LOD Visibility Culling and Occluder Synthesis

Carlos Andtjar

Carlos Saona-Vazquez

Isabel Navazo

Dept. LSI. Universitat Politecnica de Catalunya
Diagonal 647. E-08028 Barcelona, Spain
{andujar, carloss, isabel}@lsi.upc.es

July 13, 2000

Abstract

Level-of-detail occlusion culling is a novel approach
to the management of occluders that can be easily
integrated into most current visibility culling al-
gorithms. The main contribution of this paper is
an algorithm that automatically generates sets of
densely overlapping boxes with enhanced occlusion
properties from non-convex subsets. We call this
method occluder synthesis because it is not sensi-
tive to the way the objects are tesselated but to
the space enclosed by them. The extension of this
technique by allowing a bounded amount of im-
age error is also discussed. We show that visibil-
ity computations can be based on a multiresolu-
tion model which provides several representations
of these occluders with varying visibility accuracy.
Our tests show that occlusion performance in tesse-
lated scenes is improved severely even if no image-
error is allowed.

1 Introduction

Real-time inspection of very large models, with
hundreds of thousands of faces, often surpasses the
hardware performance of current high-end worksta-
tions. This has led to substantial research into de-
vising complimentary software-based techniques for
image acceleration, including level-of-detail render-
ing, visibility culling, texturing, compression and
adaptive processing.

Level-of-detail rendering (LOD-rendering for
short) refers to the possibility of rendering objects
that cover a small portion of the screen using a sim-

plified version of them instead of the original rep-
resentation. Accurate representations are reserved
for close, large or important objects [11].

Visibility culling deals with the identification of
those portions of the scene potentially visible from
a dynamic viewpoint. At least two sufficient condi-
tions for invisibility can be identified. View frustum
culling discards the parts of the scene that are out-
side the field of view. Occlusion culling keeps the
graphics hardware from drawing the parts that are
occluded by front-end objects. The simplest form
of occlusion culling is backface culling, which dis-
cards those polygons whose normal is facing away
from the viewer.

All visibility culling algorithms have compu-
tationally intensive pre-processing stages. Pre-
processing typically includes the computation of
some kind of hierarchical data structure to store the
scene and an occluder selection step [8, 12, 7, 20].
Only objects obscured by a single occluder will
be identified as not visible. The moment when
this identification takes place separates purely pre-
processing algorithms [20, 15, 7] from those that
perform non-trivial computations while navigating
[8, 12]. Algorithms in the former family subdivide
the navigational space into cells of constant visi-
bility. As part of the pre-process, the algorithm
computes the potentially visible set (PVS for short)
for each cell. Algorithms in the latter family com-
pute the PVS at navigation-time and re-compute
it each time the viewpoint changes. In either case,
elements in the PVS are those objects of the scene
that were not obscured by any of the selected oc-
cluders when viewed from the current cell or view-
point. The overestimation of the PVS is sensitive

—
Multi-

Appearance-preserving

—

resolution
model

S

surface simplification

[
3D model

Occluder
synthesis

occluders

R

—
Convex

Visibility
structure |

Visibility | _|

; Visualization
analysis

Figure 1: Overview of LOD-rendering (top) and LOD-occlusion (bottom) preprocessing.

to the selected occluder set.

Almost all occlusion culling algorithms require
the occluders to be convex for both efficiency (faster
algorithms are known for some geometric problems
when the input is a convex polytope) and simplic-
ity (the visibility inside a polyhedral volume can be
easily determined from the visibility at its vertices
if the occluders are convex [18, 20]). In fact, cur-
rent algorithms consider an object as invisible only
if it is obscured completely by a single occluder.
An object with one half obscured by occluder C;
and the other half occluded by occluder C; will not
be classified as invisible because the involved com-
putation is comparable with that of working with
concave occluders (recall that the union of convex
objects is not necessarily convex).

Moreover, current occlusion culling algorithms
compute the occluder set by using raw occluder se-
lection. They traverse the scene looking for convex
faces or polyhedra. Each time a convex is found,
its potential occlusion degree is estimated [8] and if
it is greater than a given threshold value, the ele-
ment (face or polyhedra) is selected as an occluder.
Since there is no scene preprocessing prior to the
occluder selection, each occluder corresponds to an
actual face of the scene. Therefore raw occluder
selection is much more sensitive to the boundary of
the objects and the way they are tesselated (e.g. as
a triangle mesh), than to the underlying pointsets.
Even if a basic face merge preprocessing is carried
out before raw occluder selection, the occluders re-
main on the boundary faces of the scene geometry
and objects with small details and bevels on their
surfaces make impossible to get big convex poly-
gons from them just by merging coplanar faces.

For all the above reasons, current occlusion
culling algorithms work with occluders much
smaller than they could actually be and often need

human intervention for finding effective occluders.

An open problem addressed in this paper is oc-
cluder synthesis. Given an arbitrary scene in-
volving concave and highly tesselated objects, our
proposal is to compute a minor set of possibly-
overlapping new convex objects with enhanced oc-
clusion properties that will act as occluders dur-
ing the PVS computation. The computation of
synthesized occluders has two main steps: aggre-
gation, which builds a new discrete representa-
tion of the scene from which both exact-visibility
and bounded-error occluders can be extracted,
and convex extraction, which computes a densely-
overlapping set of boxes from the previous repre-
sentation.

