
LOD Visibility Culling and Occluder SynthesisCarlos And�ujar Carlos Saona-V�azquez Isabel NavazoDept. LSI. Universitat Polit�ecnica de CatalunyaDiagonal 647. E-08028 Barcelona, Spainfandujar, carloss, isabelg@lsi.upc.esJuly 13, 2000AbstractLevel-of-detail occlusion culling is a novel approachto the management of occluders that can be easilyintegrated into most current visibility culling al-gorithms. The main contribution of this paper isan algorithm that automatically generates sets ofdensely overlapping boxes with enhanced occlusionproperties from non-convex subsets. We call thismethod occluder synthesis because it is not sensi-tive to the way the objects are tesselated but tothe space enclosed by them. The extension of thistechnique by allowing a bounded amount of im-age error is also discussed. We show that visibil-ity computations can be based on a multiresolu-tion model which provides several representationsof these occluders with varying visibility accuracy.Our tests show that occlusion performance in tesse-lated scenes is improved severely even if no image-error is allowed.1 IntroductionReal-time inspection of very large models, withhundreds of thousands of faces, often surpasses thehardware performance of current high-end worksta-tions. This has led to substantial research into de-vising complimentary software-based techniques forimage acceleration, including level-of-detail render-ing, visibility culling, texturing, compression andadaptive processing.Level-of-detail rendering (LOD-rendering forshort) refers to the possibility of rendering objectsthat cover a small portion of the screen using a sim-

pli�ed version of them instead of the original rep-resentation. Accurate representations are reservedfor close, large or important objects [11].Visibility culling deals with the identi�cation ofthose portions of the scene potentially visible froma dynamic viewpoint. At least two su�cient condi-tions for invisibility can be identi�ed. View frustumculling discards the parts of the scene that are out-side the �eld of view. Occlusion culling keeps thegraphics hardware from drawing the parts that areoccluded by front-end objects. The simplest formof occlusion culling is backface culling, which dis-cards those polygons whose normal is facing awayfrom the viewer.All visibility culling algorithms have compu-tationally intensive pre-processing stages. Pre-processing typically includes the computation ofsome kind of hierarchical data structure to store thescene and an occluder selection step [8, 12, 7, 20].Only objects obscured by a single occluder willbe identi�ed as not visible. The moment whenthis identi�cation takes place separates purely pre-processing algorithms [20, 15, 7] from those thatperform non-trivial computations while navigating[8, 12]. Algorithms in the former family subdividethe navigational space into cells of constant visi-bility. As part of the pre-process, the algorithmcomputes the potentially visible set (PVS for short)for each cell. Algorithms in the latter family com-pute the PVS at navigation-time and re-computeit each time the viewpoint changes. In either case,elements in the PVS are those objects of the scenethat were not obscured by any of the selected oc-cluders when viewed from the current cell or view-point. The overestimation of the PVS is sensitive1
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Figure 1: Overview of LOD-rendering (top) and LOD-occlusion (bottom) preprocessing.to the selected occluder set.Almost all occlusion culling algorithms requirethe occluders to be convex for both e�ciency (fasteralgorithms are known for some geometric problemswhen the input is a convex polytope) and simplic-ity (the visibility inside a polyhedral volume can beeasily determined from the visibility at its verticesif the occluders are convex [18, 20]). In fact, cur-rent algorithms consider an object as invisible onlyif it is obscured completely by a single occluder.An object with one half obscured by occluder Ciand the other half occluded by occluder Cj will notbe classi�ed as invisible because the involved com-putation is comparable with that of working withconcave occluders (recall that the union of convexobjects is not necessarily convex).Moreover, current occlusion culling algorithmscompute the occluder set by using raw occluder se-lection. They traverse the scene looking for convexfaces or polyhedra. Each time a convex is found,its potential occlusion degree is estimated [8] and ifit is greater than a given threshold value, the ele-ment (face or polyhedra) is selected as an occluder.Since there is no scene preprocessing prior to theoccluder selection, each occluder corresponds to anactual face of the scene. Therefore raw occluderselection is much more sensitive to the boundary ofthe objects and the way they are tesselated (e.g. asa triangle mesh), than to the underlying pointsets.Even if a basic face merge preprocessing is carriedout before raw occluder selection, the occluders re-main on the boundary faces of the scene geometryand objects with small details and bevels on theirsurfaces make impossible to get big convex poly-gons from them just by merging coplanar faces.For all the above reasons, current occlusionculling algorithms work with occluders muchsmaller than they could actually be and often need

