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Abstract

Let g be a prime a power and k an integer such that 3 < k < ¢. In this paper we present
a method using Latin squares to construct adjacency matrices of k-regular bipartite graphs
of girth 8 on 2(kq® — q) vertices. Some of these graphs have the smallest number of vertices
among the known regular graphs with girth 8.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are
considered. Unless otherwise stated, we follow the books by Godsil and Royle [16] and by Lint
and Wilson [21] for terminology and definitions.

Let G = (V(G), E(G)) be a graph with vertex set V = V(G) and edge set E = E(G). The
girth of a graph G is the number g = ¢g(G) of edges in a smallest cycle. The degree of a vertex
v € V is the number of vertices adjacent to v. A graph is called regular if all the vertices have
the same degree. A cage is a k-regular graph with girth g having the smallest possible number
of vertices. Simply counting the numbers of vertices in the distance partition with respect to a
vertex yields a lower bound ng(k, g) on the number of vertices n(k, g) in a cage, with the precise
form of the bound depending on whether g is even or odd.

T4+ k+k(k—1)4...+k(k—1)3/2 if gis odd;

nO(k7g) = { 2(1_’_(1{:_1)4_'”_’_(]?_1)9/2_1) ifgis even. (1)

As defined by Biggs [7], the excess of a k-regular graph G is the difference |V (G)| —no(k, g).
A (k,g)-cage with even girth ¢ and ng(k, g) vertices is said to be a generalized polygon graph.
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Generalized polygon graphs exist if and only if g € {4,6,8,12} [7]. The question of the con-
struction of graphs with small excess is a difficult one. When g = 6, the existence of a graph
with ng(k,6) = 2(k* — k + 1) vertices called generalized triangle, is equivalent to the existence
of a projective plane of order k — 1, that is, a symmetric ((ng(k,6))/2, k, 1)-design. It is known
that these designs exist whenever k£ — 1 is a prime power, but the existence question for other
values remains unsettled. Generalized quadrangles when g = 8, and generalized hexagons when
g = 12 are also known to exist for all prime power values of k — 1 [5, 16, 21].

Cages have been studied intensely since they were introduced by Tutte [27] in 1947. Erdds
and Sachs [10] proved the existence of a graph for any value of the regularity & and the girth g,
thus most of work carried out has been focused on constructing a smallest such graph [1, 2, 4, 6,
9, 11, 13, 15, 22, 23, 24, 28, 29]. Biggs is the author of an impressive report on distinct methods
for constructing cubic cages [8]. For some time, Royle [26] kept a web-site in which all the cages
known so far appear. More details about constructions on cages can be found in the survey by
Wong [29], the survey by Holton and Sheehan [17] or on the more recent dynamic cage survey
by Exoo and Jajcay [12].

It is conjectured that cages with even girth are bipartite [25, 29]. A graph is bipartite if its
vertex set V' can be partitioned into two partite sets, V1 and V5, such that any edge has one end
in V; and the other in V5. If the vertices are ordered in such a way that the vertices of V; come
first, then the adjacency matrix of a bipartite graph can be written in the form

A:(?VT év> )

An incidence graph is a bipartite graph in which the elements of one part V; are declared as
lines and the elements of the other part V5 are declared as points. The terminology for incidence
graphs is geometric. A point and a line are said to be incident if they are adjacent, thus the
submatrix N of (2) is called an incidence matriz of the bipartite graph. If the number of points
and the number of lines coincide, then N is clearly a square matrix. An incidence matrix N
defines a partial plane when

- any line has at least two points, and

- two points are incident with at most one line.

Consequently, two lines of a partial plane have at most one point in common. The corresponding
bipartite graph is called the incidence graph of the partial plane, which clearly has even girth
g > 6. Thus for simplicity we shall say that the partial plane has girth g/2 if and only if the
corresponding incidence graph has girth g.

Let ¢ be a prime power and k an integer such that 3 < k < ¢. In [3], incidence matrices
of (k,6)-bipartite graphs of order 2(kq — 1) were given. In this paper we present a method
to construct the incidence matrices of k-regular bipartite graphs of girth ¢ = 8 on 2¢q(kq — 1)
vertices.



2 Position matrices

Let S denote a set of symbols and let A be a matrix whose elements are subsets of S. Given
x € S let P,(A) be a (0,1)-matrix of the same dimension as A that satisfies

(P(A))i; =1 if and only if z € A;;.

