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ABSTRACT  
This paper presents an overview of crowd simulation 
models, their limitations, and an alternative agent-
based approch. First we introduce several methods 
and then we focus on two widely used and validated 
simulation tools that use grid-based models. We 
discus the artifacts that these models introduce 
regarding the way they treat the space and the 
implication that this has in the movement of the 
agents during the simulation. We also describe the 
limitations that current commercial software tools 
have in terms of simulating human psychology and 
physiology. The paper discusses an agent-based 
alternative approach developed to overcome these 
limitations. The model allows for the simulation of 
human movement that can provide results more 
closely describing behavior of real people during an 
emergency situation. Flow rates, densities and speeds 
emerge in our model from the physical interactions 
between people instead of being predefined.  
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INTRODUCTION 
Simulating building evacuation scenarios has given 
designers essential information, as they deal with 
safety issues when designing new buildings. A large 
number of models for pedestrian simulation have 
been developed over the years in a variety of 
disciplines. Current evacuation simulation tools 
allow designers to quickly evaluate and obtain the 
evacuation results for different situations and layouts 
of the internal structure of the building.  

To simulate evacuation it is necessary to model 
accurately human behavior and psychology as well 
as human movement. The most typical approaches to 
simulate crowd movement are social forces, rule-
based, and cellular automata (CA) models. None of 
these models can realistically animate the movement 
of humans in high density crowds. The next goal in 
crowd motion is therefore to be able to realistically 
animate high density crowds where agents are 
endowed with psychological elements that will drive 
not only their high-level decision making, but also 
their reactive behavior (pushing, moving faster, 
being impatient, etc.). 

Social Forces Models have been used to simulate 
panic situations. Helbing et al. (2000) described a 
method to simulate the movement of pedestrians 
based on a social forces model which is a 
microscopic approach for simulating pedestrian 
motion. This approach solves Newton’s equation for 
each individual and considers repulsive interactions, 
friction forces, dissipation, and fluctuations. Social 
forces modes tend to give simulations that look 
closer to particle animation than human movement, 
with agents appearing to vibrate, and not respecting 
any type of social rules (i.e. forming an organized 
line when simulating normal conditions). 

Rule-based models were introduced by Reynolds 
(1987) by describing the first use of a distributed 
behavioral model to produce flocking behavior. The 
main limitation with rule-based models is that they 
either do not consider collision detection and 
repulsion at all, or adopt very conservative 
approaches through the use of waiting rules (Shao 
and Terzopoulos 2005).  These rules work well for 
low densities in everyday life simulation, but lack 
realism for high density or panic situations. 

Cellular Automata Models (Dijkstra et al. 2000, 
Kirchner et al. 2003) define pedestrian modeling as 
mathematical idealizations of physical systems in 
which space and time are discrete, and physical 
quantities take a finite set of discrete values. A 
cellular automaton consists of a regular uniform 
lattice (2D array) with a discrete variable at each cell 
(Figure 1).  Walls and other fixed obstacles are black, 
while the white cells are areas that can be occupied 
by pedestrians. Cellular automata models limit the 
movement of the agents, and tend to look like a 
checkerboard when the density is high.  

 
Figure 1 Example of the space representation in a 

Cellular Automata Model. 

When simulating human behavior, it is essential to 
model the psychological factors that affect their 
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decisions. For example when simulating panic during 
evacuation, the following should be taken into 
consideration: 

• Individuals may not be aware of the internal 
connectivity of the building and therefore may ignore 
some suitable paths for evacuation (Sime 1984). 

• Rising stress levels have the effect of diminishing 
the full functioning of one’s senses, which leads to a 
general reduction of awareness, especially the ability 
to orient oneself quickly in rooms and surrounding 
areas (Waldau et al. 2003). 

• People that have not been properly trained are 
likely to feel stressed and might reach the point 
where they find themselves incapable of making the 
right decision due to time pressure (McGrath 1970). 
On the other hand, trained individuals such as 
firefighters deal better with a dynamically changing 
environment and choose the best sequence of actions 
based on their perception and knowledge of the 
environment. 

In this paper we will explain the main challenges 
when simulating building evacuation and also the 
limitation of the tools studied which are based in 
Cellular Automata approaches. The simulation 
software utilized for this study is STEPS and 
EXODUS. Our main motivation is to explore the 
possibilities in terms of simulating human behavior 
under emergencies, and the accuracy of these 
softwares in simulating real evacuation scenarios. 
After introducing the functionality of theses software 
tools and describing their main limitations, we will 
introduce a new approach to achieve more realistic 
agents’ movement and better integration of 
psychological factors that can simulate a more 
accurate human-like behavior. 