human intervention for �nding e�ective occluders.An open problem addressed in this paper is oc-cluder synthesis. Given an arbitrary scene in-volving concave and highly tesselated objects, ourproposal is to compute a minor set of possibly-overlapping new convex objects with enhanced oc-clusion properties that will act as occluders dur-ing the PVS computation. The computation ofsynthesized occluders has two main steps: aggre-gation, which builds a new discrete representa-tion of the scene from which both exact-visibilityand bounded-error occluders can be extracted,and convex extraction, which computes a densely-overlapping set of boxes from the previous repre-sentation.Another consideration to be taken into accountin occluder synthesis is that in a highly occludedscene (as urban and ship environments), there areusually narrow holes among objects. Classical visi-bility culling algorithms produce a potential visibleset that also includes objects that are visible onlythrough these holes and which have not signi�cantcontribution on the �nal image. The second con-tribution of this paper is a multiresolution versionof our occluder synthesis procedure that producesa simpli�cation of the scene by connecting discon-nected shells. Obviously, this approach could pro-duce visibility errors on the image but as we showthey are almost unnoticeable.Figure 1 shows an overview of our proposed mod-i�cation of the classical LOD rendering pipeline in-cluding occluder synthesis. The visibility analy-sis computation can be done in a pre-process stepfor each cell in which the scene is subdivided, orat navigation-time. During this visibility analysisstep, and according to the viewpoint and the errortolerance, occluders of the correct LOD resolutionare selected to compute visibility.2



Some highlights of our proposal are:� It always extracts convex parts of underlyingpolyhedra, even if the input model does notprovide polyhedral information (as in the caseof polygon soups).� It can generate many overlapping convex oc-cluders from one single object.� It can take the whole scene as its input dataand deals with polygon soups as e�ectively aswith highly structured scenes.� The output of the algorithm is restricted toboxes, which have a very compact represen-tation and whose shadow frustra can be triv-ially computed in O(1) time. Furthermore, 2Dconvex polygons can be extracted from theseboxes in a straightforward manner, if requiredfor visibility computations.The rest of the paper is structured as follows.Section 2 discusses previous research on occludersynthesis. Section 3 details our contribution onloss-less occluder synthesis based on the construc-tion of an intermediate volumetric model of thescene and on the extraction of overlapping boxes.The novel concept of LOD occlusion culling is pre-sented in Section 4 jointly with the analysis of im-age error. Finally, Sections 5 and 6 show some re-sults and summarize some conclusions and futurework.2 Previous workOcclusion culling literature has focused mainly onthe type of spatial data structures and on themethod of �nding whether a volume is obscured(there is a survey on this �eld elsewhere [21]).Though current visibility culling algorithms areknown to be very sensitive to the boundary rep-resentation of the scene, very little e�ort has beendevoted to lessen this shortcoming.Recently, Law and Tan [15] proposed a newframework that integrated simpli�cation and occlu-sion culling techniques. In their proposal, occludersare synthesized in three steps. First, a potential ob-ject is selected from the scene and its geometry isdecimated using current simpli�cation algorithms.

In the second step, and in order to preserve occlu-sion properties, those vertices of the decimated ob-ject that lie outside the original one are translatedtill bounded by it. Finally, edges in the decimatedmodel are also perturbed so to ensure convexity.Their tests showed the algorithm to be able to gen-erate synthesized convex occluders for signi�cantframe-ratio improvements.However, Law and Tan's algorithm has somedrawbacks. As noted by the authors, validity ofthe resulting occluder is not always ensured bythe occlusion synthesis procedure as the perturba-tion stages can yield null objects with no occlu-sion power. Furthermore, the algorithm outputsone single occluder for each input and it is sensi-tive to the tessellation of the input objects.Klosowski and Silva [14] presented a di�erent butalso lossy approach that does not compute PVS ex-plicitly. Instead, it is based on computing a priorityorder for the polygons that maximizes the likeli-hood of rendering visible polygons before occludedones. The user sets a bound on the number of poly-gons to render in each frame, and the algorithm ren-ders those with the maximum visibility likelihood.As a result of the polygon bound, it is usual to ob-tain errors in the �nal image due to the absence ofvisible objects and the presence of obscured ones.3 Occluder synthesisIn this section a new occluder synthesis algorithmthat enhances signi�cantly the occlusion power ofmost current visibility culling algorithms is pre-sented. It generates sets of large overlapping boxesfrom non-convex polyhedra with an arbitrary num-ber of shells. The remainder of this section is orga-nized as follows. First, we state the occluder syn-thesis problem in terms of the properties of the oc-cluders. Next we survey some previous work relatedto convex object extraction, and �nally the aggre-gation and convex extraction stages are detailed.3.1 Problem statementLet P be an arbitrarily complex scene. A setB = fBig of convex synthesized occluders mustbe generated from P satisfying these conditions:1. EachBi must be either a 2D convex polygon ora 3D solid with a convex silhouette from any3