Thus, P,(A) is called the position matriz of the symbol x in A. Suppose that S = {0,z1,...,z,}.
The position matrices of all the symbols in A different from 0 give rise to the following (0, 1)-
matrix P(A) called position matriz of A:

[P(A)] = [Poy (A) -+ - Pr, (A)].

Let {A', A%,... A"} be a family of matrices of the same number of columns whose elements are
subsets of S. Then the (0, 1)-matrix spanned by the position matrices of all of them

P(A!) P(AY) o Py (AY)
P(42) Pr(42) o P (A7)

= | , (3)
P(A") Pr(AT) oo Po (A7)

is said to be the position matriz of the family F = {A', A% ... A"}. The following example
shows two matrices of order 2 x 2 whose elements are subsets of S = {0, a,b} and the position
matrix of them. From now on, if there is no confusion the 1-sets will be indicated as integers.

MATRICES [SYMBOLS
a b

Al a a 11|10 0 (4)
b b |l00j1 1
A% {a,b} 0 |[1 0|1 O
0 {a,b}}|0 1|0 1

As already mentioned in the Introduction, our main aim is to obtain incidence matrices of
bipartite k-regular graphs of girth 8 with small excess. Such incidence matrices may be seen
also as incidence matrices of partial planes which will be obtained by identifying row i of P,(A%)
as line i(a), and column j of P,(A?%) as point j(z), for any matrix A € F and z € S — 0. To
achieve our goal we propose the following definitions.

Definition 2.1 Let g > 4 be an even number. A family of matrices F = {Al A% ... A"} of
the same number of columns whose elements are subsets of a set of symbols S is said to have
girth g if the position matrix of F is the incidence matriz of a bipartite graph of girth g.

Each matrix of (4) has girth g = oo, and the two matrices A, A? form a family of girth 8.



Let us recall that a Latin square of order ¢ is a ¢ X ¢ matrix with entries from a set of
q symbols such that each symbol occurs exactly once in each row and exactly once in each
column. A Latin square has clearly girth ¢ = oo because the position matrices of its elements
are permutation matrices yielding the incidence matrix of a partial plane consisting in a set of
parallel lines (since they have no common point).

In [3] we introduced the notion of quasi row-disjoint matrices as follows.

Definition 2.2 [3] Let A' and A? be two matrices of the same number of columns whose ele-
ments are subsets of a set of symbols S such that 0 € S. A pair (z,y) with x,y € S belongs to
the cartesian product of any two rows (A'); x (A%), if and only if (z,y) € (A');; x (A?)p; for
some j. Then A' and A? are said to be quasi row-disjoint if and only if the cartesian product
of any two rows (A');, (A%);, contains at most one pair (z,x) € (A'); x (A?), with x # 0.

The pair of matrices of the example (4) are quasi row-disjoint matrices. Moreover, in [3] we have
stated the following theorem which roughly speaking says that a family of » matrices is quasi
row-disjoint if and only if its girth is at least 6.

Theorem 2.1 [3] Let A' and A? be two matrices each one of girth at least 6 of the same number
of columns and whose elements are subsets of a set of symbols S such that 0 € S. Then A' and
A% are quasi row-disjoint if and only the family {A', A%} has girth at least 6.

In the next theorem we give a sufficient condition for a family of matrices to have girth at
least 8.

Theorem 2.2 Let F = {A', ... A"} be a set of r > 2 quasi row-disjoint matrices of the same
number of columns whose elements are subsets of a set of symbols S such that 0 € S. Let (A");,
(A, (A™);n denote any three mutually distinct rows of matrices A%, A¥, A¥ € F. Then the
girth of F is at least 8 if the sets (A™); X (AV)yr, (AV)y x (AW)r, (A™); X (AY);n contains at most
two distinct pairs (x,x), (y,y) with x,y #0, x,y € S.

Proof: Suppose (z,z) € (A%); x (A")y, x # 0. Therefore the position matrix of F has the
following entries equal to 1:

Py(A")(i,5) = Po(A")(7,j) = 1, (5)

where P,(A") and P,(A") are the position matrix of the element x in A* and A" respectively.
Recall that for any given matrix A% € F and z € S —0, row i of P,(A%) is line i(«), and column
j of P,(A%) is point j(z). Consequently, (5) means that lines i(u) and #'(v) have point j(x) as
a common point.

