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Abstract

Distance-regular graphs have been a key concept in Algebraic Combinatorics and have
given place to several generalizations, such as association schemes. Motivated by spec-
tral and other algebraic characterizations of distance-regular graphs, we study ‘almost
distance-regular graphs’. We use this name informally for graphs that share some
regularity properties that are related to distance in the graph. For example, a known
characterization of a distance-regular graph is the invariance of the number of walks of
given length between vertices at a given distance, while a graph is called walk-regular
if the number of closed walks of given length rooted at any given vertex is a constant.
One of the concepts studied here is a generalization of both distance-regularity and
walk-regularity called m-walk-regularity. Another studied concept is that of m-partial
distance-regularity, or informally, distance-regularity up to distance m. Using eigen-
values of graphs and the predistance polynomials, we discuss and relate these and
other concepts of almost distance-regularity, such as their common generalization of
(`,m)-walk-regularity. We introduce the concepts of punctual distance-regularity and
punctual walk-regularity as a fundament upon which almost distance-regular graphs
are built. We provide examples that are mostly taken from the Foster census, a col-
lection of symmetric cubic graphs. Two problems are posed that are related to the
question of when almost distance-regular becomes whole distance-regular. We also
give several characterizations of punctually distance-regular graphs that are general-
izations of the spectral excess theorem.

∗Research supported by the Ministerio de Educación y Ciencia, Spain, and the European Regional
Development Fund under project MTM2008-06620-C03-01 and by the Catalan Research Council under
project 2005SGR00256.
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1 Introduction

Distance-regular graphs [4] have been a key concept in Algebraic Combinatorics [17] and
have given place to several generalizations, such as association schemes [21]. Motivated
by spectral [8] and other algebraic [10] characterizations of distance-regular graphs, we
study ‘almost distance-regular graphs’. We use this name informally for graphs that share
some regularity properties that are related to distance in the graph. For example, a known
characterization (by Rowlinson [24]) of a distance-regular graph is the invariance of the
number of walks of given length between vertices at a given distance. Godsil and McKay
[18] called a graph walk-regular if the number of closed walks of given length rooted at
any given vertex is a constant, cf. [17, p. 86]. One of the concepts studied here is a
generalization of both distance-regularity and walk-regularity called m-walk-regularity, as
introduced in [6]. Another studied concept is that of m-partial distance-regularity, or
informally, distance-regularity up to distance m. Formally, it means that for i ≤ m, the
distance-i matrix can be expressed as a polynomial of degree i in the adjacency matrix.
Related to this are two other generalizations of distance-regular graphs. Weichsel [27]
introduced distance-polynomial graphs as those graphs for which each distance-i matrix
can be expressed as a polynomial in the adjacency matrix. Such graphs were also studied
by Beezer [2]. A graph is called distance degree regular if each distance-i graph is regular.
Such graphs were studied by Bloom, Quintas, and Kennedy [3], Hilano and Nomura [19],
and also by Weichsel [27] (as super-regular graphs).

This paper is organized as follows. In the next section we give the basic background for
our paper. This includes our two main tools: eigenvalues of graphs and their predistance
polynomials. In Section 3, we discuss several concepts of almost distance-regularity, such
as partial distance-regularity in Section 3.2 and m-walk-regularity in Section 3.4. These
concepts come together in Section 3.5, where we discuss (`,m)-walk-regular graphs, as
introduced in [7]. Sections 3.1 and 3.3 are used to introduce the concepts of punctual
distance-regularity and punctual walk-regularity. These form the fundament upon which
almost distance-regular graphs are built. Illustrating examples are mostly taken from the
Foster census [25], a collection of symmetric cubic graphs that we checked by computer for
almost distance-regularity. In Section 3 we also pose two problems. Both are related to the
question of when almost distance-regular becomes whole distance-regular. The spectral
excess theorem [12] is also of this type: it states that a graph is distance-regular if for each
vertex, the number of vertices at extremal distance is the right one (i.e., some expression
in terms of the eigenvalues), cf. [9, 14]. In Section 4 we give several characterizations
of punctually distance-regular graphs that have the same flavor as the spectral excess
theorem. We will show in Section 5 that these results are in fact generalizations of the
spectral excess theorem. In this final section we focus on the case of graphs with spectrally
maximum diameter (distance-regular graphs are such graphs).
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2 Preliminaries

In this section we give the background on which our study is based. We would like to stress
that in this paper we restrict to simple, connected, and regular graphs, unless we explicitly
mention differently. First, let us recall some basic concepts and define our generic notation
for graphs.

2.1 Spectra of graphs and walk-regularity

Throughout this paper, G = (V,E) denotes a simple, connected, δ-regular graph, with
order n = |V | and adjacency matrix A. The distance between two vertices u and v is
denoted by ∂(u, v), so that the eccentricity of a vertex u is ecc(u) = maxv∈V ∂(u, v) and
the diameter of the graph is D = maxu∈V ecc(u). The set of vertices at distance i, from
a given vertex u ∈ V is denoted by Γi(u), for i = 0, 1, . . . , D. The degree of a vertex u is
denoted by δ(u) = |Γ1(u)|. The distance-i graph Gi is the graph with vertex set V and
where two vertices u and v are adjacent if and only if ∂(u, v) = i in G. Its adjacency matrix
Ai is usually referred to as the distance-i matrix of G. The spectrum of G is denoted by

spG = spA = {λm0
0 , λm1

1 , . . . , λmd
d },

where the different eigenvalues of G are in decreasing order, λ0 > λ1 > · · · > λd, and the
superscripts stand for their multiplicities mi = m(λi). In particular, note that λ0 = δ,
m0 = 1 (since G is connected and δ-regular) and m0 + m1 + · · ·+ md = n.

For a given ordering of the vertices of G, the vector space of linear combinations (with
real coefficients) of the vertices is identified with Rn, with canonical basis {eu : u ∈ V }.
Let Z =

∏d
i=0(x − λi) be the minimal polynomial of A. The vector space Rd[x] of real

polynomials of degree at most d is isomorphic to R[x]/(Z). For every i = 0, 1, . . . , d,
the orthogonal projection of Rn onto the eigenspace Ei = Ker(A − λiI) is given by the
Lagrange interpolating polynomial

λ∗i =
1
φi

d∏
j=0

j 6=i

(x− λj) =
(−1)i

πi

d∏
j=0

j 6=i

(x− λj)

of degree d, where φi =
∏d

j=0,j 6=i(λi − λj) and πi = |φi|. These polynomials satisfy
λ∗i (λj) = δij . The matrices Ei = λ∗i (A), corresponding to these orthogonal projections,
are the (principal) idempotents of A, and satisfy the known properties: EiEj = δijEi;
AEi = λiEi; and p(A) =

∑d
i=0 p(λi)Ei, for any polynomial p ∈ R[x] (see e.g. Godsil [17,

p. 28]). The (u-)local multiplicities of the eigenvalue λi are defined as

mu(λi) = ‖Eieu‖2 = 〈Eieu, eu〉 = (Ei)uu (u ∈ V ; i = 0, 1, . . . , d),

and satisfy
∑d

i=0 mu(λi) = 1 and
∑

u∈V mu(λi) = mi, i = 0, 1, . . . , d (see Fiol and Garriga
[12]).

3



Related to this concept, we say that G is spectrum-regular if, for any i = 0, 1, . . . , d, the
u-local multiplicity of λi does not depend on the vertex u. Then, the above equations imply
that the (standard) multiplicity ‘splits’ equitably among the n vertices, giving mu(λi) =
mi/n.

By analogy with the local multiplicities, which correspond to the diagonal entries of
the idempotents, Fiol, Garriga, and Yebra [16] defined the crossed (uv-)local multiplicities
of the eigenvalue λi, denoted by muv(λi), as

muv(λi) = 〈Eieu, Eiev〉 = 〈Eieu, ev〉 = (Ei)uv (u, v ∈ V ; i = 0, 1, . . . , d).