viewpoint. In both cases the shadow castedby Bi is convex. Since the shadow casted bya polyhedron is greater than the individualshadows of its faces, and for an object to beidenti�ed as not visible it must be completelyobscured by a single occluder, 3D occludersare preferred over 2D ones whenever they aresupported by the occlusion analysis strategyadopted.2. As the number of occluders a�ects directly thespeed of the visibility analysis, the cardinalityn of B must be kept relatively small. This isspecially important if the visibility analysis isnot a preprocess but occurs on-line [8, 12].3. The volume of each individual convex Bishould be maximized. This is due to the factthat, as we pointed out in the introduction, foran object to be identi�ed as not visible it mustbe completely obscured by a single occluder.4. In order to preserve visibility properties, eachBi must be completely contained in P .5. The contribution of each Bi must be signif-icant, i.e. a large part of Bi should not becontained in any of the other convex objectsin B. Note that Bi can contribute even ifBi�Sj 6=i Bj .3.2 Related workA brief survey on related problems seems to pointthat �nding a global optimal to this problem is byno means an easy task. For instance, the potato-peeling problem (a.k.a. the convex skull problem)consists in computing the largest convex containedin a given n-vertex object. It has been studied bothin 2D and 3D with several convex shapes. Arbi-trary convex shapes lead to prohibitive solutionseven in 2D cases [5]. Better solutions are known forrestricted convex objects. The axis-parallel rect-angle of largest area inside a general polygon canbe found in O(n log2 n) time [10]; the same boundholds for orthogonal polygons [16] unless furtherconstraints such as orthogonally convexity are met.In three dimensions, no satisfactory solutions areknown for arbitrary convex polytopes. Finding thelargest bounded box can be reduced to convex pro-gramming and therefore can be solved in expected