Analogously, (y,y) € (A)y x (A%)n, y # 0, is equivalent to:
Py(A")(i",j") = Py(A*)(i",j") = 1,

or in other words, lines 7’ (v) and i’ (w) have the point j'(y) in common, with j'(y) # j(z) because
y # x. Thus if there exists z # 0, z # x,y, such that (z,z) € (A%); x (A");», then lines i(u) and



i (w) have the point j”(z) in common, j” # j, 7', yielding that the partial plane defined by the

position matrix of F contains the triangle j(x)j'(y)j”(z). In other words, the position matrix

of F is the incidence matrix of a bipartite graph of girth less than 8. =

Our immediate goal is to derive a method for constructing a family of matrices with girth 8,
because the position matrix of this family will be the incidence matrix of a bipartite graph of
girth 8.

3 Method

Throughout this work let [[n]] denote the set of non negative integers {0,1,...,n} and (n]] =
[[n]] \ {0}. Let I, be the identity matrix and denote by (¢ x F')I,, the matrix obtained from I,
by replacing each one with a subset {t} x F of {t} x [[n]] for some ¢ € [[n]] and F' C [[n]]. In
the following theorem we demonstrate a method for obtaining a family of matrices with girth 8
using Latin squares.

Theorem 3.1 Let q¢ be a prime power, and let F, be the Galois field of order q. For each
u,t € F,, define the ¢ x ¢ matriz L“" by
L"Yi,j) =i +uj +ut, i,j € F,.
Then the following assertions hold:
(i) For allu,v € F,\{0}, u # v, and t,t’ € F, the matrices L*" and LY are quasi row-disjoint
Latin squares with entries from [[q — 1]].

(i1) For any given u,t € Fy, u # 0, the matriz Lwtx Lute™ Lt pag ¢ distinct entries. Moreover,
the position matrixz of the family

(L%t x Lt e Ry}

is a (0,1)-matriz of order ¢> x ¢> considering symbol (0,0) different from 0, and it is the
incidence matriz of a partial plane consisting in ¢> parallel lines with q points on each.

(iii) The family {L*t x Lvtu" "ty t € Fq,u # 0} has girth 8 and its position matriz has order
(¢ — ¢%) x ¢® and q ones in each row and ¢ — 1 ones in each column.
(iv) The position matriz of the family
(LWt s Loyt € Fyou £ 0} U (¢ x g — 1)), : t € F}

is the incidence matriz of a q-reqular bipartite graph of girth 8 with ¢> vertices in each
partite set.



Proof: (i) Clearly L*! and L"" are ¢ x q Latin squares on [[g — 1]]. Let us show that they are
quasi row-disjoint. Otherwise, there exists i,4'j, j/ € F, with j # j’ such that

L', j) = L""(7.)),
Lu’t(i,j/) — Lv,t’ (i/,j/)-
Equivalently,
i+uj+ut = i +vj+ot,
i+uj +ut = 7 +vj +ot.

Therefore u(j — j') = v(j — j') implying that v = v or j = j/, a contradiction in either case.

(ii) Note that LT "' is also a Latin square if u 4+ u~' # 0, otherwise L% (i,5) = i. In
either case it is very easy to check that L*! and Lutu™ht are orthogonal, which implies that
Lwt x Lute™ 't hag g2 distinct entries. Hence, the position matrix of the family {L%! x Lutuht

t € F,} is a (0,1)-matrix of order ¢ x ¢® by considering entry (0,0) different from 0.

Let us show now that for every 4,7, j,t,t' € F, such that ¢ # t' we have
—1 L. ’ —1 4 . .
(Lu,t % Lu+u ’t)(l,j) 7& (Lu,t % Lu+u ,t )(117‘7)'
Otherwise we would have

i+uj +ut =i 4+ uj +ut’,
itwt+u i+ w+u ™t =i+ ut+u )i+ (u+u ),

implying ¢ = ¢/, which is a contradiction. As a consequence, the position matrix of the set
{L®t x Lutu™ht ¢ ¢ [F,} has one unique entry equal to 1 in each column. Considering the rows
of this (0, 1)-matrix as lines and the columns as points, this is equivalent to say that each point
belongs to a unique line. Thus, this (0, 1)-matrix is the incidence matrix of ¢? parallel lines with
¢ points on each.