(Thus, in particular, muu(λi) = mu(λi).) These parameters allow us to compute the
number of walks of length ` between two vertices u, v in the following way:

a(`)
uv = (A`)uv =

d∑

i=0

muv(λi)λ`
i (` = 0, 1, . . .). (1)

Conversely, given the eigenvalues from which we compute the polynomials λ∗i , and the
tuple Cuv = (a(0)

uv , a
(1)
uv , . . . , a

(d)
uv ), we can obtain the crossed local multiplicities. With

this aim, let us introduce the following notation: given a polynomial p =
∑d

i=0 ζix
i, let

p(Cuv) =
∑d

i=0 ζia
(i)
uv . Thus,

muv(λi) = (Ei)uv = (λ∗i (A))uv = λ∗i (Cuv) (i = 0, 1, . . . , d). (2)

Let a
(`)
u denote the number of closed walks of length ` rooted at vertex u, that is,

a
(`)
u = a

(`)
uu. If these numbers only depend on `, for each ` ≥ 0, then G is called walk-regular

(a concept introduced by Godsil and McKay [18]). In this case we write a
(`)
u = a(`). Notice

that, as a
(2)
u = δ(u), the degree of vertex u, a walk-regular graph is necessarily regular. By

(1) and (2) it follows that spectrum-regularity and walk-regularity are equivalent concepts.
It also shows that the existence of the constants a(0), a(1), . . . , a(d) suffices to assure walk-
regularity. As it is well known, any distance-regular graph as well as any vertex-transitive
graph is walk-regular, but the converse is not true.

2.2 The predistance polynomials and distance-regularity

A graph is called distance-regular if there are constants ci, ai, bi such that for any i =
0, 1, . . . , D, and any two vertices u and v at distance i, among the neighbours of v, there
are ci at distance i − 1 from u, ai at distance i, and bi at distance i + 1. In terms of the
distance matrices Ai this is equivalent to

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 (i = 0, 1, . . . , D)

(with b−1 = cD+1 = 0). From this recurrence relation, one can obtain the so-called distance
polynomials pi. These are such that deg pi = i and Ai = pi(A), i = 0, 1, . . . , D.
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From the spectrum of a given (arbitrary) graph, spG = {λm0
0 , λm1

1 , . . . , λmd
d }, one can

generalize the distance polynomials of a distance-regular graph (to a certain extent) by
considering the following scalar product in Rd[x]:

〈p, q〉 =
1
n

tr(p(A)q(A)) =
1
n

d∑

i=0

mip(λi)q(λi). (3)

Then, by using the Gram-Schmidt method and normalizing appropriately, it is immediate
to prove the existence and uniqueness of an orthogonal system of so-called predistance
polynomials {pi}0≤i≤d satisfying deg pi = i and 〈pi, pj〉 = δijpi(λ0) for any i, j = 0, 1, . . . d.
For details, see Fiol and Garriga [12, 13].

As every sequence of orthogonal polynomials, the predistance polynomials satisfy a
three-term recurrence of the form

xpi = βi−1pi−1 + αipi + γi+1pi+1 (i = 0, 1, . . . , d), (4)

where the constants βi−1, αi, and γi+1 are the Fourier coefficients of xpi in terms of pi−1,
pi, and pi+1, respectively (and β−1 = γd+1 = 0), initiated with p0 = 1 and p1 = x. Let ωk

be the leading coefficient of pk. Then, from the above recurrence, it is immediate that

ωk =
1

γ1γ2 · · · γk
. (5)

In general, we define the preintersection numbers ξk
ij , with i, j, k = 0, 1, . . . d, as the Fourier

coefficients of pipj in terms of the basis {pk}0≤k≤d; that is:

ξk
ij =

〈pipj , pk〉
‖pk‖2

=
1

npk(λ0)

d∑

l=0

mlpi(λl)pj(λl)pk(λl). (6)

With this notation, notice that the constants in (4) correspond to the preintersection
numbers αi = ξi

1,i, βi = ξi
1,i+1, and γi = ξi

1,i−1. As expected, when G is distance-
regular, the predistance polynomials and the preintersection numbers become the dis-
tance polynomials and the intersection numbers pk

ij = |Γi(u) ∩ Γj(v)|, ∂(u, v) = k, for
i, j, k = 0, 1, . . . , D(= d). For an arbitrary graph we say that the intersection number pk

ij

is well defined if |Γi(u) ∩ Γj(v)| is the same for all vertices u, v at distance k, and we let
ai = pi

1,i, bi = pi
1,i+1, and ci = pi

1,i−1. From a combinatorial point of view, we would like
many of these intersection numbers to be well defined, in order to call a graph almost
distance-regular.

Note that not all properties of the distance polynomials of distance-regular graphs hold
for the predistance polynomials. The crucial property that is not satisfied in general is
that of the equations Ai = pi(A). In fact, informally speaking we will ‘measure’ almost
distance-regularity by how much the matrices Ai look like the matrices pi(A). Walk-
regular graphs, for example, were characterized by Dalfó, Fiol, and Garriga [6] as those
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graphs for which the matrices pi(A), i = 1, . . . , d, have null diagonals (as have the matrices
Ai, i = 1, . . . , d).

A property that holds for all graphs is that the sum of all predistance polynomials
gives the Hoffman polynomial H:

H =
d∑

i=0

pi =
n

π0

d∏

i=1

(x− λi) = nλ∗0, (7)

which characterizes regular graphs by the condition H(A) = J , the all-1 matrix [20]. Note
that (7) implies that ωd = n

π0
. It can also be used to show that αi + βi + γi = λ0 = δ for

all i.

For bipartite graphs we observe the following facts. Because the eigenvalues are sym-
metric about zero (λi = −λd−i and mi = md−i, 0 ≤ i ≤ d), we have 〈xpi, pi〉 = 0 from (3),
and therefore αi = 0 for all i. It then follows from (4) that the predistance polynomials pi

are even for even i, and odd for odd i. Using (6), this implies among others that ξk
ij = 0 if

i + j + k is odd. It also follows that γd = λ0 = δ. Finally, the Hoffman polynomial splits
into an even part H0 =

∑
i p2i and an odd part H1 = H−H0, and these have the property

that (H0)uv = 1 if u and v are in the same part of the bipartition, and (H1)uv = 1 if u
and v are in different parts.

2.3 The adjacency algebra and the distance algebra

Given a graph G, the set A = {p(A) : p ∈ R[x]} is a vector space of dimension d + 1 and
also an algebra with the ordinary product of matrices, known as the adjacency or Bose-
Mesner algebra, and {I, A, . . . , Ad} is a basis of A. Since I,A,A2, . . . ,AD are linearly
independent, we have that dimA = d + 1 ≥ D + 1 and therefore the diameter is at most
d. A natural question is to enhance the case when equality is attained; that is, D = d. In
this case, we say that the graph G has spectrally maximum diameter.

Let D be the linear span of the set {A0, A1, . . . ,AD}. The (D +1)-dimensional vector
space D forms an algebra with the entrywise or Hadamard product of matrices, defined
by (X ◦ Y )uv = XuvY uv. We call D the distance ◦-algebra.

In the following sections, we will work with the vector space T = A + D, and relate
the distance-i matrices Ai ∈ D with the matrices pi(A) ∈ A. Note that I, A, and J
are matrices in A ∩ D since J = H(A) ∈ A. Thus, dim(A ∩ D) ≥ 3, if G is not a
complete graph (in this exceptional case J = I + A). Note that A = D if and only if G
is distance-regular, which is therefore equivalent to dim(A ∩ D) = d + 1. For this reason,
the dimension of A ∩ D (compared to D and d) can also be seen as a measure of almost
distance-regularity.

One concept of almost distance-regularity related to this was introduced by Weichsel
[27]: a graph is called distance-polynomial if D ⊂ A, that is, if each distance matrix is a
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polynomial in A. Hence a graph is distance-polynomial if and only if dim(A∩D) = D+1.

Note that for any pair of (symmetric) matrices R, S ∈ T , we have

tr(RS) =
∑

u∈V

(RS)uu =
∑

u∈V

∑

v∈V

RuvSvu = sum(R ◦ S).

Thus, we can define a scalar product in T in two equivalent forms:

〈R, S〉 =
1
n

tr(RS) =
1
n

sum(R ◦ S).