CELLULAR AUTOMATA SYSTEMS 
For the purpose of this work, two good 
representatives of cellular automata approaches 
(EXODUS and STEPS) have been selected to study 
how accurately this type of model can simulate 
human behavior. First we will introduce these 
commercial tools and then we will describe in detail 
our observations regarding their limitations. Finally a 
new approach for pedestrian movement is described 
and results are shown to compare them against the 
CA simulations. 

EXODUS 

It was developed by the Fire Safety Engineering 
Group at the University of Greenwich (Galea and 
Perez 1993). The system is able to simulate the 
evacuation of large numbers of individuals from 
large multi-floor buildings. By adopting fluid 
dynamic models, coupled with discrete virtual reality 
simulation techniques, the program tracks the 
trajectories of individuals as they make their way out 

of the building or are overcome by hazards (e.g. fire 
and smoke). The output of EXODUS includes 
overall evacuation time, individual waiting and 
evacuation time, and individual paths. 

STEPS  

STEPS is an agent-based model with coarse grid 
geometry. Each individual occupies one cell at any 
given time and moves in the desired direction if the 
next cell is empty. Each occupant has its own 
characteristics (i.e. speed, familiarity, etc.).  

In STEPS (MacDonald 2003) the fundamental 
driving mechanism for individual movement is the 
desire to move at a free walking speed towards the 
next target point in the shortest amount of time and 
without collision. The decision process is adhered to 
by every individual in the model. For each target 
(exit point), a potential is calculated at each grid cell 
on the plane. The potential value represents the 
distance between individual cells and the targets 
considering the presence of blockages (walls, 
columns, etc.). The individual located in a cell 
attempts eight possible directions at every time step. 

MAIN LIMITATIONS OF CA MODELS 
In order to understand the potential of current models 
for crowd simulation models, it is essential to 
understand their main limitations when it comes to 
simulate human movement and psychological issues. 

Grid size 

Cellular Automata models are specially limited by 
the grid size used to discretize the space. This space 
utilization yields fixed maximum densities, that are 
usually below real maximum densities for which 
movement is still possible. The grid also limits the 
possible movements at any given time to the eight 
adjacent cells (Andersen et al. 2005). 

The main problem with this space representation 
arises when part of the geometry slightly overlaps 
one of the cells, turning  the entire cell into an 
“occupied” cell where no agent can walk through and 
thus provokes an unrealistic artifact in space 
utilization. Figure 2 shows an example where the 
available space through a 1m. door is limited to one 
cell because the other one (in yellow) slightly 
overlaps with the wall, and thus only one person (in 
blue) can walk at a time through the door. 

 
Figure 2Discrete space limiting movement 
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Having a grid size also limits the possibility of 
simulating a heterogeneous crowd, with different 
agent sizes. On one hand, a small cell size will not 
allow the program to simulate larger individuals or 
people carrying big gear (such as the fire fighters); 
and on the other hand, a big cell size will not allow it 
to optimize the space utilization when the simulated 
individuals are mostly smaller than the cell size. 

Fixed flow rates 

An important inconsistency in cellular automata 
models is the fact that maximum flow rates are fixed 
throughout the simulation. The user can generally 
specify the desired maximum flow rate which will be 
reached when the density is also maximum. This 
contradicts the hydraulic model presented in the 
SFPE Handbook of Fire Protection Engineering 
(2002), where the flow rate increases as the density 
increases, until it reaches a maximum and from then 
on the increment in density actually decreases the 
flow rate.  

Route selection and movement 

Path finding in grid-based models consists of 
traversing the centers of squared cells. Distances 
between centers can be stored before the simulation 
takes place. The method is usually based on 
“potential maps” which identify a discrete 
approximation of the shortest path towards the 
destination and store this information in the cells in 
order to achieve an efficient simulation. The main 
problem that potential maps have is that they favor 
45 degrees diagonal movement, and the resulting 
routes are not always realistic. Figure 3 shows the 
unnatural paths followed by the people in a CA 
model (grey paths) compared to some of the real 
paths that should have been followed if the space 
was continuous (red lines). 