(iii) First, let us show that the position matrix of the family M = {L®f x Lutu™ "t 2 g ¢t €
F,, u # 0} has ¢ entries equal to 1 in each row and ¢ — 1 entries equal to 1 in each column.
By (ii) the position matrix of each set {L®! x Lutv 't . ¢ € [F,} contributes with a unique 1
in each column, yielding that each column of the position matrix of M has ¢ — 1 entries equal
to 1. Since each matrix L%t x Lute " has ¢? distinct entries, then the ¢ position matrices of
symbols starting with the same x for any = € IF, contribute with one unique 1 in each row. So
the position matrix of M has ¢ entries equal to 1 in each row. Therefore, we conclude that the
position matrix of M has order (¢ — ¢?) x ¢® and ¢ entries equal to 1 in each row and ¢ — 1
entries equal to 1 in each column.

Next, let us show that the girth of M is at least 6. Otherwise, there exists u,v € F, \ {0},
u# v and 4,74, j € F, with j # j' for which

(L9 L) = (L L),
(Lu,t y Lu+u71’t)(’i,j,) _ (Lv,t’ % Lv-l—v*l,t’)(i/’j’),

This implies that L** and L are not quasi row-disjoint, a contradiction with item (7). Thus
the family {L%! x Lotu™ht syt e F,, u # 0} has girth at least 6. Next let us show that the



girth is 8 applying Theorem 2.2. By way of contradiction assume that for three elements u, v, w
of F, \ {0} there exist three pairwise distinct columns 7, j/, 7 for which

(L x L), j) = (L x L) (W)
(L2 s LR (@)= (L Lo (6)
(L Dot @G = (L L ).

Note that u,v,w must be three distinct elements because by (ii) each matrix L%! x Lutu™ht
has ¢? distinct entries. Then from the equality between the first coordinates we have:

(u—v)j = i —i+vt' —ut;
(v—w)j = =i +wt"—ot';
(w—u)j" = i—i" 4+ ut —wt".
Hence
(v — )i+ (w — v} = (w —w)f" ”)

Moreover, from equalities between the second coordinates in (6) and taking into account (7) we
obtain
e e I U Ul T

Multiplying this equality by uvw we get

w(u —v)j +ulv —w)j =v(u—w)j". (8)
Multiplying (7) by w we also obtain

w(v —u)j +w(w —v)j =w(w—u)j". 9)

Thus adding both equalities (8) and (9) we have

-/

(u—w)(v - w)j

— (v - w)(u—w)j".

Taking into account that u, v, w are mutually distinct we get that j* = j” which is a contradiction.
Therefore M = {L"t x Lutu™ byt € Fq,u # 0} has girth 8 as claimed.

(tv) By (iii) and applying Theorem 2.2, we only need to prove that for all u,v € Fy \ {0}
with u # v, any three matrices L* x Lutu™ "t Lot [vHv™ "t and (¢ x [[¢ — 1]])1, have girth
8. Otherwise we would have
— Lv,t’ % Lv—l—v’l,t’ (2/7])

" x [lg = 1DI(4", 5')
" x [lg = 1DI(4", 5")

Then L*(i,§) = LV (i, j) and L**(i, j') = L** (i, §') = t”, meaning that L' and L" are not
quasi row-disjoint, contradicting item (7). Further, by (iii), we know that the position matrix of

it 717t ..
LWt x LUt b, g
Lv,t’ % Lv—l—v’l,t’ (Z/
7

it 717t ..
LWt x LUt b, g

)
)
)

S
S

{Lwt x Lutu it u,t € Fy,u # 0} has ¢ ones in each row and ¢ — 1 ones in each column. Since
the rows of the position matrix of (¢ x [[¢ — 1]])I, contributes with one additional one, then the
result follows. m



To illustrate the method of Theorem 3.1, both the matrices provided by this theorem and
their position matrix for the first case ¢ = 2 are shown in Table 1. From now on, if there is no
confusion an entry (x,y) will be denoted as zy. Thus this (0,1)-matrix is the incidence matrix
of a 2-regular graph of girth 8, which consists of two cycles of girth 8. In Table 2 the matrices
for ¢ = 3 are also depicted. The corresponding position matrix is the incidence matrix of a
3-regular graph of girth 8 on 27 vertices in each partite set. Table 3 contains the matrices for
q = 4. Their position matrix is the incidence matrix of a 4-regular bipartite graph on 64 vertices
in each partite set.

