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ABSTRACT
Several multithreading techniques have been proposed to
reduce resource underutilization in Very Long Instruction
Word (VLIW) processors. Simultaneous MultiThreading
(SMT) is a popular technique that improves processor per-
formance by issuing multiple instructions from different threads.
In VLIW processors, SMT requires extra hardware to merge
instructions from different threads. The complexity of this
hardware increases substantially with the number of threads.
On the other hand, techniques like Interleaved MultiThread-
ing (IMT) do not need any merging hardware, and support
a larger number of threads at reasonable cost. In this pa-
per, we propose Hybrid MultiThreading (HMT), a technique
that at each cycle merges instructions from only a subset of
threads. HMT supports a reasonable number of threads
with a low merging hardware cost. For instance, it is possi-
ble to support 8 hardware threads with a merging hardware
for only 2 threads. The experimental results show that us-
ing HMT improves the multithreading performance signifi-
cantly. Further, supporting 8 hardware threads with HMT
but using a 4-thread merging hardware achieves a perfor-
mance similar to merging 8 threads simultaneously with a
significantly lower merging hardware cost.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: RISC/CISC, VLIW ar-
chitectures; C.3 [Special-Purpose and Application-Based
Systems]: Realtime and embedded systems
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1. INTRODUCTION
Very Long Instruction Word (VLIW) processors have gained

wide acceptance in the embedded domain due to hardware
simplicity, low cost and low power consumption [11, 18].
To exploit high Instruction Level Parallelism (ILP), VLIWs
need to be designed with a significant issue width. However,
the centralized Register File (RF), with all the Functional
Units (FUs) connected to it, becomes a bottleneck due to an
increase in RF delay, power and area [17]. Clustered VLIW
architectures have multiple RFs and cluster the Functional
Units (FUs) to the RFs they are connected to. Many VLIWs
have been designed using the clustered approach [11, 18].

Some applications scale well with issue width, which makes
a high issue width processor desirable. However, the ILP ex-
posed in many applications, or in some code regions, is lim-
ited and the processor is heavily underutilized. Besides, in a
production environment, high ILP applications (like image
processing) coexist with low ILP applications (like control
code or the OS itself). In the context of VLIW architectures,
processor underutilization can be characterized in terms of
vertical and horizontal waste. Vertical waste are the cy-
cles where no operations are issued at all. Horizontal waste
is the underutilization of the issue width of the processor,
i.e. the number of operations issued in a cycle is less than
the maximum number of operations that can be issued per
cycle. Both vertical and horizontal waste arise because con-
trol and data dependencies in the program limit the number
of operations that can be issued in a given cycle. Besides,
operations that have variable latency (for instance, memory
operations) stall the processor if the actual latency is greater
than the expected one, resulting in additional vertical waste.

Several multithreading techniques have been proposed to
reduce the vertical and horizontal waste in the processor.
Block MultiThreading (BMT) [23] executes instructions from
a single thread until it is blocked by a long latency event
(a cache miss, for instance). Interleaved MultiThreading
(IMT) [2, 19] does a zero cycle context switch every cycle,
so that instructions from different threads are interleaved at
execution time. Simultaneous MultiThreading (SMT) [20]
issues each cycle multiple instructions from multiple threads.
In a SMT processor, issue-slots of the processor are filled by
operations of different threads, converting thread level par-
allelism (TLP) into ILP.

Implementing SMT on VLIWs require complex structures
which limits the number of threads that can be supported.



One reason for the limited scalability is the complexity of
the merging hardware required to merge instructions from
different threads. Cluster-level simultaneous MultiThread-
ing (CSMT) [8] reduces the complexity of merging hardware
by merging instructions at cluster-level. Compared to both
SMT and CSMT, approaches like IMT scale better with
number of threads in terms of hardware complexity, and
can support a larger number of threads, since no merging
hardware is required.

In this paper, we propose Hybrid MultiThreading (HMT).
HMT combines the advantages of both IMT and SMT. HMT
merges instructions from a subset of threads. Each cycle, a
new subset is selected in a manner analogous to IMT. Thus,
HMT can support a reasonable number of threads with a
given merging hardware cost. For instance, it is possible to
support 8 threads with a hardware that can merge only 2
threads at a time. This approach gets higher performance at
a low merging hardware cost. HMT can use any approach to
merge instructions from different threads. In particular, this
paper evaluates HMT with operation-level and cluster-level
simultaneous multithreading.

The rest of the paper is organized as follows. First, Section
2 describes the relevant multithreading schemes. Section
3 discusses the motivation for HMT. HMT is discussed in
Section 4. The experimental setup is described in Section 5.
A detailed performance evaluation is presented in Section 6.
Finally, Section 7 concludes the paper.

2. RELATED WORK

2.1 Multithreading Schemes
In this section, we briefly describe the most relevant mul-

tithreading schemes proposed in the literature.
Block MultiThreading (BMT) [23] executes instruc-

tions from a single thread until it is blocked by a long latency
event (a cache miss, for instance). When that happens, a
fast context switch gives control to a different thread so that
most of the miss latency is hidden.