In A, this scalar product coincides with the scalar product (3) in R[x]/(Z), in the sense
that 〈p(A), q(A)〉 = 〈p, q〉. Observe that the factor 1/n assures that ‖I‖2 = 〈1, 1〉 = 1.
Note also that ‖Ai‖2 = δi (the average degree of Gi), whereas ‖pi(A)‖2 = pi(λ0).

Association schemes are generalizations of distance-regular graphs that will provide
almost distance-regular graphs. A (symmetric) association scheme can be defined as a
set of symmetric (0, 1)-matrices (graphs) {B0 = I,B1, . . . , Be} adding up to the all-1
matrix J , and whose linear span is an algebra B (with the ordinary product), called the
Bose-Mesner algebra. In the case of distance-regular graphs, the distance-matrices Ai

form an association scheme. For more on association schemes, we refer to a recent survey
by Martin and Tanaka [21].

3 Different concepts of almost distance-regularity

In this section we introduce some concepts of almost distance-regular graphs, together with
some characterizations. We begin with some closely related ‘local concepts’ concerning
distance-regular and distance-polynomial graphs.

3.1 Punctually distance-polynomial and punctually distance-regular
graphs

We say that a graph G is h-punctually distance-polynomial for some integer h ≤ D, if
Ah ∈ A; that is, there exists a polynomial qh ∈ Rd[x] such that qh(A) = Ah. Obviously,
deg qh ≥ h. In case of equality, i.e., if deg qh = h, we call the graph h-punctually distance-
regular. Notice that, since A0 = I and A1 = A, every graph is 0-punctually distance-
regular (q0 = 1) and 1-punctually distance-regular (q1 = x). In general, we have the
following result.

Lemma 3.1 Let h ≤ D and let G be h-punctually distance-polynomial, with Ah = qh(A).
Then the distance-h graph Gh is regular of degree qh(λ0) = ‖qh‖2. If deg qh = h (G is
h-punctually distance-regular), then qh = ph, the predistance polynomial of degree h. If
deg qh > h, then deg qh > D.
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Proof. Let j denote the all-1 vector. Because Ahj = qh(A)j = qh(λ0)j, the graph Gh is
regular with degree qh(λ0) = 1

n tr(A2
h) = ‖Ah‖2 = ‖qh‖2. Moreover, for every polynomial

p ∈ Rh−1[x], we have 〈qh, p〉 = 〈Ah, p(A)〉 = 0. Thus, if deg qh = h, we must have qh = ph

by the uniqueness of the predistance polynomials. If h < deg qh = i ≤ D and qh has
leading coefficient ςi then we would have (qh(A))uv = ςia

(i)
uv 6= 0 for any two vertices u, v

at distance i, which contradicts (qh(A))uv = (Ah)uv = 0. ¤

This lemma implies that the concepts of h-punctually distance-polynomial and h-
punctually distance-regular are the same for graphs with spectrally maximum diameter
D = d. We will consider such graphs in more detail in Section 5.

Any polynomial of degree at most d is a linear combination of the polynomials p0, . . . , pd.
If Ah = qh(A), then clearly qh is a linear combination of the polynomials ph, . . . , pd. For
example, in the case of a graph with D = 2 (which is always distance-polynomial; see the
next section), we have A2 = q2(A), with q2 = p2 + · · ·+ pd.

On the other hand, if ph(A) is a linear combination of the distance-matrices Ai, i =
0, 1, . . . , D, then we have the following.

Lemma 3.2 Let h ≤ d. If ph(A) ∈ D, then h ≤ D and G is h-punctually distance-regular.

Proof. If ph(A) ∈ D, then ph(A) =
∑h

i=0 ζiAi for some ζi, i = 0, 1, . . . , h. Note
first that 〈Ai, pi(A)〉 = 1

n

∑
∂(u,v)=i(pi(A))uv = ωi

n

∑
∂(u,v)=i(A

i)uv 6= 0 for i ≤ D. Now
it follows that 0 = 〈ph(A), p0(A)〉 = ζ0〈A0, p0(A)〉 and hence that ζ0 = 0. By using
that 0 = 〈ph(A), pi(A)〉 one can similarly show by induction that ζi = 0 for i < h. If
h > D, then this implies that ph(A) = O, which is a contradiction. Hence h ≤ D
and Ah = 1

ζh
ph(A). By Lemma 3.1 it then follows that Ah = ph(A), i.e., that G is

h-punctually distance-regular. ¤

Graph F026A from the Foster Census [25] is an example of a (bipartite) graph with
D = d = 5, that is h-punctually distance-regular for h = 2 and 4, but not for h = 3 and 5.
It is interesting to observe, however, that the intersection number c5 = 3 is well defined,
whereas |Γ1(u) ∩ Γ3(v)| = 2 or 3 for ∂(u, v) = 4, so c4 is not well defined. Thus, there
does not seem to be a combinatorial interpretation in terms of intersection numbers of the
algebraic definition of punctual distance-regularity. In the next section, the combinatorics
will return.

3.2 Partially distance-polynomial and partially distance-regular graphs

A graph G is called m-partially distance-polynomial if Ah = qh(A) ∈ A for every h ≤ m
(that is, G is h-punctually distance-polynomial for every h ≤ m). If each polynomial
qh has degree h, for h ≤ m, we call the graph m-partially distance-regular (that is, G is
h-punctually distance-regular for every h ≤ m). In this case, Ah = ph(A) for h ≤ m, by
Lemma 3.1.
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Alternatively, and recalling the combinatorial properties of distance-regular graphs, we
can say that a graph is m-partially distance-regular when the intersection numbers ci, ai,
bi up to cm are well defined, i.e., the distance matrices satisfy the recurrence

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 (i = 0, 1, . . . ,m− 1).

From this we have the following lemma, which may be useful in finding examples of m-
partially distance-regular graphs with large m.

Lemma 3.3 If G has girth g, then G is m-partially distance-regular with m = bg−1
2 c.

Proof. Just note that if the girth is g then there is a unique shortest path between any
two vertices at distance at most m = bg−1

2 c. Hence the intersection parameters ci, bi, and
ai up to cm are well defined; indeed, if G has degree δ, then ci = 1, 1 ≤ i ≤ m; ai = 0,
0 ≤ i ≤ m− 1; and b0 = δ, bi = δ − 1, 1 ≤ i ≤ m− 1. ¤

Generalized Moore graphs are regular graphs with girth at least 2D − 1, cf. [22, 26].
By Lemma 3.3, such graphs are (D − 1)-partially distance-regular. Only few examples of
generalized Moore graphs that are not distance-regular are known.

It is clear that every D-partially distance-polynomial graph is distance-polynomial,
and every D-partially distance-regular graph is distance-regular (in which case d = D).
In fact, the conditions can be slightly relaxed as follows.

Proposition 3.4 If G is (D − 1)-partially distance-polynomial, then G is distance-
polynomial. If G is (d− 1)-partially distance-regular, then G is distance-regular.

Proof. Let G be (D − 1)-partially distance-polynomial, with Ah = qh(A), h ≤ D − 1.
Then by using the expression for the Hoffman polynomial in (7), we have:

AD +
D−1∑

h=0

qh(A) =
D∑

h=0

Ah = J = H(A),

so that AD = qD(A), where qD = H −∑D−1
h=0 qh, and G is distance-polynomial.

Similarly, if G is (d − 1)-partially distance-regular, then from Ad +
∑d−1

i=0 pi(A) =∑d
i=0 Ai = H(A), we get Ad = pd(A), and G is distance-regular. ¤

In particular, Proposition 3.4 implies the observation by Weichsel [27] that every (reg-
ular) graph with diameter two is distance-polynomial.

The distinction between D and d in Proposition 3.4 is essential. A (D − 1)-partially
distance-regular graph is not necessarily distance-regular. In fact, Koolen and Van Dam
[private communication] observed that the direct product of the folded (2D − 1)-cube [4,
p. 264] and K2 is (D−1)-partially distance-regular with diameter D, but aD−1 is not well
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defined. Note that these graphs also occur as so-called boundary graphs in related work
[16].