MATRICES SYMBOLS
00] 01] 10] 11
LY % 007 00 10 1 0[/0 0/0 1[0 0
11 01 0 0/0 1[0 01 0
LV 01 10 00 0 1[0 0[1 0]0 O
01 11 0 0/10(0 o001
(0 x [[1]])I2 [ {00, 01} 0 1 0[/10[00[00
0 {00,01}/{0 1|0 1|0 0|0 O
(1 x [N ]{10,11} 0 0 0/0 01010
0 {10,11}/{0 0|0 0]0 1|0 1
Table 1: Case g = 2.
LYV x L2 x L1 (t x [[2]) 13
0012 21 [0021 12 [{00,01,02} 0 0
t=0[1120 02 |11 02 20 0 {00, 01,02} 0
2201 10 [2210 01 0 0 {00, 01,02}
1221 00 [2112 00 [{10,11,12} 0 0
t=1/20 02 11 (0220 11 0 {10,11,12}
0110 22 {1001 22 0 0 {10,11,12}
2100 12 {1200 21 [{20,21,22} 0 0
t=2(02 11 20 [2011 02 0 {20, 21,22} 0
1022 01 |0122 10 0 0 {20, 21,22}

Table 2: Matrices for the case ¢ = 3.

Let us call array of r symbols and n columns the matrix of order r x n

1 ... 1
2 ... 9
Or,n:
/r‘ PEEEY /r‘

When r = n the array is denoted by O,,. It is easy to see that the position matrix of O,,, is
the incidence matrix of a partial plane consisting in r parallel lines, each one having n points.
Using the position matrices of these arrays denoted by P(O,,) and applying Theorem 3.1, we
now present the method for constructing the desired (k, 8)-bipartite graphs.



LY x L0 L2 x LV L3 x LU (t x [[3]]) 14

00 10 20 30[00 21 32 13|00 31 12 23[{00, 01, 02,03} 0 0 0

1101 31 21|11 30 23 02[11 20 03 32 0 {00, 01, 02,03} 0 0
t=0[22 32 02 12|22 03 10 31|22 13 30 01 0 0 {00, 01,02,03} 0

3323 13 03|33 12 01 20|33 02 21 10 0 0 0 {00, 01, 02,03}

10 00 30 20|21 00 13 32[31 00 23 12[{10,11, 12,13} 0 0 0
t=1]01 11 21 31|30 11 02 23|20 11 32 03 0 {10,11,12,13} 0 0

322212 02(03 22 31 10|13 22 01 30 0 0 {10,11,12,13} 0

233303 13123320 1 (023310 21 0 0 0 {10,11,12,13}

20 30 00 10[32 13 00 21|12 23 00 31[{20, 21, 22,23} 0 0 0

3121 1101(2302 11 30{03 32 11 20 0 {20, 21, 22,23} 0 0
t=2|02 12 22 32{10 31 22 03|30 01 22 13 0 0 {20, 21,22, 23} 0

13 03 33 23|01 20 33 12|21 10 33 02 0 0 0 {20,21,22,23}

3020 10 00[13 32 21 00|12 23 00 31[{30, 31, 32,33} 0 0 0
t=3/21 31 01 11{02 23 30 11|03 32 11 20 0 {30, 31, 32,33} 0 0

12 02 32 22|31 10 03 22(30 01 22 13 0 0 {30, 31, 32,33} 0

03 13 23 33|20 01 12 33|21 10 33 02 0 0 0 {30,31,32, 33}

Table 3: Matrices for the case ¢ = 4.

Theorem 3.2 Let g be a power prime, and let F, be the Galois field of order q. For each
u,t € Fy, u # 0, let L™ be the matriz L' (i,j) = i +uj + ut, i,j € Fy, and let M be the
position matriz of the family

(L%t s Lyt € Fyou# 03 U{(E x [[q— 1)), : t € F,).

Then the following assertions hold:

(i) The (0,1)-matriz

(i)

M

POg )"

(10)

is the incidence matriz of a bipartite graph of girth 8 with ¢ + ¢* vertices in one partite

set having degree q + 1, and ¢> vertices in the other partite set having degree q.

Let (L"t x L“+“71’t)0 denote the matriz obtained from L“! x Lutu Tl by replacing each
entry Oz with 0 for all x € F,. Let My be the position matrixz of the family

(L% Lyt € Ty £ 0 U{ (¢ [lg — 1T, ¢ € Tyt 4 0.

Then

My

(11)

is the incidence matriz of a q-reqular bipartite graph of girth 8 with ¢° — q vertices in each

partite set.