Another consideration to be taken into account
in occluder synthesis is that in a highly occluded
scene (as urban and ship environments), there are
usually narrow holes among objects. Classical visi-
bility culling algorithms produce a potential visible
set that also includes objects that are visible only
through these holes and which have not significant
contribution on the final image. The second con-
tribution of this paper is a multiresolution version
of our occluder synthesis procedure that produces
a simplification of the scene by connecting discon-
nected shells. Obviously, this approach could pro-
duce visibility errors on the image but as we show
they are almost unnoticeable.

Figure 1 shows an overview of our proposed mod-
ification of the classical LOD rendering pipeline in-
cluding occluder synthesis. The visibility analy-
sis computation can be done in a pre-process step
for each cell in which the scene is subdivided, or
at navigation-time. During this visibility analysis
step, and according to the viewpoint and the error
tolerance, occluders of the correct LOD resolution
are selected to compute visibility.

Some highlights of our proposal are:

e It always extracts convex parts of underlying
polyhedra, even if the input model does not
provide polyhedral information (as in the case
of polygon soups).

e It can generate many overlapping convex oc-
cluders from one single object.

e It can take the whole scene as its input data
and deals with polygon soups as effectively as
with highly structured scenes.

e The output of the algorithm is restricted to
boxes, which have a very compact represen-
tation and whose shadow frustra can be triv-
ially computed in O(1) time. Furthermore, 2D
convex polygons can be extracted from these
boxes in a straightforward manner, if required
for visibility computations.

The rest of the paper is structured as follows.
Section 2 discusses previous research on occluder
synthesis. Section 3 details our contribution on
loss-less occluder synthesis based on the construc-
tion of an intermediate volumetric model of the
scene and on the extraction of overlapping boxes.
The novel concept of LOD occlusion culling is pre-
sented in Section 4 jointly with the analysis of im-
age error. Finally, Sections 5 and 6 show some re-
sults and summarize some conclusions and future
work.

2 Previous work

Occlusion culling literature has focused mainly on
the type of spatial data structures and on the
method of finding whether a volume is obscured
(there is a survey on this field elsewhere [21]).
Though current visibility culling algorithms are
known to be very sensitive to the boundary rep-
resentation of the scene, very little effort has been
devoted to lessen this shortcoming.

Recently, Law and Tan [15] proposed a new
framework that integrated simplification and occlu-
sion culling techniques. In their proposal, occluders
are synthesized in three steps. First, a potential ob-
ject is selected from the scene and its geometry is
decimated using current simplification algorithms.

In the second step, and in order to preserve occlu-
sion properties, those vertices of the decimated ob-
ject that lie outside the original one are translated
till bounded by it. Finally, edges in the decimated
model are also perturbed so to ensure convexity.
Their tests showed the algorithm to be able to gen-
erate synthesized convex occluders for significant
frame-ratio improvements.

However, Law and Tan’s algorithm has some
drawbacks. As noted by the authors, validity of
the resulting occluder is not always ensured by
the occlusion synthesis procedure as the perturba-
tion stages can yield null objects with no occlu-
sion power. Furthermore, the algorithm outputs
one single occluder for each input and it is sensi-
tive to the tessellation of the input objects.

Klosowski and Silva [14] presented a different but
also lossy approach that does not compute PVS ex-
plicitly. Instead, it is based on computing a priority
order for the polygons that maximizes the likeli-
hood of rendering visible polygons before occluded
ones. The user sets a bound on the number of poly-
gons to render in each frame, and the algorithm ren-
ders those with the maximum visibility likelihood.
As a result of the polygon bound, it is usual to ob-
tain errors in the final image due to the absence of
visible objects and the presence of obscured ones.

3 Occluder synthesis

In this section a new occluder synthesis algorithm
that enhances significantly the occlusion power of
most current visibility culling algorithms is pre-
sented. It generates sets of large overlapping boxes
from non-convex polyhedra with an arbitrary num-
ber of shells. The remainder of this section is orga-
nized as follows. First, we state the occluder syn-
thesis problem in terms of the properties of the oc-
cluders. Next we survey some previous work related
to convex object extraction, and finally the aggre-
gation and convex extraction stages are detailed.

3.1 Problem statement

Let P be an arbitrarily complex scene. A set
B = {B;} of convex synthesized occluders must
be generated from P satisfying these conditions:

1. Each B; must be either a 2D convex polygon or
a 3D solid with a convex silhouette from any

viewpoint. In both cases the shadow casted
by B; is convex. Since the shadow casted by
a polyhedron is greater than the individual
shadows of its faces, and for an object to be
identified as not visible it must be completely
obscured by a single occluder, 3D occluders
are preferred over 2D ones whenever they are
supported by the occlusion analysis strategy
adopted.

2. As the number of occluders affects directly the
speed of the visibility analysis, the cardinality
n of B must be kept relatively small. This is
specially important if the visibility analysis is
not a preprocess but occurs on-line [8, 12].

3. The volume of each individual convex B;
should be maximized. This is due to the fact
that, as we pointed out in the introduction, for
an object to be identified as not visible it must
be completely obscured by a single occluder.