It would also be interesting to find examples of m-partially distance-regular graphs
with m equal (or close) to d − 2 that are not distance-regular (for all d), is these exist.
More specifically, we pose the following problem.

Problem 1 Determine the smallest m = mpdr(d) such that every m-partially distance-
regular graph with d + 1 distinct eigenvalues is distance-regular.

For bipartite graphs, the result in Proposition 3.4 can be improved as follows.

Proposition 3.5 Let G be bipartite. If G is (D−2)-partially distance-polynomial, then G
is distance-polynomial. If G is (d−2)-partially distance-regular, then G is distance-regular.

Proof. Similar as the proof of Proposition 3.4; instead of the Hoffman polynomial, one
should use its even and odd parts H0 and H1. ¤

It is interesting to note that a graph with D = d that is D-punctually distance-regular
must be distance-regular. This result is a small part in the proof of the spectral excess
theorem, cf. [9, 14]. We will generalize this in Proposition 3.7 by showing that we do not
need to have h-punctual distance-regularity for all h ≤ m to obtain m-partial distance-
regularity. The following lemma is a first step in this direction.

Lemma 3.6 Let d − m < s ≤ m ≤ D and let G be h-punctually distance-regular for
h = m− s + 1, . . . ,m. Then G is (m− s)-punctually distance-regular.

Proof. By the assumption, we have Am−s+1 = pm−s+1(A), . . . , Am = pm(A), and we
want to show that pm−s(A) = Am−s. We therefore check the entry uv in pm−s(A), and
distinguish the following three cases:

(a) For ∂(u, v) > m− s, we have (pm−s(A))uv = 0.

(b) For ∂(u, v) < m− s, we use the equation xpm−s+1 = βm−spm−s + αm−s+1pm−s+1 +
γm−s+2pm−s+2, which gives us AAm−s+1 = βm−spm−s(A) + αm−s+1Am−s+1 +
γm−s+2Am−s+2 (in case s = 1 we have m = d and then the last term vanishes),
and hence that

(pm−s(A))uv =
1

βm−s
(AAm−s+1)uv =

1
βm−s

∑

w∈Γ1(u)

(Am−s+1)wv = 0,

since ∂(v, w) ≤ ∂(v, u) + ∂(u, w) < m− s + 1 for the relevant w.
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(c) For ∂(u, v) = m − s, we claim that (pi(A))uv = 0 for i 6= m − s. This is clear if
i < m− s and also if m− s + 1 ≤ i ≤ m, because then (pi(A))uv = (Ai)uv = 0. So,
we only need to check that the entries (pm+1(A))uv, (pm+2(A))uv, . . . , (pd(A))uv are
zero. To do this, we will show by induction that (pm+i(A))yz = 0 if ∂(y, z) < m− i
and i = 0, . . . , d−m. For i = 0 this is clear. For i = 1, this follows from the equation
AAm = βm−1Am−1 +αmAm +γm+1pm+1(A) and a similar argument as in case (b).
The induction step then follows similarly: if ∂(y, z) < m− i− 1, then the equation

γm+i+1pm+i+1(A) = Apm+i(A)− αm+ipm+i(A)− βm+i−1pm+i−1(A)

and induction show that (pm+i+1(A))yz = 0.

Thus our claim is proven, and by taking the entry uv in the equation

pm−s(A) = J −
∑

i6=m−s

pi(A),

we have (pm−s(A))uv = 1.

Joining (a), (b), and (c), we obtain that pm−s(A) = Am−s. ¤

Proposition 3.7 Let dd/2e ≤ m ≤ D. Then G is m-partially distance-regular if and only
if G is h-punctually distance-regular for h = 2m− d, . . . , m.

Proof. This follows from applying Lemma 3.6 repeatedly for s = d−m+1, . . . , m. ¤

As mentioned, this is a generalization of the following, which follows by taking m =
D = d.

Corollary 3.8 [15] Let G be a graph with spectrally maximum diameter D = d. Then G
is distance-regular if and only if it it D-punctually distance-regular.

The following is a new variation on this theme. Note that we will get back to the case
D = d in Section 5.

Corollary 3.9 Let G be a graph with spectrally maximum diameter D = d. Then G
is distance-regular if and only if it it (D − 1)-punctually distance-regular and (D − 2)-
punctually distance-regular.

3.3 Punctually walk-regular and punctually spectrum-regular graphs

In a similar way as in the previous sections, we will now generalize the concept of walk-
regularity. We say that a graph G is h-punctually walk-regular, for some h ≤ D, if for
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every ` ≥ 0 the number of walks of length ` between a pair of vertices u, v at distance h

does not depend on u, v. If this is the case, we write a
(`)
uv = (A`)uv = a

(`)
h .

Similarly, we say that a graph G is h-punctually spectrum-regular for a given h ≤ D if,
for any i ≤ d, the crossed uv-local multiplicities of λi are the same for all vertices u, v at
distance h. In this case, we write muv(λi) = mhi. Notice that, for h = 0, these concepts
are equivalent, respectively, to walk-regularity and spectrum-regularity. As we saw, the
latter two are also equivalent to each other. In fact, as an immediate consequence of (1)
and (2), the analogous result holds for any given value of h.

Lemma 3.10 Let h ≤ D. Then G is h-punctually walk-regular if and only if it is h-
punctually spectrum-regular.

The following lemma turns out to be very useful for checking punctual walk-regularity;
we will use this in the proofs of Propositions 3.21 and 5.4.

Lemma 3.11 Let h ≤ D. If the number of walks in G of length ` between vertices u and
v depends only on ∂(u, v) = h, for each ` ≤ d− 1, or, if G is bipartite, for each ` ≤ d− 2,
then G is h-punctually walk-regular.

Proof. By using the Hoffman polynomial H we know that
π0

n
H(A) = Ad + ηd−1A

d−1 + · · ·+ η0I =
π0

n
J . (8)

Let u, v be vertices at distance h. Then the existence of the constants a
(`)
h , ` ≤ d − 1,

assures that
a(d)

uv = (Ad)uv =
π0

n
− ηd−1a

(d−1)
h − · · · − η0a

(0)
h

is also constant. From the fact that {I, A, . . . ,Ad} is a basis of A, it then follows that G
is h-punctually distance-regular. Now let G be bipartite. If h and d have the same parity,
then a

(d−1)
h = 0, and the result follows as in the general case. If h and d have different

parities, then a
(d)
h = 0. Now it follows from (8) that if a

(`)
uv is a constant for ` ≤ d − 2,

then a
(d−1)
uv also is. Here we use that ηd−1 = δ 6= 0 because G is bipartite (and hence

λi = −λd−i, 0 ≤ i ≤ d). Hence G is h-punctually distance-regular. ¤

Next we will show that 1-punctual walk-regularity implies walk-regularity. Later we
will generalize this result in Proposition 3.24.

Proposition 3.12 Let G be 1-punctually walk-regular. Then G is walk-regular (and
spectrum-regular) with a

(`)
0 = δa

(`−1)
1 for ` > 1, and m1i = λi

λ0

mi
n for i = 0, 1, . . . , d.

Proof. For a vertex u and ` > 0 we have that a
(`)
uu = (A`)uu =

∑
v∈Γ1(u)(A

`−1)uv =

δa
(`−1)
1 , which shows that G is walk-regular with a

(`)
0 = δa

(`−1)
1 . Then G is also 1-

punctually spectrum-regular and spectrum-regular by Lemma 3.1, and then λ0m1i =∑
v∈Γ1(u)(Ei)vu = (AEi)uu = λi(Ei)uu = λi

mi
n , which finishes the proof. ¤
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Interesting examples of punctually walk-regular graphs can be obtained from associa-
tion schemes.

Proposition 3.13 Let {B0 = I,B1, . . . , Be} be an association scheme and let G be one
of the graphs in this scheme. If also its distance-h graph Gh is in the scheme, then G is
h-punctually walk-regular.

Proof. By the assumption there are i, k such that A = Bi and Ah = Bk. Let u, v be
vertices at distance h in G. Because the Bose-Mesner algebra B is closed under ordinary
product, there are constants cj` such that

(A`)uv = (B`
i)uv = (

e∑

j=0

cj`Bj)uv = ck`.