(iii) Let k be an integer such that 3 <k < q—1 and let (L*! x L“+“71’t)q_k denote the matrix
obtained from L%t x Lute™ 't by replacing with 0 the entries Oy and (x,z + s) for all
z,y,s €Fy fors=0,...,q—1—k. Let M,_;, be the position matriz of

(Lt nmte ™ u =1, k=1L (tx (= 1)\t t+1, .. t+q—1—k})I, : t # O}

Suppose that the q columns of Ogq—q,q are indexed by j € Fy. Let Oy, . be the matriz
obtained from Opq_qq by changing for 0 the entries (i,—u?s) for allu = 1,...,k — 1,
i=(u—1)qg+1,...,uqg and s=0,...,q—1—k. Then

Mgy | PO},

[0]

)T

(12)

is the incidence matriz of a k-reqular bipartite graph of girth 8 with kq? — q vertices in
each partite set.

Proof: (i) From Theorem 3.1, it follows that M is the incidence matrix of a bipartite graph of
girth 8 with ¢2 lines and ¢ points. Thus we need to prove that the ¢? columns of P(O,2 q)T can be
added to M without decreasing the girth 8. It is readily seen that after adding these columns, the
girth is at least 6, because by Theorem 3.1, for each u € F,\{0} the set {L™"!x Lutu™ht g e F,, }
consists of g2 parallel lines. Thus suppose that (10) contains as a sub-matrix the incidence matrix
of a cycle of length 6. Then there exists u,v € Fy \ {0} and 4,7',7", j,j' € Fy with u # v, i # 7/

and j # j' such that

(L0 X D) = (L0 x L)),
(Lu’t « Lu+u—17t)(i/7j/) — (Lv,t’ % Lv+v*1,t’)(i//7j/),

From the equalities between their coordinates we obtain

i—i +u(j—7) = (-7,
i~ +(utu)G—5) = w+o ([ -5

Hence u=t(j—35") = v=1(j—4'), implying u = v or j = 5/, a contradiction in either case. Further if
(Lt L“*“f )i, J ) (¢ % [lg=1T,)(@", 5), and (L x L+ ') € (¢ x [lg—111) (i", 57),
then then ¢/ = j = j/ which is also a contradiction.

(74) This item follows directly from the fact that M, is a sub-matrix of M obtained by
deleting the first ¢ columns, which correspond to the position of the symbols starting by 0.
Hence My has ¢3 — ¢* columns. Moreover, the total number of rows of M is the number of
matrices L' x LT "t (that is, (¢ — 1)g) plus the number of matrices (¢ x ([[g — 1))1,, t #0,
(a total of ¢ — 1) multiplied by ¢, that is, ¢(¢> — ¢4+ q — 1) = ¢ — ¢. Thus My is a matrix of

3 —q) x (¢ —¢%). Since P(Op2_,,)" contributes with ¢ — g more columns, then (11) is

order (g
a square matrix of order ¢® — q. Reasoning as in (iii) of Theorem 3.1, we obtain that (11) is the
incidence matrix of a bipartite graph of girth 8, which has ¢ — ¢ columns and ¢® — ¢ rows both
having ¢ ones, so this item is valid. By way of example, both the matrices provided by this item
(1) and their position matrix for the case ¢ = 3 are shown in Table 4. Thus this (0,1)-matrix is

the incidence matrix of a 3-regular graph of girth 8 on 24 vertices in each partite set.
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MATRICES SYMBOLS
0 [ IT [ 12 [ 20 [ 21 [ 22
0 2 2T 0 00[0 00[0 T0[0 00[0 OI[0 OO0/ T00000
11 20 0 0 00/1T 00/0 00/0 100 00[0 00[100000
22 0 10 0 01/0 00/0 00/0 00/0 00/1 00[100000
T2 P 0 0 00[0 00T 00[0 00[0 T0[0 00[0T 0000
20 0 11 0 00/0 01/0 00T 00/0 00/0 00[010000
0 10 22 0 10/0 00/0 00/0 00/0 00/0 01[/010000
P 0 T2 0 00[0 00[0 0LI[0 00T 00[0 00[00T 000
0 11 20 0 00/0 10/0 000 01/0 00[0 00[001000
10 22 0 1 00/0 00/0 00[0 00[0 00/0 10001000
0 2T 12 0 00[0 00[0 0I[0 000 T0[0 00000100
11 0 20 0 00/1T 00/0 00/0 01/0 00[0 00[000100
22 10 0 0 10/0 00/0 00/0 00/0 00/1 00[000100
P 12 0 0 00[0 00[0 T0[0 00T 00(0 00[00001T0
0 20 11 0 00/0 01/0 00/0 10/0 00[0 00[000010
10 0 22 1 00/0 00/0 00[0 00[0 00/0 01000010
T2 0 P 0 00[0 00T 00[0 00[0 0OI[0 00000001
20 11 0 0 00/0 10/0 00/T 00/0 00[0 00{00000T1
0 22 10 0 01/0 00/0 00/0 00/0 00[0 10000001
{10,11, 12} 0 0 T 00T 00T 000 00[0 00[0 00000000
0 {10,11,12} 0 0 10/0 10/0 100 000 000 00[000000
0 0 {10,11,12}/ 0 01]0 01[0 0 1[0 00[0 00[0 00000000
120,21, 22} 0 0 0 00/0 00/0 00T 00T 00T 00[00000O0
0 {20,21,22} 0 0 00/0 00/0 00/0 10/0 100 10[000000
0 0 {20,21,22}] 0 00/0 00/0 00[0 01[0 01]0 01000000