linear time only if the input object is convex [1]. Analgorithm to compute an approximate axis-parallelbox of a given polyhedron in O(n4 log2 n) time hasalso been presented [23], but it requires convexityof the input polyhedron.In the above inclusion approaches, the outputmodel consists always in a single convex object.But in order to improve occlusion as much as possi-ble, we should extract several convex objects fromevery input component. The partitioning problem(divide a given object into a disjoint set of simplecomponents) has turned out to be generally wellsolvable. In 3D, a general polyhedron can be par-titioned in O(N2) convex parts in O(nN3) time,where n and N denote the numbers of edges andre
ex vertices, respectively [6]. Unfortunately, par-titioning tends to produce small convex parts whichare not useful as occluders.For the covering problem (where overlapping isallowed), however, no satisfactory solutions areknown. Even for the 2D case, �nding the mini-mal covering is an NP-complete problem [9]. Theonly polynomial time algorithms known are for cov-ering orthogonal polygons. Finding the minimumcovering of a simply connected (i.e. without holes)n-vertex orthogonal polygon takes O(n logn+nm)time [13], wherem is the number of edges in the vis-ibility graph that are either horizontal, vertical orform the diagonal of an empty rectangle. However,it is restricted to non-piercing (and thus smaller)rectangles. Better solutions are known for rect-angles and squares. Covering a simply-connectedorthogonal polygon with a minimum number ofsquares can be done in O(n+ k) time, k being thenumber of output squares [3]. Unfortunately, thesetechniques have not been extended to 3D. More-over, the covering of potential occluders does notshare the optimality criteria of classic covering al-gorithms. For occlusion culling, we are interestedin as large as possible convex components, whileclassic covering literature looks for low-density (i.e.hardly overlapping) coverings.3.3 Strategy adoptedOur solution for occluder synthesis involves twostages (Figure 2): aggregation, which simpli�esthe topology of the scene while maintaining con-ditions 3 and 4 of the problem statement, and con-vex extraction, which extracts a densely overlapping4
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Figure 2: Overview of the synthesis stageconvex covering of the aggregated pointset ful�llingconditions 1 to 5.In the aggregation stage, the computer generatesa spatial subdivision representation for the wholepolyhedral scene. This volumetric representation,which allows better retrieval of the occlusion prop-erties of the underlying pointset, is the key ingre-dient for achieving goal 3.In the convex extraction stage, the computer em-ploys a seed algorithm to obtain many overlappingboxes from the volumetric representation. The al-gorithm is greedy, so the boxes have local maximalocclusion properties. Our tests show that the re-sultant boxes are quite tight, so the lack of globalmaximality and the restricted nature of boxes donot diminish occlusion signi�cantly.A precise description of the Synthesis procedureis given by algorithm 1, where P is the scene andmax refers to the maximum depth of an especialoctree model discussed below.function Synthesis(P;max; num seeds;num occluders)1. mat:=compute isoorientation matrix (P )2. transform(P , mat)3. O:=compute MDCO(P , max)4. L:= convex extraction(O; num seeds)5. L:= sort and cut(L; num occluders)6. transform(L;mat�1)7. return LendAlgorithm 1: Occluder synthesis algorithmLines 1 and 2 apply a linear transformation to thescene P so that the main directions of P becomeaxis-aligned [22]. This step improves the size of theoccluders generated by the algorithm due to theisothetic nature of the octree.Line 3 deals with the construction of a maximaldivision classical octree [4] representation of P with

max levels. This is a well known problem based ona simultaneous space subdivision and clipping ofthe boundary of the polyhedron [4]. Section 3.4deals with the details of this stage.A series of convex occluders is added to the listL in Line 4. The function convex extraction, whoseimplementation is discussed in Section 3.5, returnsa set of boxes extracted from the octree nodes.These boxes are then ordered by their volumecontribution to the set. Finding the optimal so-lution would take exponential time, so a heuristicapproximation is used instead (algorithm 2). Be-gining with the biggest box, boxes from the originalset B are inserted into the ordered set B2. As thecontribution is computed with the elements thatare already present in B2, the order of elements inB will a�ect the result.Finally, the inverse transformation given bymat�1 is applied to the boxes so that the iso-orientation transformation is undone.function SortAndCut(B, num)x:= biggest box(B)B2:=insert(B2; < x;volume(x)>)for each c 2 B n biggest box(B) dov:=volume(c)x:=cT(SB2:first)v:=min(v, volume(x)B2:= insert ordered(B2; < c; v >)end forfor i:=0; i < num; i++ doB3[i]:= B2[i]:firstend forreturn B3end Algorithm 2: Sort and cut5



3.4 AggregationThe aggregation step has been developed follow-ing the Discretized Polyhedra Simpli�cation (DPS)framework of And�ujar [2] which is based on a spe-cialization of the classical octree de�nition. DPSmethods do not create convex objects, but theiroutput models are far more convenient for convexextraction than polyhedral representations. Thissection also discusses some properties of the oc-tree model that will be useful for convex extractionand for bounding the image error of LOD-visibilityculling in section 4.The maximal division classical octree [4] (MDCOfor short) uses a recursive subdivision of a cubicuniverse into eight octants that are arranged intoan 8-ary tree. As in the classical octree representa-tion [19], each node consists of a code (called color)and eight pointers towards eight sons. Nodes corre-sponding to cubic regions completely inside the ob-ject are labeled as black (B), and nodes correspond-ing to cubic regions completely outside the objectare labeled as white (W). Black and white nodes areno further subdivided. Nodes containing a part ofthe boundary are labeled as grey (G) and are recur-sively subdivided until some maximum depth. Leafgrey nodes are called terminal grey (TG) nodes.Given an MDCO, a TG node is said to be a bor-der terminal grey (BTG) node if at least one ofits 6-neighbors is W; otherwise it is said to be aninterior terminal grey (ITG) node.From now on we use calygraphic letters for de-noting set of nodes. B(Oi) denotes the set of blacknodes of an octree Oi with depth i, W(Oi) is theset of white nodes, and so on.DPS methods are based on two versions of theHausdor� distance between two pointsets A, B.The directed version, denoted as dH(A;B), is de-�ned as:dH(A;B) = maxa2c(i(A))minb2c(i(B))dist(a; b)where the inclusion of c(i(A)), which denotes theclosure of the interior of A, is a matter of empha-sizing the fact that the distance is de�ned on thepoints in the inner side of the objects instead oftaking into account just the boundary points. Thesymmetric version, denoted as dSH(A;B), is de-�ned as max(dH (A;B); dH (B;A)).