So G is h-punctually walk-regular. ¤

In fact, this proposition shows that any graph in an association scheme is h-punctually
walk-regular for h = 0 (A0 = B0) and h = 1 (A1 = Bi). Note that because of our
restriction in this paper to connected graphs, we should (formally speaking) say that
each of the connected components of a graph in an association scheme is h-punctually
walk-regular for h = 0, 1. Specific examples with other h will show up in the next section.

3.4 m-Walk-regular graphs

In [6], the concept of m-walk-regularity was introduced: for a given integer m ≤ D, we
say that G is m-walk-regular if the number of walks a

(`)
uv of length ` between vertices u and

v only depends on their distance h, provided that h ≤ m. In other words, G is m-walk-
regular if it is h-punctually walk-regular for every h ≤ m. Obviously, 0-walk-regularity is
the same concept as walk-regularity.

Similarly, a graph is called m-spectrum-regular graph if it is h-punctually spectrum-
regular for all h ≤ m. By Lemma 3.10, this is equivalent to m-walk-regularity. Moreover,
in [6], m-walk-regular graphs were characterized as those graphs for which Ai looks the
same as pi(A) for every i when looking through the ‘window’ defined by the matrix
A0 + A1 + · · ·+ Am. A generalization of this will be proved in the next section.

Proposition 3.14 [6] Let m ≤ D. Then G is m-walk-regular (and m-spectrum-regular)
if and only if pi(A) ◦Aj = δijAi for i = 0, 1, . . . , d and j = 0, 1, . . . , m.

This result implies the following connection with partial distance-regularity.

Proposition 3.15 Let m ≤ D and let G be m-walk-regular. Then G is m-partially
distance-regular and am (and hence bm) is well-defined.
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Proof. Proposition 3.14 implies that Ai = pi(A) for i ≤ m, and hence that G is m-
partially distance-regular, and that pm+1(A) ◦Am = O. It follows that

(AAm)◦Am = (Apm(A))◦Am = (βm−1Am−1 +αmAm +γm+1pm+1(A))◦Am = αmAm,

which shows that am = αm is well defined, and hence also bm is well defined. ¤

It turns out though that much weaker conditions on the number of walks are sufficient
to show m-partial distance-regularity.

Proposition 3.16 Let m ≤ D. If the number of walks in G of length ` between vertices
u and v depends only on ∂(u, v) = h for each h < m, ` = h, h + 1, and h = ` = m, then
G is m-partially distance-regular.

Proof. If ∂(u, v) = h ≤ m, then a
(h)
h = |Γ1(u) ∩ Γh−1(v)|a(h−1)

h−1 assures that ch is well

defined. If ∂(u, v) = h < m, then similarly a
(h+1)
h = |Γ1(u) ∩ Γh(v)|a(h)

h + cha
(h)
h−1 assures

that ah is well defined. ¤

In the next section, we shall further work out the difference between m-partial distance-
regularity and m-walk-regularity. The following characterization by Rowlinson [24] (see
also Fiol [10]) follows immediately from Proposition 3.14.

Proposition 3.17 [24] A graph is D-walk-regular if and only if it is distance-regular.

In the previous section we showed that any graph G in an association scheme is 1-
walk-regular. In case the distance-matrices Ah of G are in the association scheme for
all h ≤ m, then the graph is clearly m-walk-regular by Proposition 3.13. Such graphs
are examples of so-called distance(m)-regular graphs, as introduced by Powers [23]. A
graph is called distance(m)-regular if for every vertex u there is an equitable partition
{{u}, Γ1(u), . . . , Γm(u), Vm+1(u), . . . , Ve(u)} of the vertices, with quotient matrix being
the same for every u (we refer the reader who is unfamiliar with equitable partitions
to [17, p. 79]). We observe that this is equivalent to the existence of (0, 1)-matrices
Bm+1, . . . , Be that add up to Am+1 + · · · + AD, such that the linear span of the set
{A0,A1, . . . ,Am, Bm+1, . . . ,Be} is closed under left multiplication by A. Consequently,
a distance(m)-regular graph is m-walk-regular (the same argument as in the proof of
Proposition 3.13 applies). We now present some interesting examples of distance(m)-
regular graphs (mostly coming from association schemes).

The bipartite incidence graph of a square divisible design with the dual property (i.e.,
such that the dual design is also divisible with the same parameters as the design itself) is
a distance(2)-regular graph with D = 4 (and in general d = 5). This follows for example
from the distance-distribution diagram (see [4, p. 24]); hence these graphs are 2-walk-
regular.

The distance-4 graph of the distance-regular Livingstone graph is a distance(2)-regular
graph with D = 3 (and d = 4); again, see the distribution diagram [4, p. 407].
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The graph defined on the 55 flags of the symmetric 2-(11, 5, 2) design, with flags (p, b)
and (p′, b′) being adjacent if also (p, b′) and (p′, b) are flags is distance(3)-regular with
D = 4 and d = 5; see the distribution diagram in Figure 1.

14 1 3

1

11 4 2412

8

2 1 1

3

4
1

6

Figure 1: Distance distribution diagram of the flag graph

The above examples show that there are (D − 1)-walk-regular graphs with diameter
D that are not distance-regular, for small D. For larger D, we do not have such examples
however, so the question arises if these exist at all.

Problem 2 (a) Determine the smallest m = mwr,D(D) such that every m-partially distance-
regular graph with diameter D is distance-regular.

(b) Determine the smallest m = mwr,d(d) such that every m-partially distance-regular
graph with d + 1 distinct eigenvalues is distance-regular.

Note that a (d− 1)-walk-regular graph (with d− 1 ≤ D) is distance-regular by Propo-
sitions 3.15 and 3.4.

Another interesting example related to this problem is the graph F234B from the Foster
Census [25]. This graph has D = 8, d = 11, it is 5-arc-transitive, and hence 5-walk-regular.
The vertices correspond to the 234 triangles in PG(2, 3) with two vertices being adjacent
whenever the corresponding triangles have one common point and their remaining four
points are distinct and collinear [1, p. 125]. This and the above examples suggest that
mwr,D(D) > D

2 + 1.

3.5 (`,m)-Walk-regular graphs

In order to understand the difference between m-partial distance-regularity and m-walk-
regularity, the following generalization of the latter is useful. As before, let G be a graph
with diameter D and d + 1 eigenvalues. Given two integers ` ≤ d and m ≤ D satisfying
` ≥ m, we say that is G is `-partially m-walk-regular, or (`,m)-walk-regular for short, if the
number of walks of length `′ ≤ ` between any pair of vertices u, v at distance m′ ≤ m does
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not depend on such vertices but depends only on `′ and m′. The concept of (`,m)-walk-
regularity was introduced in [7], and generalizes some of the concepts from the previous
sections. In fact, the following equivalences follow immediately:

• (d, 0)-walk-regular graph ≡ walk-regular graph

• (d,m)-walk-regular graph ≡ m-walk-regular graph

• (d,D)-walk-regular graph ≡ distance-regular graph

We also note that (`, 0)-walk-regular graphs were introduced in [11] under the name
of `-partially walk-regular graphs, and they were also studied by Huang et al. [5]. More
relations follow from the following generalization of Proposition 3.14. Here we will give a
new (and shorter) proof.

Proposition 3.18 [7] Let d ≥ ` ≥ m ≤ D. Then G is (`,m)-walk-regular if and only if
pi(A) ◦Aj = δijAi for i = 0, 1, . . . , ` and j = 0, 1, . . . ,m.

Proof. Assume the latter. Let xh =
∑h

i=0 ηihpi for h ≤ `. Then for each pair of vertices
u, v at distance j ≤ m, and h ≤ `, we have:

(Ah)uv = (Ah ◦Aj)uv =
h∑

i=0

ηih (pi(A) ◦Aj)uv = ηjh.