 
Figure 3 Route selection in CA 

Since route selection is based on shortest distances 
and calculated before the simulation takes place, 
these models do not consider re-planning the route 
when changes occur in the environment (fire 
blocking paths, doors appearing to be locked, etc.) or 
the agents’ ability to modify their route if they are 

impatient and observe a bottleneck in their desired 
path. This leads to uneven use of stairwells as we can 
observe in Figure 4, since the agents follow the 
previously calculated routes and are unable to 
explore the environment or try to follow a different 
path. A large queue apprears in one of the stairs 
while others are completely or almost empty (In the 
image we can see a section of the building showing 5 
floors and 4 staircases. From left to right, the first 
one is already empty, the second one has a big 
bottleneck and the last two staricases appear with 
low and medium occupancy respectively). 

 
Figure 4 Uneven use of stairwells. 3D people appear 

in blue or yellow depending on their speed. 

In a CA simulation, agents move from one cell to 
another empty cell, which implies that movement 
occurs in an organized manner and only when an 
entire cell is available. This model limits the range of 
human behavior to simulating only organized 
behavior, and it is impossible to simulate, for 
example, the effect of panicking people pushing 
through a crowd. 

A NEW APPROACH 
In order to simulate human movement in a more 
accurate way, it is essential to allow the virtual 
agents to move in a continuous space. For this 
purpose our model is based on a forces model where 
agents’ movement is driven by a set of attractors to 
steer their movement towards the destination while 
avoiding obstacles and other agents in the virtual 
environment. This forces model is parameterized 
with a set of rules that mimic human personality and 
behavior in normal and panic circumstances 
(Pelechano et. al. 2007).  

In our model we can specify different personality 
types by assigning different roles to the agents in the 
simulation (i.e. trained personnel, leaders and 
followers), so that each individual will exhibit its 
own behavior (Pelechano and Badler 2006). Agents 
can communicate with each other to share 
information about exit routes and hazards found 
within the building while they navigate and learn the  
internal
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Figure 5 Interface to specify agents’ personality 

features of a possibly unfamiliar environment. 
Finally we can specify the percentage of agents in the 
crowd that will exhibit impatience behavior, panic or 
panic propagation, tendency to fall, pushing 
predisposition, and weaker of stronger avoidance 
behavior. Figure 5 shows the interface of our system. 

Framework 

Each agent has its own behavior based on personality 
variables that represent physiological and 
psychological factors observed in real people. Agent 
behaviors are computed at two levels that we refer to 
as high-level and low-level (Figure 6). 

The high-level behavior deals with navigation, 
learning, communications, and decision making. 
Using high-level behavior, each agent receives 
information about bottlenecks and door changes that 
have been perceived by the agent and makes 
decisions based on that information and its current 
knowledge of the environment that may have been 
gathered through exploring the building and 
communicating with other agents. Once the high-
level module decides the next room to walk to, it 
sends the next attractor point to the low-level module 
to carry out the required motion to reach it.  

The low-level deals with perception and a set of 
reactive behaviors. When the agent reaches the 
attractor, the low-level module queries the high-level 
module for the next attractor in its path towards the 
destination. The motion sub-module queries the 
perception sub-module about positions and angles of 
obstacles, crowd density ahead of the agent, and 
velocity of dynamic obstacles. Based on information 
perceived and the internal state of the agent (current 
behavior, panic, impatience, etc.), the motion sub-
module calculates the velocity and next position of 
the agent, and sends a message to the locomotion 
sub-module to execute the correct feet movements. 

Both high-level and low-level behavior are affected 
by a module representing the psychological and 
physiological attributes of each agent.  

The high-level is affected by changes in 
psychological elements such as panic or impatience, 
by altering the decision-making process (e.g. an 
impatient agent will select a different route after 
perceiving congestion in a door). Other elements 
such as an agent’s memory and orientation abilities 
can be affected by high-level behavior 
(psychological studies show that a person under 
panic may suffer disorientation). Finally an agent’s 
psychological state may trigger changes in roles (e.g. 
a leader changing to follower when its panic level 
gets very high or a trained agent exhibiting untrained 
behavior when suffering from disorientation). 

 
Figure 6 Framework overview 

The low-level module is also affected by changes in 
the psychological state of the agent which will 
trigger modification of the agent’s speed, probability 
to fall, pushing thresholds, etc. The psychological 
model needs to have as input information about 
environment events detected by the agent’s 
perception system and information obtained through 
communication. Then this information will be 
combined with the agent’s current emotional state in 
order to modify it if necessary and send back the 
right input to both low-level and high-level modules. 
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In order to make the agents’ behavior closer to real 
humans, we need to have some considerations in 
mind. For example: 

• People during a conversation are unable to give 
much detailed information in terms of room 
connectivity about large areas of the building. 
Therefore the information is limited to two levels of 
adjacency from the current cell in the cell-and-portal 
graph representing the virtual environment. (We can 
think of it as, for example, “The door on the left 
leads nowhere,” or “the room on the right leads to 
another office, where there’s no exit either.”) 