Now consider the following three pointsets im-plicitly de�ned by an MDCO (see Table 1).De�nition 3.1 Given a MDCO O correspondingto a scene P , the pointsets RB(O), RB+ITG(O) andRB+TG(O) are de�ned as:RB(O) = B(O) (1)RB+ITG(O) = B(O) [ IT G(O) (2)RB+TG(O) = B(O) [ T G(O) (3)Note that the maximum radius of a sphere en-closed either in RB+ITG � P or in RB+TG � P isless or equal than length " of the diagonal of a ter-minal node.3.5 Convex extractionThis step decomposes the pointset B(O) generatedby the aggregation stage into a set B of maximalconvex occluders Bi whose union is approximatelya covering of O. More precisely,De�nition 3.2 The shadow from a point p of a setA � IR3 isS(p;A) = fq 2 IR3 j pq\A 6= ; ^ q 62 Agwhere pq is the segment between p and qDe�nition 3.3 A set B of possibly intersectingconvex objects fBig is called a conforming partialcovering1 of a pointset O i�8p 62 O S(p;[Bi) � S(p;O) (4)Note that the containment comparison is estab-lished between the shadow frustra instead of theobjects themselves and hence in some cases Bi canbe partially outside O. The fact that B 6� O isanother di�erence with respect to classic coveringproblems.Algorithm 3 describes our proposal to obtain aconforming partial covering from a MDCO O. It�rst traverses the octree nodes in pre-order, insert-ing black nodes in a list S. This list is then sortedby volume so that the biggest nodes appear �rst.6



Table 1: Properties of octree subsets.Pointset De�ned as Di�erence with P Distance boundRB(O) B(O) RB(O)� P = ; dH(RB(O); P ) = 0RB+ITG(O) B(O) [ IT G(O) RB+ITG �P � IT G(O) dH(RB+ITG ; P ) = "RB+TG(O) B(O) [ T G(O) RB+TG � P � T G(O) dH(RB+TG ; P ) = "
(a) Original oc-tree (b) Input seed (c) Expandedbox (d) Trimmedexpanded boxFigure 3: Example of one step (-X direction) of the expand function.function ConvexExtraction (O, num seeds)S:=preorder(O)sort(S)B:=;while num seeds > 0n:=head(S)insert(B, expand(box(n),O))num seeds:= num seeds� 1end whilereturn Bend Algorithm 3: Convex extractionThe elements of this list will be used as seeds bythe expansion function (algorithm 4).The expand function (algorithm 4) employs agreedy heuristic procedure to enlarge as much aspossible a given seed c within the limits imposedby the black nodes of the MDCO O. For each ofthe six axis-aligned directions d, it �rst computes atentative box x by stretching c in direction d suchthat x reaches the border of the universe of o (seeFigure 3). This maximally stretched box x is then1Technically it is not a covering, but we kept the termfor its intuitive connection.

trimmed against the black nodes of o by the trimfunction. This function performs a sweep of the oc-tree in the direction speci�ed by the parameter d(algorithm 5). As no octree node is visited twice bythe trim function (and many are not visited at all),its cost is O(n), where n stands for the number ofnodes of the octree.Note that, as usually happens with greedy al-gorithms, the order in which directions are chosenby expand drastically a�ects the shape (and there-fore the goodness) of the resulting box. This couldbe alleviated by running expand several times withrandomly shu�ed orderings of directions. However,our tests show that this is not necessary if severalseeds are used.The expand function ends with a call to�ll surface concavities. The goal of this func-tion is to avoid concavities due to non-crossingholes of the object. The occluder will keepthe same visibility properties provided that theseconcavities do not modify the object silhouette.The fill surface concavities function enlarges ex-tracted boxes beyond the limits of the octree whilepreserving visibility properties. For each of the six7