Consequently, G is (`,m)-walk-regular. Conversely, consider the mapping Φ : R`[x] →
Rm+1 defined by Φ(p) = (ϕ0(p), . . . , ϕm(p)), with p(A) ◦ Aj = ϕj(p)Aj . This mapping
is linear and Φ(xj) = (ϕ0(xj), . . . , ϕj(xj), 0, . . . , 0) with ϕj(xj) 6= 0, for j = 0, 1, . . . , m.
Therefore the restriction Φ̃ of Φ to Rm[x], is one-to-one. Now, let ri = Φ̃−1(0, . . . , 1, . . . , 0),
with the 1 in the i-th position, for i ≤ m. In other words, ri(A) ◦Aj = δijAi for i, j ≤ m.
Each polynomial ri satisfies ri(A) =

∑m
j=0 ri(A) ◦ Aj = Ai, and therefore ri = pi by

Lemma 3.1. Thus, pi(A) ◦Aj = δijAi for i, j ≤ m.

Now let m+1 ≤ i ≤ ` and j ≤ m. Then pi(A)◦pj(A) = pi(A)◦Aj = ϕj(pi)Aj . From
this equation, we find that ϕj(pi)pj(λ0) = ϕj(pi) 1

n sum(Aj) = 1
n sum(pi(A) ◦ pj(A)) =

〈pi, pj〉 = 0. Thus, ϕj(pi) = 0 and pi(A) ◦Aj = O, which completes the proof. ¤

The following equivalences now follow; see also the proof of Proposition 3.15.

• (m,m)-walk-regular graph ≡ m-partially distance-regular graph

• (m + 1, m)-walk-regular graph ≡ m-partially distance-regular graph
with am (and hence bm) well defined

We have seen in Proposition 3.16 though that weaker conditions on the number of
walks are sufficient to show m-partial distance-regularity. The next proposition follows
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from the characterization in Proposition 3.18. It clarifies the role of the preintersection
numbers given by the expressions in (6).

Proposition 3.19 [7] Let d ≥ ` ≥ m ≤ D, let G be (`,m)-walk-regular, and let i, j, k ≤
m. If i + j ≤ `, then the preintersection number ξk

ij equals the well defined intersection
number pk

ij. If i + j ≥ ` + 1, then the preintersection number ξk
ij equals the average pk

ij of
the values pk

ij(u, v) = |Γi(u) ∩ Γj(v)| over all vertices u, v at distance k.

The graph F084A from the Foster Census [25] has D = 7 and d = 10. It is 2-walk-
regular, 3-partially distance-regular, and all intersection numbers ci, i = 1, 2, . . . , 7 are well
defined. This implies that the number of walks of length ` between vertices at distance
` depends only on `. Still, this graph is not even (4, 3)-walk-regular, because a3 is not
well-defined.

We will now obtain relations between various kinds of partial walk-regularity.

Proposition 3.20 Let d − 1 ≥ ` ≥ m ≥ 1, m ≤ D, and let G be (`,m)-walk-regular.
Then G is (` + 1,m− 1)-walk-regular.

Proof. Let u, v be two vertices of G at distance j ≤ m − 1, with j < ` − 1 (if m = `).
From γ`+1p`+1 = xp` − β`−1p`−1 − α`p` we have:

γ`+1(p`+1(A) ◦Aj)uv = (Ap`(A) ◦Aj)uv = (Ap`(A))uv =∑
w

Auw(p`(A))wv =
∑

∂(w,u)=1

(p`(A))wv = 0 ,

since ∂(w, v) ≤ j + 1 ≤ m, ∂(w, v) < ` if m = `, and p`(A) ◦ Ai = O for i ≤ m < `.
Moreover, if m = ` and j = `− 1 then G is `-partially distance-regular. Thus, we get

γ`+1(p`+1(A) ◦A`−1)uv = (AA`)uv − b`−1(A`−1)uv = 0,

since pi(A) = Ai, 0 ≤ i ≤ `, and b`−1 = β`−1 = (AA`)uv is well defined. Therefore,
p`+1(A) ◦Aj = O for every j ≤ m− 1, and Proposition 3.18 yields the result.

Alternatively, notice that, if G is (`, m)-walk-regular, then the number of walks of
length ` + 1 between vertices u, v at distance j < m equals

a(`+1)
uv = cja

(`)
j−1 + aja

(`)
j + bja

(`)
j+1

and hence is a constant a
(`+1)
j . ¤

As a direct consequence of this last result, we have that (`,m)-walk-regularity implies
(` + r,m − r)-walk-regularity for every integer r ≤ d − ` and 1 ≤ r ≤ m. In particular,
every (`,m)-walk-regular graph with ` ≥ d − m is also walk-regular. Also the following
connections between partial distance-regularity and m-walk-regularity follow.
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Proposition 3.21 Let m ≤ D and let G be m-partially distance-regular. If m ≥ d−1
2 ,

then G is (2m + 1 − d)-walk-regular. If m ≥ d−2
2 and am is well defined, then G is

(2m + 2 − d)-walk-regular. If m ≥ d−3
2 and G is bipartite, then G is (2m + 3 − d)-walk-

regular.

Proof. For the first statement, observe that G is (m,m)-walk-regular, so by Proposition
3.20 it is (d− 1, 2m + 1− d)-walk-regular. By Lemma 3.11, G is therefore (2m + 1− d)-
walk-regular. The proof of the second statement is similar, starting from (m+1,m)-walk-
regularity. Also for the third statement we can start from (m + 1,m)-walk-regularity,
because am = 0 is well defined for a bipartite graph. Now it follows that G is (d− 2, 2m+
3− d)-walk-regular, and by Lemma 3.11, G is (2m + 3− d)-walk-regular. ¤

Note that this proposition also relates Problems 1 and 2. For example, if mpdr(d) =
d − 1 (for some d), then there is a (d − 2)-partially distance-regular graph that is not
distance-regular. This graph would be (d − 3)-walk-regular by the proposition, which
would imply that mwr,d(d) ≥ d− 2. In general it shows that mwr,d(d) ≥ 2mpdr(d)− d.

As it is known, graphs with few distinct eigenvalues have many regularity features.
For instance, every (regular, connected) graph with three distinct eigenvalues is strongly
regular (that is, distance-regular with diameter two). Any graph with four distinct eigen-
values is known to be walk-regular, and the bipartite ones with four distinct eigenvalues
are always distance-regular. This also follows from Propositions 3.21 (d = 3,m = 1) and
3.4. It also follows that if G has four distinct eigenvalues and a1 is well defined, then
it is 1-walk-regular. If moreover c2 is well defined, then the graph is distance-regular by
Proposition 3.4. Similarly, if G is a bipartite graph with five distinct eigenvalues then G
is 1-walk-regular. Moreover, if c2 is well defined, then G is distance-regular.

A natural question would be to find out when the converse of Proposition 3.20 is true.
At least the following can be said (we omit the proofs):

Proposition 3.22 Let m ≤ D,m ≤ d − 1. Then G is (m,m)-walk-regular if and only if
it is (m + 1, m− 1)-walk-regular and the intersection number cm is well defined.

Proposition 3.23 Let m ≤ D, m ≤ d− 2. Then G is (m+1,m)-walk-regular if and only
if it is (m + 2,m− 1)-walk-regular and the intersection numbers cm, am, and bm are well
defined.

It seems complicated to extend this further; for example, (m + 2,m)-walk-regularity
implies (m + 3,m − 1)-walk-regularity, but for the reverse we need (besides cm, am, bm)
that cm+1 is well-defined. But (m + 2,m)-walk-regularity does not necessarily imply that
cm+1 is well-defined.

An interesting example is the graph F168F from the Foster Census [25]; it is a (bi-
partite) graph with D = 8 and d = 20. The intersection numbers are well defined up to
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b5, so the graph is (6, 5)-walk-regular, and hence also (7, 4)-walk-regular. Moreover, it is
(10, 3)-walk-regular, and 2-walk-regular.

As a final result in this section, we generalize Proposition 3.12. Note that every
(regular) graph is (`, 0)-walk-regular for ` ≤ 2, and that qh = x for h = 1.