4. In order to preserve visibility properties, each
B; must be completely contained in P.

5. The contribution of each B; must be signif-
icant, i.e. a large part of B; should not be
contained in any of the other convex objects
in B. Note that B; can contribute even if
BiCUji Bj -

3.2 Related work

A brief survey on related problems seems to point
that finding a global optimal to this problem is by
no means an easy task. For instance, the potato-
peeling problem (a.k.a. the convex skull problem)
consists in computing the largest convex contained
in a given n-vertex object. It has been studied both
in 2D and 3D with several convex shapes. Arbi-
trary convex shapes lead to prohibitive solutions
even in 2D cases [5]. Better solutions are known for
restricted convex objects. The axis-parallel rect-
angle of largest area inside a general polygon can
be found in O(nlog® n) time [10]; the same bound
holds for orthogonal polygons [16] unless further
constraints such as orthogonally convexity are met.
In three dimensions, no satisfactory solutions are
known for arbitrary convex polytopes. Finding the
largest bounded box can be reduced to convex pro-
gramming and therefore can be solved in expected

linear time only if the input object is convex [1]. An
algorithm to compute an approximate axis-parallel
box of a given polyhedron in O(n*log”n) time has
also been presented [23], but it requires convexity
of the input polyhedron.

In the above inclusion approaches, the output
model consists always in a single convex object.
But in order to improve occlusion as much as possi-
ble, we should extract several convex objects from
every input component. The partitioning problem
(divide a given object into a disjoint set of simple
components) has turned out to be generally well
solvable. In 3D, a general polyhedron can be par-
titioned in O(N?) convex parts in O(nN?) time,
where n and N denote the numbers of edges and
reflex vertices, respectively [6]. Unfortunately, par-
titioning tends to produce small convex parts which
are not useful as occluders.

For the covering problem (where overlapping is
allowed), however, no satisfactory solutions are
known. FEven for the 2D case, finding the mini-
mal covering is an NP-complete problem [9]. The
only polynomial time algorithms known are for cov-
ering orthogonal polygons. Finding the minimum
covering of a simply connected (i.e. without holes)
n-vertex orthogonal polygon takes O(nlogn +nm)
time [13], where m is the number of edges in the vis-
ibility graph that are either horizontal, vertical or
form the diagonal of an empty rectangle. However,
it is restricted to non-piercing (and thus smaller)
rectangles. Better solutions are known for rect-
angles and squares. Covering a simply-connected
orthogonal polygon with a minimum number of
squares can be done in O(n + k) time, k being the
number of output squares [3]. Unfortunately, these
techniques have not been extended to 3D. More-
over, the covering of potential occluders does not
share the optimality criteria of classic covering al-
gorithms. For occlusion culling, we are interested
in as large as possible convex components, while
classic covering literature looks for low-density (i.e.
hardly overlapping) coverings.

3.3 Strategy adopted

Our solution for occluder synthesis involves two
stages (Figure 2): aggregation, which simplifies
the topology of the scene while maintaining con-
ditions 3 and 4 of the problem statement, and con-
vez extraction, which extracts a densely overlapping

Aggregation
—>

Convex
extraction

Figure 2: Overview of the synthesis stage

convex covering of the aggregated pointset fulfilling
conditions 1 to 5.

In the aggregation stage, the computer generates
a spatial subdivision representation for the whole
polyhedral scene. This volumetric representation,
which allows better retrieval of the occlusion prop-
erties of the underlying pointset, is the key ingre-
dient for achieving goal 3.

In the convex extraction stage, the computer em-
ploys a seed algorithm to obtain many overlapping
boxes from the volumetric representation. The al-
gorithm is greedy, so the boxes have local maximal
occlusion properties. Qur tests show that the re-
sultant boxes are quite tight, so the lack of global
maximality and the restricted nature of boxes do
not diminish occlusion significantly.

A precise description of the Synthesis procedure
is given by algorithm 1, where P is the scene and
maz refers to the maximum depth of an especial
octree model discussed below.

function Synthesis(P, maz, num_seeds, num_occluders)

1. mat:=compute isoorientation matrix (P)
2. transform(P, mat)

3. O:=compute MDCO(P, max)

4. L:= convex extraction(O, num_seeds)

5. L:=sort and cut(l, num_occluders)

6. transform(L,mat™1)

7. return L

end

Algorithm 1: Occluder synthesis algorithm

Lines 1 and 2 apply a linear transformation to the
scene P so that the main directions of P become
axis-aligned [22]. This step improves the size of the
occluders generated by the algorithm due to the
isothetic nature of the octree.

Line 3 deals with the construction of a maximal
division classical octree [4] representation of P with

max levels. This is a well known problem based on
a simultaneous space subdivision and clipping of
the boundary of the polyhedron [4]. Section 3.4
deals with the details of this stage.

A series of convex occluders is added to the list
L in Line 4. The function convex extraction, whose
implementation is discussed in Section 3.5, returns
a set, of boxes extracted from the octree nodes.

These boxes are then ordered by their volume
contribution to the set. Finding the optimal so-
lution would take exponential time, so a heuristic
approximation is used instead (algorithm 2). Be-
gining with the biggest box, boxes from the original
set B are inserted into the ordered set B2. As the
contribution is computed with the elements that
are already present in B2, the order of elements in
B will affect the result.

Finally, the inverse transformation given by
mat~! is applied to the boxes so that the iso-
orientation transformation is undone.

function SortAndCut(B, num)
x:= biggest_box(B)
B2:=insert(B2, < z,volume(z)>)
for each ¢ € B \ biggest_box(B) do
v:=volume(c)
z:=c((UJ B2.first)
v:=min(v, volume(z)
B2:= insert_ordered(B2, < ¢,v >)
end for
for i:=0; i < num; i + + do
B3[i]:= B2i].first
end for
return B3
end

Algorithm 2: Sort and cut

3.4 Aggregation

The aggregation step has been developed follow-
ing the Discretized Polyhedra Simplification (DPS)
framework of Andujar [2] which is based on a spe-
cialization of the classical octree definition. DPS
methods do not create convex objects, but their
output models are far more convenient for convex
extraction than polyhedral representations. This
section also discusses some properties of the oc-
tree model that will be useful for convex extraction
and for bounding the image error of LOD-visibility
culling in section 4.