• People in panic tend to get disoriented. Therefore 
when an agent is in panic, part or all of its internal 
memory could be “forgotten.” 

• People in panic may also change their role from 
leader to follower. Therefore an agent that was 
performing a search, after being affected by the panic 
behavior, may start following others instead of 
performing its own search. 

• When dealing with dynamic environments (e.g., 
portals that are locked or unlocked at different times) 
agents may have explored the entire graph, but if no 
exit has been found yet, then they will keep on 
searching hoping for a door to get re-opened. 

Navigation 

In order to have pedestrians able to navigate the 
virtual environment, it is necessary to provide them 
with the ability of having some abstract high-level 
representation of the space. In our approach, cell-
and-portal graphs are used to represent the mental 
maps that the virtual agents have of the building. 
Depending on the role of each agent, they may start 
the simulation with a complete representation of the 
space, or with a partial representation (i.e. only 
knowing about the way they entered the building). 

Figure 7 represents a simple building (on the left) 
with its corresponding complete cell-and-portal 
representation (on the right). 

 

Figure 7 Building and agent’s mental map 

Each agent knows either one path towards an exit (if 
they are not very familiar with the environment, e.g. 
visitors) or several paths (if they are very familiar 
with the building, e. g. workers). Table 1 shows 
several examples of shortest paths and alternative 

paths that can be used if the shortest one happens to 
be blocked. 

Node Shortest path Alternative 
path 

1 {2,4} {2,3,7,5,4} 
2 {4} {3,7,5,4} 
3 {2,4} {7,5,4} 
4 {} {} 
5 {4} {7,3,2,4} 

Table 1 Examples of pre-calculated paths. 

As indicated previously, an agent unfamiliar with the 
environment can “learn” the features of a building by 
exploring or through communication with other 
agents. 

 
Figure 8 Sources of information to increase an 

agent’s mental map 

DISCUSSION AND RESULT ANALYSIS 
In this section we enumerate the results achieved by 
using our parameterized forces model together with 
the psychological factors that are used to model 
human personality and decision making. In the 
results it can be observed how our new approach not 
only avoids all the limitations that we showed for 
cellular automata models, but also it adds a larger 
variety of pedestrian behaviors both for panic or 
stressful scenarios as well as for normal conditions. 

Improvements by moving in continuous space 
By having agents being able to move in continuous 
space (Figure 9) instead of discrete steps, we can 
observe how the simulated individuals follow 
straight trajectories when possible, instead of the 45 
degree paths as shown in Figure 3 for CA models. 

 
Figure 9 Trajectories followed with our approach 

Another advantage of not discretizing the space is 
that densities emerge from the interaction between 
individuals instead of being the result of a fixed 
number specified by the user. Movement is therefore 
possible for densities higher than the ones achieved 
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Exploration 
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in CA, as indicated in the literature on human motion 
(Andersen et al. 2005). 

  

Figure 10 Real densities emerging in our approach 
(left) and fixed densities in a CA model (right) 

The resulting flow rates in our simulation also 
emerge from the interactions between agents. 
Therefore, it depend on body contact behavior, 
desired speeds, and real dimensions of the building, 
instead of fixed flow rate values, and availability of 
space based exclusively on empty/free cells. This not 
only gives realistic flow rates based on the actual 
door width, but also can simulate human panic 
behavior such as slower flow rates when the number 
of people pushing to get through the door is high, as 
indicated in the SFPE Handbook of Fire Protection 
Engineering (2002). 

Impatience behavior 

Since agents have mental maps of the environment 
that can be augmented with more knowledge as they 
explore the building and communicate with others, 
they should also be able to use this knowledge to 
select alternative routes of escape not only when a 
path is blocked but also when they have an impatient 
personality and observe a bottleneck in their current 
trajectory. Figure 11 shows an example of this type 
of behavior, where impatient agents are represented 
with red hair. 

 
Figure 11 Exhibiting impatient behavior 

Figure 12 shows an example where agents can re-
plan their trajectories based on chages in the 
environment such as a door suddenly appearing 
loocked. 

  
Figure 12 Reacting to changes in the environment 

Pushing allows to simulate panic and panic 
propagation 

The combination of movement in continous space, 
with repulsion forces  between agents and different 
personalities, allows us to simulate pushing behavior. 
This proves to be very useful when simulating panic 
individuals or just people trying to get through the 
crowd faster. Panic can also be propagated to other 
individuals, based on their personality. Figure 13 
shows an example of this behavior, where people 
pushing through the crowd are represented with red 
hair, and we observe how it propagates to nearby 
individuals as they move towards the exit. 