Proposition 3.24 Let h ≤ D and let G be h-punctually distance-polynomial, with Ah =
qh(A). Let ` + 1 be the number of distinct eigenvalues λi for which qh(λi) = 0. If G is h-
punctually spectrum-regular and (`, 0)-walk-regular, then it is walk-regular (and spectrum-
regular) and

mhi =
qh(λi)
qh(λ0)

mi

n
(i = 0, 1, . . . , d). (9)

Proof. Let I denote the set of indices i such that qh(λi) = 0, so |I| = ` + 1. If G is
h-punctually spectrum-regular then

qh(λ0)mhi =
∑

v∈Γh(u)

(Ei)vu = (AhEi)uu = (qh(A)Ei)uu = qh(λi)(Ei)uu (u ∈ V ),

which shows that mu(λi) = (Ei)uu is a constant, and m0i = qh(λ0)
qh(λi)

mhi, for every i 6∈ I.
Moreover, if G is (`, 0)-walk-regular, then (1) yields:

∑

i∈I
mu(λi)λ`′

i = a(`′) −
∑

i 6∈I
m0iλ

`′
i (0 ≤ `′ ≤ `).

This is a linear system of ` + 1 equations with ` + 1 unknowns mu(λi), and this system
has a unique solution as it has a Vandermonde matrix of coefficients. Hence mu(λi) = mi

n
for all 0 ≤ i ≤ d and we get (9). ¤

With reference to (9), we note that the multiplicities mi can be computed from the
highest degree predistance polynomial as mi = (−1)i π0pd(λ0)

πipd(λi)
, cf. [12].

4 Spectral distance-degree characterizations

In this section we will obtain results that have the same flavor as the spectral excess
theorem [12]. This theorem states that the average degree δd of the distance-d graph is at
most pd(λ0) with equality if and only if the graph is distance-regular (for short proofs of
this theorem, see [9, 14]). The following result gives a quasi-spectral characterization of
punctually distance-polynomial graphs, in terms of the average degree δh = 1

n sum(Ah) of
the distance-h graph Gh and the average crossed local multiplicities

mhi =
1

nδh

∑

∂(u,v)=h

muv(λi).
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Proposition 4.1 Let h ≤ D. Then

δh ≤ 1
n

(
d∑

i=0

m2
hi

mi

)−1

with equality if and only if G is h-punctually distance-polynomial. If Ah = qh(A), then

δh = qh(λ0) and mhi =
qh(λi)
qh(λ0)

mi

n
(i = 0, 1, . . . , d).

Proof. We denote by Ãh the orthogonal projection of Ah onto A. By using the orthog-
onal basis consisting of the matrices Ei = λ∗i (A), i = 0, 1, . . . , d, we have

Ãh =
d∑

i=0

〈Ah, Ei〉
‖Ei‖2

Ei =
d∑

i=0

1
mi


 ∑

∂(u,v)=h

(Ei)uv


Ei = nδh

d∑

i=0

mhi

mi
Ei.

Hence the orthogonal projection of Ah onto A is the matrix qh(A), where

qh = nδh

d∑

i=0

mhi

mi
λ∗i . (10)

Since

‖Ãh‖2 = 〈qh, qh〉 = n2δ
2
h

d∑

i=0

m2
hi

m2
i

mi

n
= nδ

2
h

d∑

i=0

m2
hi

mi

and ‖Ah‖2 = δh, the upper bound on δh follows from ‖Ãh‖ ≤ ‖Ah‖. Moreover, Pythago-
ras’s theorem says that the scalar condition ‖Ãh‖ = ‖Ah‖ is equivalent to Ah ∈ A and
hence to G being h-punctually distance-polynomial. Moreover, it shows that if G is punc-
tually distance-polynomial, then Ah = qh(A), with qh as given in (10). It follows from
Lemma 3.1 that Gh is regular of degree δh = δh = qh(λ0). Moreover, from (10) it follows
that qh(λi) = nδh

mhi
mi

, and this gives the required expression for mhi. ¤

Let a
(`)
h be the average number of walks of length ` between vertices at distance h ≤ D,

and recall from (5) that the leading coefficient ωh of ph satisfies ω−1
h = γ1γ2 · · · γh. Now

the following results are variations of Proposition 4.1 for punctual distance-regularity.

Proposition 4.2 Let h ≤ D. Then

δh ≤ ph(λ0)

[ωha
(h)
h ]2

with equality if and only if G is h-punctually distance-regular, which is the case if and only
if a

(h)
h = γ1γ2 · · · γh and δh = ph(λ0).
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Proof. First, observe that

〈Ah, ph(A)〉 =
1
n

∑

∂(u,v)=h

(ph(A))uv =
ωh

n

∑

∂(u,v)=h

a(h)
uv = ωhδha

(h)
h .

Thus, the orthogonal projection of Ah onto 〈ph(A)〉 is Ăh = ωhδha
(h)
h

ph(λ0) ph(A), and

[ωhδha
(h)
h ]2

ph(λ0)
= ‖Ăh‖2 ≤ ‖Ah‖2 = δh

gives the claimed inequality for δh (alternatively, it follows from Cauchy-Schwarz). As
before, it is clear that equality holds if and only if Ah = Ăh. Using Lemma 3.1, this is
equivalent to Ah = ph(A) (G being h-punctually distance-regular). Equality thus implies
that δh = ph(λ0) and hence that a

(h)
h = ω−1

h = γ1γ2 · · · γh. To complete the argument,
note that the latter implies that equality holds in the inequality. ¤

The bound of Proposition 4.1 is more restrictive than that of Proposition 4.2. This
follows from the fact that Ah and Ãh have the same projection Ăh onto 〈ph(A)〉, and
hence that ‖Ăh‖ ≤ ‖Ãh‖ ≤ ‖Ah‖. This means that the bound of Proposition 4.1 is
sandwiched between the average degree of Gh and the bound of Proposition 4.2. Thus,
the tighter the latter bound is, the tighter the first one is. For a better comparison of the
bounds, notice that a simple computation gives that

a
(h)
h =

d∑

i=0

mhiλ
h
i =

1
ωh

d∑

i=0

mhiph(λi) (i = 0, 1, . . . , d).

We thus find that

δh ≤ 1
n

(
d∑

i=0

m2
hi

mi

)−1

≤ ph(λ0)
ω2

h

(
d∑

i=0

mhiλ
h
i

)−2

= ph(λ0)

(
d∑

i=0

mhiph(λi)

)−2

.

As we shall see in more detail in the next section, Proposition 4.2 is a generalization
of the spectral excess theorem, at least if we combine it with Corollary 3.8. For the next
proposition this is also the case; by considering the case h = D = d.

Proposition 4.3 Let h ≤ D and let G be such that 〈pi(A), Ah〉 = 0 for i = h + 1, . . . , d.
Then δh ≤ ph(λ0) with equality if and only if G is h-punctually distance-regular.

Proof. The orthogonal projection of Ah onto A is

Ãh =
d∑

i=0

〈Ah, pi(A)〉
‖pi(A)‖2

pi(A) =
〈Ah, ph(A)〉
‖ph(A)‖2

ph(A) =
〈Ah,H(A)〉
‖ph(A)‖2

ph(A)

=
〈Ah,J〉
ph(λ0)

ph(A) =
〈Ah,Ah〉
ph(λ0)

ph(A) =
δh

ph(λ0)
ph(A).
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We have ‖Ah‖2 = δh and ‖Ãh‖2 =
δ
2
h

ph(λ0)
. From ‖Ãh‖ ≤ ‖Ah‖, we obtain δh ≤ ph(λ0).

From Pythagoras’s theorem, equality gives Ah = Ãh = ph(A). ¤

By projection onto D we obtain the following ‘dual’ result.

Proposition 4.4 Let h ≤ D and let G be such that 〈ph(A),Ai〉 = 0 for i = 0, . . . , h− 1.
Then δh ≥ ph(λ0) with equality if and only if G is h-punctually distance-regular.

Proof. We now consider the orthogonal projection p̂h(A) of ph(A) onto D:

p̂h(A) =
D∑

i=0

〈ph(A), Ai〉
‖Ai‖2

Ai =
h∑

i=0

〈ph(A),Ai〉
‖Ai‖2

Ai =
〈ph(A), Ah〉
‖Ah‖2

Ah

=
〈ph(A), J〉

δh

Ah =
〈ph(A), ph(A)〉

δh

Ah =
ph(λ0)

δh

Ah.