The mazimal division classical octree [4] (MDCO
for short) uses a recursive subdivision of a cubic
universe into eight octants that are arranged into
an 8-ary tree. As in the classical octree representa-
tion [19], each node consists of a code (called color)
and eight pointers towards eight sons. Nodes corre-
sponding to cubic regions completely inside the ob-
ject are labeled as black (B), and nodes correspond-
ing to cubic regions completely outside the object
are labeled as white (W). Black and white nodes are
no further subdivided. Nodes containing a part of
the boundary are labeled as grey (G) and are recur-
sively subdivided until some maximum depth. Leaf
grey nodes are called terminal grey (TG) nodes.

Given an MDCO, a TG node is said to be a bor-
der terminal grey (BTG) node if at least one of
its 6-neighbors is W; otherwise it is said to be an
interior terminal grey (ITG) node.

From now on we use calygraphic letters for de-
noting set of nodes. B(0;) denotes the set of black
nodes of an octree O; with depth i, W(O;) is the
set of white nodes, and so on.

DPS methods are based on two versions of the
Hausdorff distance between two pointsets A, B.
The directed version, denoted as dy (A, B), is de-
fined as:

di (A, B) = maz,c.(i(a))Minpec(i(B)) dist(a, b)

where the inclusion of ¢(i(A)), which denotes the
closure of the interior of A, is a matter of empha-
sizing the fact that the distance is defined on the
points in the inner side of the objects instead of
taking into account just the boundary points. The
symmetric version, denoted as dsy(A, B), is de-
fined as maz(dy (A, B),du (B, A)).

Now consider the following three pointsets im-
plicitly defined by an MDCO (see Table 1).

Definition 3.1 Given a MDCO O corresponding
to a scene P, the pointsets RP(0), RPHITG(0) and
RBFTE(0) are defined as:

RP(0) = B(0) (1)
RBHTC(0) = B(O)UZTG(0) (2)
RB+TE(0) = B(O) UTG(0) (3)

Note that the maximum radius of a sphere en-
closed either in REHTG — P or in RBYT¢ — P is
less or equal than length € of the diagonal of a ter-
minal node.

3.5 Convex extraction

This step decomposes the pointset B(O) generated
by the aggregation stage into a set B of maximal
convex occluders B; whose union is approximately
a covering of 0. More precisely,

Definition 3.2 The shadow from a point p of a set
A CIR3? is

S(p,A)={ge R® |pg[|A#0 Ag¢ A}
where pq is the segment between p and q

Definition 3.3 A set B of possibly intersecting
convez objects {B;} is called a conforming partial
covering' of a pointset O iff

Note that the containment comparison is estab-
lished between the shadow frustra instead of the
objects themselves and hence in some cases B; can
be partially outside O. The fact that B ¢ O is
another difference with respect to classic covering
problems.

Algorithm 3 describes our proposal to obtain a
conforming partial covering from a MDCO O. It
first traverses the octree nodes in pre-order, insert-
ing black nodes in a list S. This list is then sorted
by volume so that the biggest nodes appear first.

Table 1: Properties of octree subsets.

Pointset Defined as Difference with P Distance bound

RB(0) B(0O) RB(O)-P=10 diy(RB(O),P)=0

RB+I’T‘G(0) B(O)] ITg(O) RB‘+ITG —P C ITQ(O) dH(RB+ITG, P) —¢

RB+TG(0) B(0) U TG(0) RBHTG P CTGO) | du(RPTTE P)=¢
— ! — —

[‘ [‘
1]

(a) Original oc-
tree

(b) Input seed

1]
(c)

(d) Trimmed
box expanded box

Expanded

Figure 3: Example of one step (-X direction) of the expand function.

function ConvexExtraction (O, num_seeds)
S:=preorder(O)
sort(S)
B:=0
while num_seeds > 0
n:=head(S)
insert(B, expand(box(n),0))
num_seeds:= num_seeds — 1
end while
return B
end

Algorithm 3: Convex extraction

The elements of this list will be used as seeds by
the expansion function (algorithm 4).

The expand function (algorithm 4) employs a
greedy heuristic procedure to enlarge as much as
possible a given seed ¢ within the limits imposed
by the black nodes of the MDCO O. For each of
the six axis-aligned directions d, it first computes a
tentative box z by stretching c¢ in direction d such
that x reaches the border of the universe of o (see
Figure 3). This maximally stretched box z is then

ITechnically it is not a covering, but we kept the term
for its intuitive connection.

trimmed against the black nodes of o by the trim
function. This function performs a sweep of the oc-
tree in the direction specified by the parameter d
(algorithm 5). As no octree node is visited twice by
the trim function (and many are not visited at all),
its cost is O(n), where n stands for the number of
nodes of the octree.

Note that, as usually happens with greedy al-
gorithms, the order in which directions are chosen
by expand drastically affects the shape (and there-
fore the goodness) of the resulting box. This could
be alleviated by running exzpand several times with
randomly shuffled orderings of directions. However,
our tests show that this is not necessary if several
seeds are used.