This type of behavior cannot be realistically 
simulated with a discrete grid model, since they fail 
to model such a body-to-body contact. 

 
Figure 13 Panic propagation and pushing 

Navigation with learning and simulation of 
disorientation under panic 

When agents have the ability to navigate a building 
and learn unknown parts of it, instead of assuming 
that every individual has complete knowledge of the 
environment from the beginning of the simulation, 
we can also model the effects of panic over 
orientation abilities. An agent under panic, will try to 
figure out the way to exit a building when the known 
path appears to be blocked, but its ability to 
remember the different features can be altered by the 
effect of stress. Therefore the search for the exit will 
be more chaotic, with the possibility of walking over 
and over to parts of the environment that have 
previously been explored. We can observe an 
example of this chaotic search in Figure 14, where 
the complete path followed has been rendered with a 
white spots-line. 
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Figure 14 Agent exhibiting disorientation 

Emergent overtaking and bidirectional flows 

When a counterflow appears, our approach simulates 
the emergent lane formation that appears in real 
crowds. Our agents tend to avoid people walking 
towards them, and this results in the alignment with 
those walking in the same direction (Figure 15). 

 

a.  

b.  

Figure 15 Counter flows with our approach, for 
different width passageways 

This is contrary to CA models, where counter flow 
models appear unrealistic.  For example, when using 
a very narrow passage, where only one person can 
walk at a time,  the simulated pedestrians appear to 
traverse each other as can be observed in Figure 16a. 
When the counterflow occurs in a wider passage, the 
emergent behavior is still far  from real since the 
different groups appear to move against each other 
without lane formation, reducing the overall speed 
considerably, and finally traversing each other 
instead of walking around. 

a.  
 
 
 
 
 
 

b. 
 Figure 16 Counter flow in a CA model 

Different types of queuing behavior leading to 
more realistic types of bottlenecks 

In the CA models, agents try to move towards an exit 
by moving to the cell that appears closer to the 
destination. This yields to people  forming arcs 
around doors when bottlenecks appear. Although this 
could be a desired behavior under some 
circumstances, it does not simulate real human 
queuing. Our approach allows the user to specify the 
type of queuing behavior so that organized lines can 
also be observed in the simulation. This is important, 
since it simulates more accurately how people will 
behave in a non-panic situation. Figure 17 shows two 
screenshots with different types of queues, an 
organized one on the left, and a more chaotic one on 
the right. 

  

Figure 17 Different types of queue formation 

Falling people becoming new obstacles 
Finally, one of the interesting elements to consider 
when simulating panic evacuation is the fact that 
some individuals could fall and thus become new 
obstacles for the rest of the people trying to escape. 
Our approach can also simulate this effect as we can 
observe in Figure 18. When an individual falls due to 
the strong pushing from the crowd, the other 
individuals will walk around to avoid it until the 
individual would eventually stand up and continue 
walking. When the crowd is very dense, some 
individuals may not be able to walk around and so 
could also fall down. 
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Figure 18 Agents avoiding a fallen individual 

CONCLUSION 
We have presented in this paper a common approach 
for pedestrian behavior that has been widely used to 
simulate building evacuation. Our main interest was 
not only to point out the main limitations that these 
models have and that any designer using them should 
be aware of, but also we have introduced a novel 
approach that lacks those limitations, and in addition 
offers the possility to exhibit a larger variety of 
behaviors depending on the desired situation to be 
modeled. We have shown the importance of 
considering physical interactions between individuals 
and the resulting impact of those interactions in the 
behavior of the virtual humans (trajectories, 
bottlenecks, flow rates, pushing, falling, etc.).  

Finally we have also introduced psychological 
factors into the agent-based model to be able to 
simulate agents’ mental states, memory, and roles. 
Through the use of communication we can moreover 
simulate the exchange of information between 
individuals during an evacuation. 

Our current system can be validated and calibrated 
based on studies on real people movement. The 
SFPE guide provides some of this valuable data to 
calibrate the system in terms of egress (flow rates, 
speeds, densities, etc). But further psychological 
studies need to be carried out so that the 
psychological factors built in our system (i.e: panic, 
impatience, etc.) could also be calibrated accurately. 
Some of this work is currently under research using 
virtual reality environments to evaluate human 
performance under different situations including fire 
propagation within a building. 
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