faces of the input box, the �lling function gener-ates a band of interior radius equal to the widthof the smallest possible MDCO node. This bandis formed by four boxes. They are then stretchedin the direction of the face normal till the borderof the octree is reached and then trimmed againstthe black nodes of the octree. The smallest box isthen used to measure the actual stretch that canbe performed on the input box. Figure 4 shows acomplete example in 2D.function Expand(box, O)for each d 2 f+X;�X;+Y;�Y;+Z;�Zg dox:= MaximumBox(box; d;O)(* Compute the maximum trimmable length l *)< ; l >:= trim(x, d, rootnode(O))(* And enlarge x accordingly *)box:=stretch(x; d; l)end forx:= �ll surface concavities (x;O)return xend Algorithm 4: expandfunction Trim(box, d, node)x:= box \ nodeif x=; then< b; l >:=< false; >end ifif colour(node)=WHITE then< b; l >:=< true; 0 >else if colour(node)=BLACK< b; l >:=< true;length(x)>else< b; l; nexts >:= trim sons (box; d; node; Left[d])if :b then< b; l; >:= trim sons (box; d; node;Right[d])elseif reaches right neighbours(box; d; node; l)< ; l2; >:= trim sons (box; d; node; nexts)l:= l + l2end ifend ifend ifreturn < b; l >endAlgorithm 5: Trim. Left and Right are 6�4 tablesthat provide an ordering for the traversal of thesons of the node n. Left nodes are always visited�rst.

function TrimSons(box, d, node, s)< minl; n >:= <1;EmptyVector()>for i:=0;i < size(s);i++ do< b; l >:= trim(box; d;son(node; s[i]))if b ^ l < minl thenminl:=ln:push back(Neighbor[d][s[i]])end ifend forreturn <size(n) 6= 0;minl; n >end Algorithm 6: trim sons4 LOD visibility cullingIn this section we present a novel approach to thevisibility analysis of very large models. We callour approach LOD visibility culling because visi-bility computations are carried out using severalLOD representations of the occluders with varyingvisibility accuracy.The basic idea is that the occluders can be pro-cessed using a coarse representation of them with-out seriously a�ecting the resulting image quality.When considering an occluder at low resolution,small see-through regions such as holes and trans-parent polygons can be considered as being opaque,therefore allowing the generation of large occlud-ers. Similar occluder enlargement can be achievedby combining nearby pointsets into larger pointsetsand extracting convex occluders from them. In thiscase some occluders are lossy and an error measureis required.A precise description of the LOD-based versionof the synthesis procedure is given in Algorithm 7,where Ol stands for the octree of the scene pro-cessed at resolution l.function Synthesis(P , max)1. mat:=compute isoorientation matrix (P )2. transform(P , mat)3. O:=compute MDCO(P , max)4. L:=;5. insert(L, Convex extraction( RB(Omax), mat))6. l:=max� 1while l > 2 do7. if signi�cant topology changes(Ol, Ol+1) then8. insert(L, Convex extraction( RB+ITG(Ol), mat))end9. l:=l� 1endreturn LendAlgorithm 7: LOD-based synthesis algorithm8



(a) (b) (c) (d) (e) (f)Figure 4: Filling surface concavities in 2DNote that loss-less occluders are obtained by con-sidering the black nodes of the octree at its maxi-mum resolution (Line 5) and lossy occluders are ex-tracted from the pointset de�ned by RB+ITG(Ol)for several values of l (Line 8).Line 7 checks for topology changes betweenRB+ITG(Ol) and RB+ITG(Ol+1) (see below). Ifthere are topology changes, then Line 8 adds fur-ther convex occluders to L by considering the octreeat a lower resolution. Note that in this case, thelossy pointset RB+ITG is considered instead of RB .The question that must be answered in Line 7 iswhether the convex extraction function will be ableto extract larger occluders from RB+ITG(Ol�1)with respect to those extracted from RB+ITG(Ol).Obviously, the answer is related to the topologychanges experimented by the pointset when we dou-ble the size of the terminal nodes of the octree.The answer is a�rmative if there exists an ITGnode in Ol�1 with at least a white or BTG nodeamong their sons in Ol. In this case, there existsa region in RB+ITG(Ol�1) that does not belong toRB+ITG(Ol) and hence we have a chance of �nd-ing a larger convex object inside it. Note that theprevious test requires only a simple traversal of theoctree.4.1 Error evaluationSince our occluders are over
ow approximations ofreal scene objects (except those extracted from RBpointsets), we are interested in bounding the imageerror produced by removing from the display listsome objects that were not completely obscured byactual scene objects.Let c be a camera de�nition including the view-point p, the target t, the horizontal and vertical

