.
This happens for Pop-I, which contains thin and thick disc stars,
as well as for Pop-II, containing halo stars. This is also quite
evident for disc stars when using from the absolute heliocen-
tric velocity P = |(U, V, W), although, with this parameter, the
halo then exhibits a continuously increasing estimate of velocity
dispersion. Therefore, it seems that the likely disc unsaturation
identified by Holmberg et al. (2007) has now been explained: the
apparent unsaturation was probably caused by some contamina-
tion by halo stars. By segregating the halo from the disc, we
obtain a stable estimate of the kinematical parameters for both
local Galactic components.

The above kinematical parameters are estimates of the distri-
bution moments of each stellar population. They have been used
to classify the stars into disjoint samples, thin disc, thick disc
and halo, and to compute their sample moments. For this pur-
pose, the previously determined mixture proportions were taken
as initial values of an iterative method, which is based on the
Bayesian probability of a star belonging to a particular popu-
lation, leading to a more accurate estimation of the population
fractions. Although the initial and final fractions are quite simi-
lar for the HIPPARCOS sample (final thin disc 91.5%, thick disc
7.3%, halo 1.2%), for the GCS sample (final thin disc 93.8%,
thick disc 5.7%, halo 0.5%) a small difference is significant, be-
cause the halo fraction is less than a half of that determined for
HIPPARCOS’ data. The resulting sample moments from both
catalogues are very similar. Thus, for the HIPPARCOS sample
the velocity dispersions are: thin disc (28.2+0.2, 16.9+0.2, 12.5+
0.1) kms™!, thick disc (69.3 + 1.3,37.9 + 0.9,42.9 + 0.9), and
halo (179.6 = 7.8,89.0 + 6.3,90.8 + 6.0). For the GCS sample
they are: thin disc (29.7 £ 0.2,17.8 £ 0.2,13.9 + 0.1), thick disc
(65.7+£1.5,36.7+1.1,41.5+0.9),and halo (178.6 +12.2,113.7+
15.0,110.5 + 14.2). The HIPPARCOS sample data set provides
more accurate estimates of the different population parameters
for thick disc and halo stars. To check the reliability of the
MEMPHIS algorithm results, the GCS sample has also been
segregated by using a totally different kinematical approach ac-
cordingly to Vidojevi¢ & Ninkovié¢ (2009). The stars have been
classified into kinematic populations in terms of their orbital pa-
rameters. They are derived in a similar way from the sampling
parameters, and are also related to the integrals of the star mo-
tion. Each orbital parameter cannot be used in isolation to as-
sign a star to a specific population, and they must be based on a
prior characterisation of the kinematic populations. The results
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are found to be mostly consistent, although, for the thin disc,
the mixture model tends to infer smaller values of o,, which are
balanced by higher values of the rotation differential velocity
between thin and thick discs. Our mixture proportions and kine-
matic parameters represent our attempts to improve the currently
accepted values for the main Galactic components (e.g., Reddy
et al. 2006; Freeman & Bland-Hawthorn 2002; Helmi 2008), in
particular, those of the halo.

The mixture proportions for the GCS sample are also consis-
tent with those of Nordtrom et al. (2004), Holmberg et al. (2007),
and Famaey et al. (2007). We find that the halo represents about
0.4—-0.5%, and the thick disc would have a contribution of about
4.1-5.7% of the whole sample (these authors suggest about 1%
and 3%, respectively). Then, according to our kinematical es-
timates, some assumed halo stars are found to be instead thick
disc stars. This may be caused by the exclusion of halo stars from
[Fe/H] < —0.5 (Famaey et al. 2007). Our accurate estimation of
the population fractions has labelled 62 halo stars, from which
60 stars have [Fe/H] < —0.5, 1 star (Hipp. number 103 311) has
[Fe/H] = —0.07, and 1 star has no metalicity value at all (Hipp.
number 24 186). However, we emphasise that within the thick
disc component a fraction of 33% stars have [Fe/H] < -0.5,
and, within the thin disc, a fraction of 7% stars have this metal-
icity yet.

Finally, for the multivariate mixture model, it appears that
the results for the HIPPARCOS sample have provided a more
complete kinematical description of the local stellar populations
than those of the GCS sample, despite the greater accuracy of ra-
dial velocities in the latter sample. The preselection of the GCS
sample, to derive a representative disc sample, may have par-
tially masked the true characteristics of the velocity distribution,
or, at least, has weakened the MEMPHIS working hypothesis
of less informative partial distributions. In contrast, the uncon-
strained HIPPARCOS sample has enabled our algorithm to per-
form its statistical analysis and achieve a more robust estimation
of the various population kinematical parameters.

When applying Conan Doyle’s suggestion “Some facts
should be suppressed, or, at least, a just sense of proportion
should be observed in treating them”, the first question arising
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might be “which ones of the facts?”. In our present approach,
our response may well have been: let the statistics do the work.
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