The expand function ends with a call to
fill_surface_concavities. =~ The goal of this func-
tion is to avoid concavities due to non-crossing
holes of the object. The occluder will keep
the same visibility properties provided that these
concavities do not modify the object silhouette.
The fill_sur face_concavities function enlarges ex-
tracted boxes beyond the limits of the octree while
preserving visibility properties. For each of the six

faces of the input box, the filling function gener-
ates a band of interior radius equal to the width
of the smallest possible MDCQO node. This band
is formed by four boxes. They are then stretched
in the direction of the face normal till the border
of the octree is reached and then trimmed against
the black nodes of the octree. The smallest box is
then used to measure the actual stretch that can
be performed on the input box. Figure 4 shows a
complete example in 2D.

function Expand(boz, O)
for each d € {+X,—X,+Y,-Y,+Z,—Z} do
z:= MaximumBox(boz, d, O)
(* Compute the maximum trimmable length [*)
< .1 >:= trim(z, d, rootnode(O))
(* And enlarge z accordingly *)
box:=stretch(z, d, 1)
end for
x:= fill surface concavities (z, O)
return z
end

Algorithm 4: expand

function Trim(box, d, node)
z:= box N node

if z=0 then
< b,l >:=< false,_ >
end if

if colour(node)=WHITE then
< byl >:=< true,0 >

else if colour(node)=BLACK
< b,l >:=< true,length(z)>

else
< b,l,nexts >:= trim_sons (box, d, node, Le ft[d])
if —b then
< b,l,- >:= trimsons (box, d, node, Right[d])
else

if reaches right neighbours(boz, d, node, 1)
< ., 12,_>:= trim_sons (boz, d, node,nexts)
li=1412
end if
end if
end if
return < b, >
end

Algorithm 5: Trim. Left and Right are 6 x4 tables
that provide an ordering for the traversal of the

sons of the node n. Left nodes are always visited
first.

function TrimSons(boz, d, node, s)
< ming,n >:= < oo,EmptyVector()>
for i:=0;i < size(s);i + + do
< b,l >:= trim(boz, d,son(node, s[i]))
if b Al < min; then
min;:=I
n.push_back(Neighbor|[d][s[i]])
end if
end for
return <size(n) # 0,min;,n >
end

Algorithm 6: trim sons

4 LOD visibility culling

In this section we present a novel approach to the
visibility analysis of very large models. We call
our approach LOD visibility culling because visi-
bility computations are carried out using several
LOD representations of the occluders with varying
visibility accuracy.

The basic idea is that the occluders can be pro-
cessed using a coarse representation of them with-
out seriously affecting the resulting image quality.
When considering an occluder at low resolution,
small see-through regions such as holes and trans-
parent polygons can be considered as being opaque,
therefore allowing the generation of large occlud-
ers. Similar occluder enlargement can be achieved
by combining nearby pointsets into larger pointsets
and extracting convex occluders from them. In this
case some occluders are lossy and an error measure
is required.

A precise description of the LOD-based version
of the synthesis procedure is given in Algorithm 7,
where O; stands for the octree of the scene pro-
cessed at resolution /.

function Synthesis(P, max)

1. mat:=compute isoorientation matrix (P)
2. transform(P, mat)
3. O:=compute MDCO(P, max)
4. L:=0
5. insert(L, Convex extraction(R®(Omaz), mat))
6. l:=mazxz —1
while [> 2 do
7. if significant topology changes(O;, O;41) then
8. insert(L, Convex extraction(REHITE(0)), mat))
end
9. I=l—-1
end
return .
end

Algorithm 7: LOD-based synthesis algorithm

B
—

(c)

(d)

Figure 4: Filling surface concavities in 2D

Note that loss-less occluders are obtained by con-
sidering the black nodes of the octree at its maxi-
mum resolution (Line 5) and lossy occluders are ex-
tracted from the pointset defined by RB+/T%(0;)
for several values of [(Line 8).

Line 7 checks for topology changes between
RBHTG(O)) and RBHTE(014) (see below). If
there are topology changes, then Line 8 adds fur-
ther convex occluders to L by considering the octree
at a lower resolution. Note that in this case, the
lossy pointset REH T is considered instead of RE.

The question that must be answered in Line 7 is
whether the convex extraction function will be able
to extract larger occluders from RBHTG(0,_,)
with respect to those extracted from RET1TE(0)).
Obviously, the answer is related to the topology
changes experimented by the pointset when we dou-
ble the size of the terminal nodes of the octree.
The answer is affirmative if there exists an ITG
node in O;_; with at least a white or BTG node
among their sons in O;. In this case, there exists
a region in RBHTE (0, _) that does not belong to
RBHITG(()) and hence we have a chance of find-
ing a larger convex object inside it. Note that the
previous test requires only a simple traversal of the
octree.

4.1 Error evaluation

Since our occluders are overflow approximations of
real scene objects (except those extracted from R?
pointsets), we are interested in bounding the image
error produced by removing from the display list
some objects that were not completely obscured by
actual scene objects.

Let ¢ be a camera definition including the view-
point p, the target t, the horizontal and vertical

field-of-view angles fovy,, fov, and the viewport res-
olution in pixels, w x h. The image produced by
rendering a given set S of scene objects from ¢ will
be referred to as Z(S, ¢).

Let A, B be two subsets of the scene objects, and
¢ be a camera definition. The differential region
II(A, B, ¢) is defined as:

{(z,9) | Z(A,0)[z,y] # Z(B,c)[r,yl}

i.e. TI(A, B, c) is the set of pixels that are different
on the renderings of A and B.

