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A method to get the transitive closure, a transitive opening and a transitive approximation 
of a reflexive and symmetric fuzzy relation is presented. The method builds at the same 
time a binary partition tree for the output similarities. 

1.   Introduction 

Equivalence relations are important in many branches of knowledge and 
especially in Classification theories and Cluster Analysis since they generate a 
partition on the universe of discourse and permit to classify their elements and 
make clusters. In many cases the relation we start with is not an equivalence 
relation but only a reflexive and symmetric one. 
A very important family of fuzzy relations are T-indistinguishabilities 
(reflexive, symmetric and T-transitive fuzzy relations) since they generalize 
(fuzzify) the concepts of (crisp) equivalence relation and equality [Trillas and 
Valverde 1984] and are useful to represent the ideas of similarity and 
neighbourhood as well.  
Among T-indistinguishabilities, the ones which are transitive with respect to the 
Minimum t-norm are called similarities and are especially interesting and widely 
used in Taxonomy since they generate indexed hierarchical trees. 
How to obtain T-indistinguishabilities and especially similarities from a given 
proximity relation R, has become a very important task and there are many 
algorithms to do it. Many of them calculate the smallest T-indistinguishability 
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greater of equal than R, which is called its T-transitive closure. Other methods 
calculate T-transitive openings, which are T-indistinguishabilities smaller that R 
but maximal among all T-indistinguishabilities smaller than R. Though the T-
transitive closure of a fuzzy proximity is unique, it is not the case of the T-
transitive openings and though there are some algorithms to calculate some of 
them, there is still a very interesting open problem to find all T-transitive 
openings of a given fuzzy proximity. Less attention has been paid to the 
obtention of T-indistinguishability operators not comparable with R in the sense 
that some of the entries are greater while some smaller than the corresponding 
entries of R. These T-transitive relations will be called T-transitive 
approximations of R in this paper. Despite the little interest since now in these 
approximations, it is obvious their importance since if we must replace a given 
fuzzy proximity by a T-transitive one, it is clear that in most occasions they will 
be closer to our relation than its corresponding T-transitive closure or some of 
its T-transitive openings ([Garmendia and Recasens 2007]).  
This paper provides a simple algorithm to produce similarities (and therefore 
indexed hierarchical trees) from a fuzzy proximity relation R. Several forms of 
defining weights allow to easily computing the transitive closure of R, a 
transitive opening and different transitive approximations of R. An interesting 
feature of it is that with the same algorithm the T-transitive closure, a T-
transitive opening and several T-transitive approximations of R are generated. 

2.   Preliminaries 

This section contains some definitions and properties of similarities and T-
indistinguishabilities and some methods to build them from fuzzy proximity 
relations. 
Definition 1: Let E = {e1, ..., en} be a finite set. A fuzzy relation R on E is a 
map R: E×E → [0, 1]. The relation degree value for elements ei and ej in E is 
called eij. So eij = R(ei, ej). 
A fuzzy relation R is reflexive if eii = 1 for all 1 ≤ i ≤ n. 
A fuzzy relation R is α-reflexive if eii ≥ α for all 1 ≤ i ≤ n. 
The relation R is symmetric if eij = eji for all 1 ≤ i, j ≤ n. 
A reflexive and symmetric fuzzy relation is called a fuzzy proximity relation.  
Definition 2. Let T be a triangular norm [Schweizer, Sklar; 1984]. A fuzzy 
relation R: E×E → [0, 1] is T-transitive if and only if T(R(a, b), R(b, c)) ≤ R(a, 
c) for all a, b, c in E. In a fuzzy logic context it can be interpreted as ‘The 
sentence "If a is related to b and b is related to c, then a is related to c" is true’. 
Definition 4. [Zadeh 1971] A fuzzy similarity is a reflexive, symmetric and 
min-transitive fuzzy relation.  
The T-transitive closure of a symmetric fuzzy relation is also symmetric. Also 
reflexivity and α-reflexivity are preserved by the T-transitive closure.  
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3. Algorithm to compute the transitive closure, a transitive opening 
and a transitive approximation of a fuzzy proximity generating a 
binary partition tree.  

This section presents an algorithm that allows the computation of the transitive 
closure, a transitive opening and several other approximations of a give fuzzy 
proximity R. The fact that the same algorithm generates all these kind of 
approximations of R simplifies calculations and makes it a good tool to solve 
the problem of approximating fuzzy proximities, since the user can choose 
which kind of T-transitive approximation wants or needs. 

Lemma 2. [Lee 2001] Let C and D be two fuzzy relations and  

E (f; C, D) = 
TC F

F D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 where all values in the box F are f. 