Table 4: Case ¢ = 3 for (ii) of Theorem 3.2. Incidence matrix of a (3,8)-graph on 48 vertices.

(7i7) Note that (12) is a sub-matrix of (10), then it is the incidence matrix of a bipartite
graph of girth 8. Moreover, M,_j is obtained from M by deleting the first ¢? columns which
corresponds to the position matrix of symbols starting by 0, and by deleting also (¢ —k)(¢ — 1)g
columns corresponding to the symbols (z + s,z + 2s) for all s =0,1,...,¢ — 1 — k which have
been changed for 0. Then the total number of columns of M, is

@ —¢—(q—k)(qg—1)qg=kqlqg—1).

The total number of rows of M,_y, is given by the number of matrices (L*' x L“*“ilvt)q_k, u =
1,...,k—1,t € F,, plus the number of matrices (¢t x ([[¢—1]]\{t, t+1,...,t+q—1—Fk}))I, : t # 0,
t # 0, (a total of ¢ — 1) multiplied by ¢, that is

(k—1)¢* + (¢ — 1)g = k¢* — q.

Thus M, is a matrix of order (kg* — q) x (k¢*> — kq). Since P(Ory—q q)T contributes with kg —gq
more columns, then (12) is a square matrix of order kq¢? — q.

To finish the proof of this item, we only need to show that (12) has k ones in each row and
k ones in each column. To see this, let us show that given a fixed s = 0,1,...,¢ — 1 — k, the
entries (y,y + s) for all y € F,, are in the same column of each matrix L"* x Lutu™ht, Suppose
Lt x LvHe (G §) = (y,y + s), that is

ituj4+ut=y, andi+ (u+uDj+ (u+u )t =y+s.

Then v~ !(j+t) = s, which implies j = us —t. Thus our claim is true since the symbols (y, y+s)
are placed in the same column us —t of the matrix L%! x Lutu™ht, Therefore, after changing for
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SYMBOLS

booco Poocopoocopooco

booco boocopoocopooco

booco boocopocopbooco

boco boocopocopbooco

booco boocopocopooco

booco boocopoocopooco

R p—— boocopoocopooco

booco boocopoocopooco

booco boocopococopboon

£ booco boocopocopo-o
booco boocopocoproo

bo~o boocopoocomHooco

broo Poocopococopboon

- booco boocopoocoporo
booco boocopoocoproo

booco boocopoocomHooco

booco boocopococopboon

2 Hooco boocopocopbo-o
booco boocopocoproo

booco boocopoocomooco

booco Poocopoorpooco

booco boocoporopooco

] booco boocoproopooco
oo boocoHocopooco

booco boocopocorpbooco

oo boocoporopooco

] booco boocoproopooco
booco boocoMoocopooco

Hooco Poocopoompooco

booco boocoporopooco

=) booco boocoprHocopooco
booco boocoHocopooco

oo~ bPoorpococopbooco

booco boropocopbooco

& booco bHoopoocopooco
booco Hoocopoocopooco

booco PooHpoocopbooco

bomo boropocopooco

a booco bHooppocopooco
booco Hocopoocopooco

booco bPoorpococopbooco

booco bormopoocopooco

= booco broopoocopooco
Hooo Hocopoocopooco

oo™

RnO S ) = <

> — —~ —~ —_~

o () ) N

o o — — N )