From this we now obtain that (ph(λ0))2

δh
= ‖p̂h(A)‖2 ≤ ‖ph(A)‖2 = ph(λ0), and hence that

δh ≥ ph(λ0). Moreover, equality gives Ah = p̂h(A) = ph(A). ¤

From the latter two propositions, we obtain the following result.

Corollary 4.5 Let h ≤ D. Then G is h-punctually distance-regular if and only if
〈ph(A), Ai〉 = 0 for i = 0, . . . , h− 1 and 〈pi(A),Ah〉 = 0 for i = h + 1, . . . , d.

5 Graphs with spectrally maximum diameter

In this section we focus on the important case of graphs with spectrally maximum diameter
D = d. Distance-regular graphs are examples of such graphs. In this context, we first
recall the following characterizations of distance-regularity. We include a new proof for
completeness.

Proposition 5.1 (Folklore) The following statements are equivalent:

(i) G is distance-regular,

(ii) D is an algebra with the ordinary product,

(iii) A is an algebra with the Hadamard product,

(iv) A = D.
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Proof. We already observed in Section 2.3 that (i) and (iv) are equivalent, and that
these imply (ii) and (iii). So we only need to prove that both (ii) and (iii) imply (iv).
(ii) ⇒ (iv): As A = A1 ∈ D, we have that Ak ∈ D for any k ≥ 0. Thus, A ⊂ D and, since
dimA = d + 1 ≥ D + 1 = dimD, we get A = D.
(iii) ⇒ (iv): As Ei ◦Aj ∈ A, we have that Ei ◦Aj = qji(A) for some polynomial qji, and
this polynomial clearly has degree at most j. Let ψji be the coefficient of xj in qji, then
it follows that (Ei)uv(Aj)uv = ψji(Aj)uv for vertices u, v at distance j, and hence that
(Ei)uv = ψji. It thus follows that Ei =

∑
j ψjiAj ∈ D. Therefore A ⊂ D and, as before,

we obtain A = D. ¤

5.1 Partially distance-regular graphs

We already observed in Section 3.1 that if a graph with D = d is h-punctually distance-
polynomial, then it is h-punctually distance-regular. The following, which is a bit stronger,
is an immediate consequence of Lemmas 3.1 and 3.2.

Corollary 5.2 Let h ≤ D and let G have spectrally maximum diameter D = d. Then
Ah ∈ A if and only if ph(A) ∈ D, in which case Ah = ph(A).

It is also clear that if a graph with D = d is m-partially distance-polynomial, then
it is m-partially distance-regular. If we let Am = span{I,A,A2, . . . ,Am} and Dm =
span{I,A,A2, . . . ,Am}, then we obtain the following by extending the previous corollary.

Corollary 5.3 Let m ≤ D and let G have spectrally maximum diameter D = d. Then the
following statements are equivalent: G is m-partially distance-regular, Dm ⊂ A, Am ⊂ D,
and Am = Dm.

5.2 Punctually walk-regular graphs

Graphs with spectrally maximum diameter turn out to be d-punctually walk-regular. This
will be used in the next section to show the relation of Propositions 4.1 and 4.2 to the
spectral excess theorem.

Proposition 5.4 Let G have spectrally maximum diameter D = d. Then it is both d-
punctually walk-regular and d-punctually spectrum-regular with parameters

a
(d)
d =

π0

n
= γ1γ2 · · · γd, mdi = (−1)i π0

nπi
(i = 0, . . . , d).

If G is bipartite, then it is both (d − 1)-punctually walk-regular and (d − 1)-punctually
spectrum-regular with parameters

a
(d−1)
d−1 =

π0

nδ
= γ1γ2 · · · γd−1, md−1,i = (−1)i π0

nπi

λi

δ
(i = 0, . . . , d).
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Proof. It follows from Lemma 3.11 and its proof that G is d-punctually walk-regular
with a

(d)
d = π0

n . The latter equals γ1γ2 · · · γd by (5) and (7). Then by Lemma 3.10, G is
also d-punctually spectrum-regular. Now observe that if u, v are vertices at distance d,
then mdi = (Ei)uv = λ∗i (A)uv = (−1)i

πi
a

(d)
d = (−1)i π0

nπi
.

If G is bipartite, then it follows from Lemmas 3.11 and 3.10 that G is (d−1)-punctually
walk-regular and (d − 1)-punctually spectrum-regular. Moreover, it is clear that a

(d)
d =

δa
(d−1)
d−1 , hence a

(d−1)
d−1 = π0

nδ = γ1γ2 · · · γd−1 (because γd = δ for a bipartite graph). If u, v
are vertices at distance d, then λimdi = (λiEi)uv = (AEi)uv =

∑
w∈Γ1(u)∩Γd−1(v)(Ei)wv =

δmd−1,i, hence md−1,i = (−1)i π0
nπi

λi
δ . ¤

An example of an almost distance-regular graph that illustrates this proposition is the
earlier mentioned graph F026A. It is bipartite with D = d = 5, hence it is h-punctually
walk-regular for h = 4, 5. Moreover, this graph is 2-arc transitive, hence it is also 2-walk-
regular (h-punctually walk-regular for h = 0, 1, 2). The intersection number c3 is not well
defined however, so the number of walks of length 3 between vertices at distance 3 is not
constant either, and therefore the graph is not 3-punctually walk-regular.

5.3 From punctual to whole distance-regularity

We already observed that Proposition 4.3 and Corollary 3.8 together imply the spectral
excess theorem. Proposition 5.4 shows that ωda

(d)
d = 1, hence also Proposition 4.2 implies

the spectral excess theorem (again, with Corollary 3.8). Finally, we will also show the
connection of Proposition 4.1 to this theorem. To do this, we first restrict it to h-punctually
spectrum-regular graphs with spectrally maximum diameter.

Proposition 5.5 Let h ≤ D and let G be h-punctually spectrum-regular with spectrally
maximum diameter D = d. Then

δh ≤ 1
n

(
d∑

i=0

m2
hi

mi

)−1

with equality if and only if G is h-punctually distance-regular, in which case the crossed
local multiplicities are mhi = ph(λi)

ph(λ0)
mi
n , i = 0, . . . , d.

Notice that every (not necessarily regular) graph is 0-punctually distance-regular and
1-punctually distance-regular, because A0 = I ∈ A and A1 = A ∈ A. However, in general
a graph is neither 0-punctually spectrum-regular nor 1-punctually spectrum-regular. If we
apply Proposition 5.5 for h = 0, 1 though, then we obtain reassuring results. Indeed, if G
is 0-punctually spectrum-regular then m0i = mi

n , and

δ0 =
1
n

(
d∑

i=0

m2
0i

mi

)−1

=
1
n

(
d∑

i=0

mi

n2

)−1

= n

(
d∑

i=0

mi

)−1

= 1.
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If G is 1-punctually spectrum-regular then m1i = λi
λ0

mi
n by Proposition 3.12, and indeed

δ1 =
1
n

(
d∑

i=0

miλ
2
i

n2λ2
0

)−1

= nλ2
0

(
d∑

i=0

miλ
2
i

)−1

= nλ2
0 (nλ0)

−1 = λ0.

The most interesting result we obtain of course for h = d (= D). By Proposition
5.4, G is d-punctually spectrum-regular with mdi = (−1)i π0

nπi
. Then the condition of

Proposition 5.5 for d-punctual distance-regularity (and hence distance-regularity; we again
use Corollary 3.8) becomes

δd =
1
n

(
d∑

i=0

m2
di

mi

)−1

=
1
n

(
d∑

i=0

π2
0

n2π2
i mi

)−1

=
n

π2
0

(
d∑

i=0

1
miπ2

i

)−1

,

which corresponds to the condition of the spectral excess theorem for a (regular) graph to
be distance-regular, as the right hand side of the equation is known as an easy expression
for pd(λ0) in terms of the eigenvalues.
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