�eld-of-view angles fovh, fovv and the viewport res-olution in pixels, w � h. The image produced byrendering a given set S of scene objects from c willbe referred to as I(S; c).Let A, B be two subsets of the scene objects, andc be a camera de�nition. The di�erential region�(A;B; c) is de�ned as:f(x; y) j I(A; c)[x; y] 6= I(B; c)[x; y]gi.e. �(A;B; c) is the set of pixels that are di�erenton the renderings of A and B.We propose two intuitive and useful metrics over�(A;B; c) for determining a scalar value represent-ing the di�erence between the corresponding twoimages. The �rst metric has some connection withthe L1 norm and is de�ned as L1(�)=number ofpixels in �. The second metric, which derives fromthe L1 norm, is denoted as L1(�) and de�ned asthe diameter of the largest enclosed circle in �.Clearly, the former expresses the area of the dif-ferential region, and the later represents its maxi-mum thickness. Both are complimentary becausehuman perception of n randomly distributed pixelsis di�erent from that of n pixels forming a com-pact block. Note that other more sophisticated er-ror metrics between two images (see Neumann etal. [17]) make no sense in this context because thepixels in I(A; c) ��(A;B; c) remain unchanged.Now, let us consider the di�erential region gen-erated by using approximate occluders. Let Bijbe the set of boxes generated from Oj . Sceneobjects lying inside S(p;Bij) are not completelyinvisible from viewpoint p because Bij obscuressome regions that were not obscured by the origi-nal scene. Therefore, some objects that would bevisible through small holes will not be rendered.We associate along with each box Bij two9



device-independent errors ea(Bij) and et(Bij) in-dicating a bound of the area and the thick-ness of �(Scene; Scene � S(p;Bij)). By device-independent we mean that this measure does notdepend on the screen resolution, which is not gen-erally available at preprocessing time. This isachieved by considering the viewpoint P at in�nity(i.e. a parallel projection) and a 1� 1 screen.The computation of et(Bij) is straightforward.It follows from the properties in Table 1 thatet(B0j) = 0 and 8i > 0 et(Bij) = 2"i.The AssignErrors procedure computes the errorea(Bij) corresponding to the boxes Bij extractedfrom the octree Oi where "i is again the length ofthe diagonal of a terminal node of Oi.procedure AssignErrors(Bij , Oi)for j:=1 to b do1. �XY :=front back ITG(Bij , Oi, XY)2. �Y Z :=front back ITG(Bij , Oi, YZ)3. �XZ :=front back ITG(Bij , Oi, XZ)4. �max:= p3 max f�XY ;�Y Z ;�XZg � "i5. ea(Bij):=�maxendendLines 1-4 deal with the computation of the area ofthe maximum parallel projection of the ITG nodesinside Bij . Let �w(x) be the parallel projection ofan arbitrary pointset x over the plane w. It followsfrom the properties in Table 1 that for any w�w(Bij � P ) � �w(IT G(Oi) \Bij) :Let max be the plane over which the projection�max(IT G(Oi) \ Bij) is maximum. A precisebound of the area of this maximum parallel projec-tion can be easily computed from the orthographicprojections of the ITG nodes (lines 1 to 4).Note that the area of any orthographic projec-tion of the ITG set can be trivially computed by atraversal of the front and back ITG nodes (Lines 1to 3). The assign errors algorithm runs in O(bn)time, b and n being respectively the number ofboxes and the number of octree nodes at resolu-tion i.Finally, we group all the boxes in fBijg by similarthickness error et. For example, we create �ve cat-egories by considering the intervals [0; 0], (0; 0:01],(0:01; 0:02], (0:02; 0:05], (0:05; 0:1] and (0:1;p2].Note that e.g. et = 0:01 corresponds to limitingthe thickness of the di�erential region to one per-cent of the screen diagonal.