If C and D are fuzzy similarities, then E(f; C, D) = E is also a fuzzy similarity, 
∀f∈[0, min(min(C), min(D))]. 
The algorithm goes as follows. 
Algorithm 1. Let R be a fuzzy proximity relation on a universe E = {e1, ..., en} 
with values eij = R(ei, ej). Lets call node to a subset of E (a node is an element of 
℘(E)). In order to make an easier notation, we consider the elements of E by 
their natural number of their position.  
Input: a proximity R 
Output: Partition tree T (and matrix) of the transitive closure A = [aij], a 
transitive opening B = [bij] and a transitive approximation C = [cij] from R. 
The given algorithm is the following: 
 
1) Create a set of nodes N initially with a set of 
singletons Ni = {ei} for each element ei in E. 

2) Set aii=1, bii=1, and cii= 1 for all i from 1 to n. 

3) n-1 times (while N is not the universe E) { 

 Compute m(Ni, Nj) = jiNjNi
e

ji
,max

∈∈
 for all pair of nodes NxN with 

i≠j. 

Record (i, j) where m(Ni, Nj) is maximal. 

Assign ars= asr := jiNjNi
e

ji
,max

∈∈
 for all r∈Ni and s∈Nj. 

Assign brs= bsr := )bmin,bmin,minmin( ,,,,, lkNlklkNlkjiNjNi jiiji

e
∈∈∈∈

 for all 

r∈Ni and s∈Nj. 
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Assign crs= csr :=  )cmin,cmin,min( ,,,,, lkNlklkNlkji
NjNi jiiji

eavg
∈∈∈∈

 for 

all r∈Ni and s∈Nj. 

Delete nodes Ni and Nj from N. 

Insert Ni ∪ Nj into N. 

} 

avg is an idempotent aggregation operator. In particular, avg can be any quasi-
arithmetic mean such the arithmetic or geometric means, or an OWA operator, 
including the Minimum (corresponding to a T-transitive opening). Using 
different aggregator operators in this algorithm can provide different transitive 
approximations (or even a set of them computing several similarities Bi) taking 
the same time complexity.  
The trees generated by A, B and C coincide. Only their weights differ.  
The algorithm takes just n-1 steps, where n is the cardinality of the universe E. 
It takes O(n2) space complexity and O(n2log n) average time complexity. 

2.1.   Example : 

Let R be the fuzzy proximity given by the following matrix: 

R =

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

15.01.03.02.03.0
5.018.03.03.02.0
1.08.019.02.03.0
3.03.09.018.05.0
3.04.02.08.011
3.02.03.05.011

 

 
The first two loops of  the part 3) of the algorithm records m(N1, N2) = 1 and 
m(N3, N4) = 0,9. 
In the third loop a maximal value it is found with m(N3∪ N4, N5) = 0.8  
The matrix construction of the transitive closure A, transitive opening B and 
transitive approximation C is in this step as follows  

A 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
18.08.0
8.019.0
8.09.01

11
11

 

B 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
13.03.0
3.019.0
3.09.01

11
11

 

C 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
155.055.0
55.019.0
55.09.01

11
11

 

 
Figure 1 Transitive closure A, transitive opening B and transitive approximation C in step 3. 
In one more step, N1∪N2 and N3 
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The matrix construction of the transitive closure A, transitive opening B and 
transitive approximation C is in this step as follows. 
 

A 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1
18.08.0
8.0
8.0

19.0
9.01

8.08.0
8.08.0
8.08.0

8.08.08.0
8.08.08.0

11
11

B 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1
13.03.0
3.0
3.0

19.0
9.01

2.02.0
2.02.0
2.02.0

2.02.02.0
2.02.02.0

11
11

 

C 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1
155.055.038.038.0
55.019.038.038.0
55.09.0138.038.0
38.038.038.011
38.038.038.011

Figure 2 Transitive closure A, transitive opening B and transitive approximation C is in loop 4. 
 
Finally, the last node is linked in loop 5. Note that there are only five (n-1) loops 
because the universe E has 6 elements. 
 

A 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

15.05.05.05.05.0
5.018.08.08.08.0
5.08.019.08.08.0
5.08.09.018.08.0
5.08.08.08.011
5.08.08.08.011

 

B 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

11.01.01.01.01.0
1.0
1.0
1.0
1.0
1.0

13.03.0
3.0
3.0

19.0
9.01

2.02.0
2.02.0
2.02.0

2.02.02.0
2.02.02.0

11
11

 

C 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

128.028.028.028.028.0
28.0155.055.038.038.0
28.055.019.038.038.0
28.055.09.0138.038.0
28.038.038.038.011
28.038.038.038.011

Figure 3 transitive opening B of the fuzzy proximity R, and its binary weighted tree (with the same 
shape that the T-transitive closure binary tree, but different values) 

3.   Conclusions  

A method to get the transitive closure, a transitive opening and a transitive 
approximation of a reflexive and symmetric fuzzy relation at the same time is 
given.  
The binary partition trees of the output similarities are the same. 
Some examples are provided. 
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