We propose two intuitive and useful metrics over
II(A, B, ¢) for determining a scalar value represent-
ing the difference between the corresponding two
images. The first metric has some connection with
the L; norm and is defined as L;(II)=number of
pixels in II. The second metric, which derives from
the Lo, norm, is denoted as Lo (IT) and defined as
the diameter of the largest enclosed circle in II.

Clearly, the former expresses the area of the dif-
ferential region, and the later represents its maxi-
mum thickness. Both are complimentary because
human perception of n randomly distributed pixels
is different from that of n pixels forming a com-
pact block. Note that other more sophisticated er-
ror metrics between two images (see Neumann et
al. [17]) make no sense in this context because the
pixels in Z(A, ¢) — II(A, B, ¢) remain unchanged.

Now, let us consider the differential region gen-
erated by using approximate occluders. Let B;;
be the set of boxes generated from O;. Scene
objects lying inside S(p, B;;) are not completely
invisible from viewpoint p because B;; obscures
some regions that were not obscured by the origi-
nal scene. Therefore, some objects that would be
visible through small holes will not be rendered.

We associate along with each box B;; two

device-independent errors e,(B;;) and e;(B;;) in-
dicating a bound of the area and the thick-
ness of II(Scene, Scene — S(p, B;;)). By device-
independent we mean that this measure does not
depend on the screen resolution, which is not gen-
erally available at preprocessing time. This is
achieved by considering the viewpoint P at infinity
(i.e. a parallel projection) and a 1 x 1 screen.

The computation of e;(B;;) is straightforward.
It follows from the properties in Table 1 that
et(ng) =0and Vi >0 et(Bi,j) = 2¢;.

The AssignErrors procedure computes the error
eq(B;j) corresponding to the boxes B;j extracted
from the octree O; where €; is again the length of
the diagonal of a terminal node of O;.

procedure AssignErrors(B;j, O;)
for j:=1to b do
1. FXy::front back ITG(B”, Oi, XY)
2. Tyz:=front back ITG(B;;, O;, YZ)
3. FXZ::front back ITG(B”, Oi, XZ)

4. Tmaz:= V3 max {Txy,lyz,Ixz}*e;
5. ea(Bij)::rmaz
end
end

Lines 1-4 deal with the computation of the area of
the maximum parallel projection of the IT'G nodes
inside B;;. Let T'y,(z) be the parallel projection of
an arbitrary pointset x over the plane w. It follows
from the properties in Table 1 that for any w

Ly (Bij — P) CTw(ITG(0;) N Byj) -

Let max be the plane over which the projection
Ciaz (ZTG(0;) N Byj) is maximum. A precise
bound of the area of this maximum parallel projec-
tion can be easily computed from the orthographic
projections of the ITG nodes (lines 1 to 4).

Note that the area of any orthographic projec-
tion of the IT'G set can be trivially computed by a
traversal of the front and back ITG nodes (Lines 1
to 3). The assign errors algorithm runs in O(bn)
time, b and n being respectively the number of
boxes and the number of octree nodes at resolu-
tion i.

Finally, we group all the boxes in {B;;} by similar
thickness error e;. For example, we create five cat-
egories by considering the intervals [0, 0], (0,0.01],
(0.01,0.02], (0.02,0.05], (0.05,0.1] and (0.1,+/2].
Note that e.g. e; = 0.01 corresponds to limiting
the thickness of the differential region to one per-
cent of the screen diagonal.

10

Working with LOD representations of the occlud-
ers requires some modifications of the occluder se-
lection once the viewer’s position in known. At
runtime or pre-processing time, depending on the
visibility determination approach adopted, the user
provides two error tolerances F;, FE, indicating
the maximum thickness and maximum area of
the differential region. Occluders are selected
with increasing e, so that) e,(B;;) < E, and
max{e;(B;;)} < E;, where the perspective cor-
rection has been applied to e, and e;. Actually,
L (TI(S,S —V;),c1) is bounded by e (V;) provided
that the projections of ITG of different occluders
do not, overlap, which is unlikely to happen.

5 Results

We have implemented all the algorithms presented
in this paper and tested them on several publicly
available 3D models. Figure 5 shows the results
of our lossy version of the occluder synthesis algo-
rithm on a model of the St. Pauls cathedral from
hitp://www.3dcafe.com/models/stpauls.zip (14,780
faces). On both cases the covering was above 70%
and the maximum error, measured as the devia-
tion from the occluder to the original surface was
less than 2.7% and 1.35%, respectively.

We did some experimentation to check the de-
pendence of our method on the number of occluders
and seeds. In order to get an accurate evaluation of
the goodness of the synthesis algorithm, we ran the
examples with a naive version of the sort and cut
filter which only considers the difference between
the volume of the box whose contribution is being
evaluated and the volume of its maximum intersec-
tion with the boxes selected previously.

Figure 7 shows that twelve occluders and twice
that number of seeds suffice to cover significant por-
tions (more than 60%) of the St. Pauls cathedral.
And Figure 6 reveals that regardless of the number
of occluders adopted, it is easy to achieve coverings
above 65% with a few seeds.

Figure 8 shows graphically the differential region
using the lossy occluders generated from the 7-level
octree of the St. Pauls model (e; < 1.35%). The
red pixels in Figure 8 (b) correspond to the screen
region covered by the occluders but not covered by
the original object. Although any red pixel can
be erroneous, usually only a little subset of these

Figure 5: Occluder synthesis on the St. Pauls model. St. Pauls model (a) and its tessellation (b);
MDCO with seven (¢) and six levels (d); the 10 largest occluders extracted from each resolution (e-h).