Working with LOD representations of the occlud-ers requires some modi�cations of the occluder se-lection once the viewer's position in known. Atruntime or pre-processing time, depending on thevisibility determination approach adopted, the userprovides two error tolerances Et, Ea indicatingthe maximum thickness and maximum area ofthe di�erential region. Occluders are selectedwith increasing ea so that P ea(Bij) � Ea andmaxfet(Bij)g � Et, where the perspective cor-rection has been applied to ea and et. Actually,L1(�(S; S�Vi); c1) is bounded by et(Vi) providedthat the projections of ITG of di�erent occludersdo not overlap, which is unlikely to happen.5 ResultsWe have implemented all the algorithms presentedin this paper and tested them on several publiclyavailable 3D models. Figure 5 shows the resultsof our lossy version of the occluder synthesis algo-rithm on a model of the St. Pauls cathedral fromhttp://www.3dcafe.com/models/stpauls.zip (14,780faces). On both cases the covering was above 70%and the maximum error, measured as the devia-tion from the occluder to the original surface wasless than 2.7% and 1.35%, respectively.We did some experimentation to check the de-pendence of our method on the number of occludersand seeds. In order to get an accurate evaluation ofthe goodness of the synthesis algorithm, we ran theexamples with a naive version of the sort and cut�lter which only considers the di�erence betweenthe volume of the box whose contribution is beingevaluated and the volume of its maximum intersec-tion with the boxes selected previously.Figure 7 shows that twelve occluders and twicethat number of seeds su�ce to cover signi�cant por-tions (more than 60%) of the St. Pauls cathedral.And Figure 6 reveals that regardless of the numberof occluders adopted, it is easy to achieve coveringsabove 65% with a few seeds.Figure 8 shows graphically the di�erential regionusing the lossy occluders generated from the 7-leveloctree of the St. Pauls model (et � 1:35%). Thered pixels in Figure 8 (b) correspond to the screenregion covered by the occluders but not covered bythe original object. Although any red pixel canbe erroneous, usually only a little subset of these10
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Figure 5: Occluder synthesis on the St. Pauls model. St. Pauls model (a) and its tessellation (b);MDCO with seven (c) and six levels (d); the 10 largest occluders extracted from each resolution (e-h).
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Figure 9: From left to right, the city model and its octree representation with nine and eight levels.
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6 Conclusions and futureworkWe have introduced LOD occlusion culling, a newconcept that accelerates navigation in complexscenes and that can be incorporated into currentnavigation frameworks that use visibility culling.The experimental results show an improvement ofvisibility computations, the generation of more ac-curate PVS, and high quality images without visi-bility error (loss-less visibility) or with a �tted im-age error (lossy visibility) by means of two intuitiveparameters indicating the maximum thickness andarea of the error region.We have also developed a new algorithm for thegeneration of synthesized occluders. The algorithmhas two main steps: aggregation and convex extrac-tion, and it guarantees the visibility validity of theoutput occluders. It generates sequences of denselyoverlapping boxes that need not to be inside theoriginal concave pointset. Each of these two fea-tures enhances occlusion performance. Modifyingthe aggregation step, the algorithm can be usedto obtain multiresolution occluder sets. This algo-rithm bene�ts not only from complex and concaveregions, but also from almost opaque ones, thusgreatly accelerating the visualization.The occluder selection step also bene�ts from theuse of synthesized occluders. Dynamic occlusionalgorithms restrict the number of selected occludersused at each viewpoint to avoid overhead. But asthe number of elements of the synthesized set ismany orders of magnitude smaller than the numberof polygons in the input, the selection of occludersat each viewpoint is faster. And more occluderscan be taken into consideration without incurringin excessive overhead.Our future work includes the integration of LOD-occlusion into our visibility algorithm [20]. Theoccluder synthesis algorithm will allow the genera-tion of level-of-detail hierarchies of synthesized oc-cluders with varying degrees of visibility accuracy.As in LOD rendering, image �delity can be tradedfor a higher frame ratio. We plan to use lossy oc-cluders for determining both completely visible andhardly visible objects, which can be displayed usinga coarse representation of them.Storing a high-resolution octree is very memory-consuming. Fortunately, it is not necessary to have
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