o~ — —

booco N p =

Pocm =} =) =3

=) = Q e

A - [y .}

q)T such that i + u?s # 0

.,q — 1 —k we obtain a new
q)T contributes with one additional entry equal to 1 in

qgk—q,

Incidence matrix of a (3,8)-graph on 88

12

qk—q,
By way of example, both the matrices provided by this item (iii) and their position matrix

the same rows as those having k — 1 entries different from 0. Hence (12) is a square matrix of
for the case ¢ = 4 and k = 3 are shown in Table 5; and the corresponding matrices for ¢ = 5 and

k = 3 are shown in Table 6. Thus, these (0,1)-matrices are the incidence matrix of a 3-regular

matrix having k entries different from 0 in the rows i such that i +u%s = 0, and in the remaining
graph of girth 8 on 44 vertices in each partite set for ¢ = 4 and 70 vertices in each partite set

order kq?> — ¢ having k ones in each row and clearly in each column.

rows k — 1 entries different from 0. Since in the rows i of P(

0 the symbols 0z and (y,y + s) for all z,y € F, and for all s =0,..
there is a 1 by hypothesis, then P(

Table 5: Case q = 4 for k = 3 of Theorem 3.2 (iii).

vertices.
for ¢ = 5.



t=0 t=1 t=2 t=3 t=4
00 24 3143|[ 0 24 31 430[[ 24 31 43 0 0][31 43 0 0 24|43 0 0 2431

00 30 42 0|/ 0 30 42 00|[|30 42 0 0 0//42 0 0 030/l 0 0 0 3042 01110
u=1([0 0 41 0 10{| 0 41 0 100{/|41 0 10 0 O]l 0 10 O 0 41|{10 0 0 410 022 2 0
00 O 1421/l 0 0 14 210/l 0 14 21 0 0|/14 21 0 ©0 Of[21 0 O O 14 033 3 0
00 13 2032|| 0 13 20 320{/ 13 20 32 0 0{{20 32 0 013[|32 0 0 1320 04 4 4 0
020 0 1030[[20 0 10 300[] 0 10 30 0 20[[10 30 0 2001[30 0 20 O 10 0%5:055 50
u=2{[031 0 2141||31 0 21 410/ 0 21 41 0 31|21 41 0 3101/ 41 0 31 0 21 2 006 6 6
042 0 320142 0 32 00|| 0 32 0 042//32 0 0 420l 0 0 42 0 32 007 77
00 O 4313/ 0 0 43 130|| 0 43 13 0 0//43 13 0 O Of[13 0 0 0 43 008 8 8
014 0 024{|14 0 0 240/ 0 0 24 014/ 0 24 0 14 0|/24 0 14 0 O 009 99
00101010

{10, 13, 14} Is ||{20, 21, 24} Is {30, 31, 32} Is {41, 42, 43} Is

Table 6: Matrices for ¢ = 5 and k = 3 according to Case (iii) of Theorem 3.2.

4 Conclusion

For ¢ a prime power and 3 < k < ¢ we have presented a method providing the incidence matrices
of k-regular bipartite graphs of girth 8 with kq? — ¢ vertices in each partite set. Thus if n(k,8)
denotes the order of a (k,8)-cage, it follows from (1) that

2k(k? -2k +2) < n(k,8) < 2q(kq—1).

Hence the g-regular bipartite graphs constructed in this work have an excess of 4¢> — 6¢. And
the (¢ — 1)-regular bipartite graphs have an excess of 8¢? — 20q + 10.

As regards to known upper bounds on n(k,g), Lazebnik, Ustimenko and Woldar [19] gave
the following result: Let k > 2 and g > 5 be integers, and let ¢ denote the smallest odd prime
power for which £ < ¢. Then,

n(k,g) < qu%g_a , (13)

where a =4, 11/4, 7/2, 13/4 for g = 0, 1,2,3 (mod 4), respectively. According to (13), n(k,8) <
2kq?, therefore the graphs provided by our method also improve this result for ¢ = 8. A
construction giving this upper bound (13) for g = 8 appeared for the first time in [18] and was
used later in [14] and probably, the simplest exposition of it is in Section 2.4 of [20]. In [15],
(q,8)-graphs with 2¢(q* — 2) vertices were constructed using geometrical techniques. But for
regularities k£ < ¢ the graphs constructed in this paper have the smallest number of vertices
among the known regular graphs with girth 8.
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