70 80
60 70 /W
//_A_A_A_._A_/ o
50
/ 50
40
/ 40

30

30

20

20

10 10

0 T T T T T T T T T o777 77— T T

5 6 7 8 9 10 15 20 25 30 35 40 45 50 60 70 80 90 100 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

number of seeds number of seeds
% covering = max vol (as %) min vol (as %) -~ mean (as %)\ % covering = max vol (as %) min vol (as %) -~ mean (as %)\
(a) 5 occluders (b) 15 occluders

Figure 6: Performance of the synthesis algorithm with 5 and 15 occluders from the St. Pauls model. Each
graph shows the covering percentage (with respect to the total volume), and the maximum, minimum
and mean volume of the boxes.

11

% of covering

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of occluders

1:4]

[=121-12 13

Figure 7: Performance on the percentage of covered
volume with different occluder/seeds ratios in the
St. Pauls model.

(@ (b)

Figure 8: The original St. Pauls cathedral in blue.
In green and on the left, its synthesized occluders.
Those parts of the occluders that are not contained
in the model are depicted on the right in red.

points are actually wrong because for a visible poly-
gon to be considered as not visible, its screen pro-
jection must be completely enclosed in the red and
blue area.

In order to measure the actual improvement
on occlusion power, we tested our method on
a highly occluded environment. = We chose a
publicly available city model (Figure 9) from
http://www.3dcafe.com/models /peacity.zip with
182,915 triangles. We took 993 samples along a
path crossing the city and culled the scene using
raw and loss-less synthesized occluders separately.
For each occluder set, and for each sample, oc-
cluders that were inside a fixed-size box centered
at the sample viewpoint were selected. The box
was sufficiently big to include all the significant

12

IS
S

w
&

W
S

N
a

N
5}

time (min)

=
@

.
o

@

o

8 10 12 14 16 18 20

occluders

—~ St. Pauls = City

Figure 11: Running times of the convex extraction
algorithm on the St. Pauls and the city model.

occluders. As a matter of fact, it included many
more: thousands of triangles in the case of raw
occluders and less than fifty in the case of synthe-
sized ones. The simulation algorithm then chose
the 30 occluders with better occlusion behavior
and discarded the rest. The sets of visible polygons
of the remaining occluders were then mixed to
obtain a potentially visible set of the current
sample. Note that this occluder selection step
does certainly select the best possible triangles,
so the simulation is a little biased in favor of raw
occlusion. Visibility culling algorithms do not have
the time to do such an extensive search at each
viewpoint.

Figure 10 shows the differences between the num-
ber of culled polygons using only raw occluders and
only synthesized occluders. It is clearly favorable to
the use synthesized occluders. The minimum and
maximum values of the difference between synthe-
sized and raw were -20,860 and 161,884 polygons,
respectively. Its mean was of 78,694 polygons with
a standard deviation of 34,570. Our method al-
lowed an extra culling of a 40% of the scene and
enhanced occlusion significantly at the vast major-
ity of the samples.

Running times of the convex extraction algo-
rithm on the St. Pauls and the city model are
shown in Figure 11. The 9-level octree construc-
tion of the St. Pauls cathedral and the city model
took 4 and 20 minutes respectively on a 194 MHz
R10000 MIPS processor.

Figure 9: From left to right, the city model and its octree representation with nine and eight levels.

I’

|

Sample points

200000

« 180000
100000
000!

000

000
20000

uobAjod papn|220 Jo JIaquinN

0006T

| oozt

000ST

000€T

000TT

00006

0000L

00005

| ooooe

0000T

| o000t

0000€-

120

T
=)
IS}
=

9 =} =} o o

3 @ 3 4

sjujod ajdwes jo JaqunN

— Naive — Synthesized

Increment of occluded polygons

Figure 10: Charts on the occlusion improvement

13

6 Conclusions and future

work

We have introduced LOD occlusion culling, a new
concept that accelerates navigation in complex
scenes and that can be incorporated into current
navigation frameworks that use visibility culling.
The experimental results show an improvement of
visibility computations, the generation of more ac-
curate PVS, and high quality images without visi-
bility error (loss-less visibility) or with a fitted im-
age error (lossy visibility) by means of two intuitive
parameters indicating the maximum thickness and
area of the error region.

We have also developed a new algorithm for the
generation of synthesized occluders. The algorithm
has two main steps: aggregation and convex extrac-
tion, and it guarantees the visibility validity of the
output occluders. It generates sequences of densely
overlapping boxes that need not to be inside the
original concave pointset. Each of these two fea-
tures enhances occlusion performance. Modifying
the aggregation step, the algorithm can be used
to obtain multiresolution occluder sets. This algo-
rithm benefits not only from complex and concave
regions, but also from almost opaque ones, thus
greatly accelerating the visualization.

The occluder selection step also benefits from the
use of synthesized occluders. Dynamic occlusion
algorithms restrict the number of selected occluders
used at each viewpoint to avoid overhead. But as
the number of elements of the synthesized set is
many orders of magnitude smaller than the number
of polygons in the input, the selection of occluders
at each viewpoint is faster. And more occluders
can be taken into consideration without incurring
in excessive overhead.

Our future work includes the integration of LOD-
occlusion into our visibility algorithm [20]. The
occluder synthesis algorithm will allow the genera-
tion of level-of-detail hierarchies of synthesized oc-
cluders with varying degrees of visibility accuracy.
As in LOD rendering, image fidelity can be traded
for a higher frame ratio. We plan to use lossy oc-
cluders for determining both completely visible and
hardly visible objects, which can be displayed using
a coarse representation of them.

Storing a high-resolution octree is very memory-
consuming. Fortunately, it is not necessary to have

14

simultaneously all the terminal nodes of the octree
subdivided until the maximum subdivision level.
During the top-down construction of the octree, it
can be decomposed into strongly connected subsets
which can be refined separately.

Acknowledgments

This work has been partially supported by the
TIC98-0586-C03-01 project and an FPI grant of
the Spanish Ministry of Education and Science. We
would also like to thank CESCA, CEPBA and C*
for the use of their resources, and 3DCafe and Plat-
inum Pictures for providing the cathedral and the
city datasets.

References

[1] Nina Amenta. Bounded boxes, hausdorff dis-
tance, and a new proof of an interesting helly
theorem. In Proceedings of the 10th An-
nual Symposium on Computational Geometry,
pages 340 347, Stony Brook, NY, USA, June
1994. ACM Press.

Carlos Andujar. Octree-based Simplification of
Polyhedral Solids. PhD thesis, CS Dept, Uni-
versitat Politecnica de Catalunya, Barcelona,
Spain, 1999.

Reuven Bar-Yehuda and Eyal Ben-Hanock. A
linear-time algorithm for covering simple poly-
gons with similar rectangles. International
Journal of Computational Geometry € Appli-
cations, 6(1):79 102, 1996.

P. Brunet, R. Joan, Isabel Navazo, A. Puig,
J. Sole, and D. Tost. Modeling and visualiza-
tion though data compression. In R.E. Earn-
shaw and L. Rosenblum, editors, Data Visual-
ization, pages 157 169. Academic Press, 1994.

J. S. Chang and C. K. Yap. A polynomial solu-
tion for the potato-peeling problem. Discrete
& Computational Geometry, 1:155-181, 1986.

B. Chazelle and D. P. Dobkin. Optimal convex
decompositions. In Proceedings of the Sympo-
sium on Computational Geometry (Baltimore,
MD,June 5-7, 1985), pages 63-133. ACM,
ACM Press, 1985.

[7]

[15]

Daniel Cohen-Or, Gadi Fibich, Dan Halperin,
and Eyal Zadicario. Conservative visibility and
strong occlusion for viewspace partitioning of
densely occluded scenes. Computer Graphics
Forum, 17(3):243 253, 1998.

Satyan Coorg and Seth Teller. Real-time oc-
clusion culling for models with large occluders.
In Proceedings of the Symposium on Interac-
tive 3D Graphics, pages 83 90. ACM Press,
April 1997.

Joseph C. Culberson and Robert A. Reckhow.
Covering polygons is hard. Journal of Algo-
rithms, 17(1):2 44, July 1994.

K. Daniels, V. Milenkovic, and D. Roth. Find-
ing the largest area axis-parallel rectangle in
a polygon. Computational Geometry: Theory
and Applications, 7:125-148, 1997.

T.A. Funkhouser and C.H. Sequin. Adaptive
display algorithm for interactive frame rates
during visualization of complex virtual envi-
ronments. In SIGGRAPH, pages 247-254,
1993. Computer Graphics Proceedings, An-
nual Conference Series.

T. Hudson, D. Manocha, J. Cohen, M. Lin,
K. Hoff, and H. Zhang. Accelerated occlusion
culling using shadow frusta. In Proceedings of
the Thirteenth Annual Symposium on Compu-
tational Geometry, pages 1 10, June 1997.

J. Mark Keil. Covering orthogonal polygons
with non-piercing rectangles. International
Journal of Computational Geometry & Appli-
cations, 7(5):473 484, 1997.

James T. Klosowski and Claudio T. Silva.
Rendering on a budget: A framework for
time-critical rendering. In IEEFE Visualization,
1999.

Fei-Ah Law and Tiow-Seng Tan. Preprocess-
ing occlusion for real-time selective refinement.
In Proceedings of the 1999 symposium on In-
teractive 3D graphics, pages 47 53, 1999.

M. McKenna, J. O’'Rourke, and S. Suri. Find-
ing the largest rectangle in an orthogonal
polygon. In Proc. 23rd Allerton Conference
on Communication, Control and Computing,
pages 486495, 1995.

15

[17]

[18]

23]

L. Neumann, K. Matkovic, and W. Purgath-
ofer. Perception based color image differ-
ence. In Proc. Furographics, Lisbon, Portugal.,
1998.

T. Nishita, I. Okamura, and E. Nakamae.
Shading models for point and linear sources.
ACM Transactions on Graphics, 4(2):124 146,
April 1985.

H. Samet. Applications of spatial data struc-
tures. Computer Graphics, Image Processing
and GIS, 1990.

Carlos Saona-Viazquez, Isabel Navazo, and
Pere Brunet. The visibility octree. A data
structure for 3D navigation. Computers &
Graphics, 23(5):635-643, 1999.

Carlos Saona-Viazquez, Isabel Navazo, and
Pere Brunet. Data structures and algorithms
for navigation in highly polygon-populated
scenes. In P. Brunet, C.M. Hoffman, and
D. Roller, editors, CAD Tools and Algorithms
for Product Design. Springer, 2000.

Xiaolin Wu. A linear-time simple bounding
volume algorithm. In David Kirk, editor,
Graphics Gems III, pages 301-306. Academic
Press, 1992.

Binhai Zhu. Approximating convex polyhedra
with axis-parallel boxes. International Journal
of Computational Geometry & Applications,
7(3):253-267, 1997.