Interleaved MultiThreading (IMT) [2, 19] does a zero
cycle context switch every cycle, so that instructions from
different threads are interleaved at execution time. IMT
allows the removal of the bypass network and interlocking
hardware, since control and data dependencies between the
instructions in the pipeline are eliminated when the num-
ber of interleaved threads is greater than or equal to the
number of pipeline stages. However, doing so hinders sin-
gle thread performance when only one thread is present. A
simple modification, where any thread that produces a cache
miss is marked as blocked and instructions from only non-
blocked threads are issued, combines the best of both IMT
and BMT. This variation of IMT is used in this paper for
evaluations.

Simultaneous MultiThreading (SMT) [20] issues in-
structions from multiple threads each cycle in contrast to
BMT and IMT where, at a given time, instructions from only
one thread are issued. In a SMT processor, issue-slots of the
processor are filled by operations from different threads, con-
verting thread level parallelism (TLP) into ILP. As a SMT
processor simultaneously reduces both horizontal and verti-
cal waste, the resource usage is much more efficient than in
IMT and BMT.

An example of the different multithreading approaches
viz. BMT, IMT and SMT is shown in figures 1(a), 1(b) and
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Figure 1: Comparison of Multithreading Schemes
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1(c) respectively for two threads A and B on a 4-issue VLIW
processor. In the figures, each box in a row represents an
issue slot. A box with a label indicates that the slot is in use
by that particular thread and an empty box represents an
unused issue slot. BMT and IMT can reduce vertical waste
by issuing instructions from different threads, but not hor-
izontal waste. In BMT, a few vertical slots are still wasted
due to context switch time. Since IMT also reduces short
stalls, IMT performance, in general, is a good upper bound
for BMT as well. In contrast to BMT and IMT, SMT also re-
moves horizontal waste in the processor. To do so, it requires
an extra merging hardware that can merge instructions from
different threads.

Cluster-level Simultaneous MultiThreading (CSMT)
[8] is a variant of SMT specifically proposed for clustered
VLIW processors. In CSMT, the instruction merging is done
at a cluster-level granularity instead of the operation-level
merging done by SMT. Hence, CSMT issues instructions
from multiple threads only when the threads use different
clusters. This restricts the opportunities to merge the in-
structions in comparison to SMT, but has a lower complex-
ity implementation of the merging hardware.

To illustrate how instructions from different threads are
merged in CSMT, Figure 2(a) displays 3 pairs of instructions
for 2 threads for a 4-cluster 2-issue per cluster (8-issue) ar-
chitecture. In the figure, operations in the white background
belong to Thread 0 and operations with a grey background
belong to Thread 1. Note that when two instructions are
merged, they have to be merged in their entirety i.e. it is not
possible to choose only a non-conflicting part of an instruc-
tion because doing so breaks VLIW execution semantics.
Also, if a pair of instructions can be merged by CSMT, it
can always be merged by SMT but not vice-versa. Also note
that if both CSMT and SMT can merge a pair of instruc-
tions, the final merged instruction is identical for both SMT



and CSMT. The final instructions obtained by merging are
shown in Figure 2(b). Neither CSMT nor SMT can merge
Pair I because of conflicts at clusters 0, 1 and 3, both at
operation-level and cluster-level. Pair II can be merged by
SMT since there are no conflicts at operation-level. CSMT,
however, cannot merge this pair, since both instructions in
the pair use clusters 0, 2 and 3. As CSMT checks resource
conflicts at the cluster-level, there is a conflict at these clus-
ters. Pair III, however, can be merged by CSMT (and SMT
as well) as the first instruction uses only clusters 1 and 2
which are not used by the other instruction.

Next we discuss several multithreading schemes and en-
hancements which are relevant to our proposals.

2.2 Other Related Work
To improve multithreading performance in clustered VLIWs,

a technique named Cluster Renaming is proposed in [8]. The
authors observe that there is a resource usage bias in most
of the programs with cluster 0 being the most heavily used.
This bias reduces the opportunities for merging instructions
from different threads. Cluster renaming solves this problem
by statically distributing the clusters of each thread which
reduces the contention for the clusters. The renaming mech-
anism is simply a rotation of the the original cluster assign-
ment done by compiler by a given renaming value. The
renaming value of each thread is a fixed number computed
at design time, based on the number of clusters and the
number of simultaneous threads supported by the proces-
sor. For instance, in a 2-thread 4-cluster machine, Thread 0
is rotated by 0 and Thread 1 is rotated by 2. On a 8-thread
4-cluster machine, Thread 0 is rotated by 0, Thread 1 by 1,
Thread 2 by 2, Thread 3 by 3, Thread 4 by 0, and so on.
Note that with 8 threads, some threads share the same re-
naming value since there are more threads than the number
of clusters. Cluster renaming is used in all our experiments.

M-Machine [5] uses IMT to run several applications at
the same time. It also uses compiler generated threads to
improve single application performance. In M-Machine, ei-
ther complete VLIW instructions are issued from a single
thread or short instructions are issued from multiple com-
piler generated threads by executing each thread in a differ-
ent cluster. In the latter case, threads have been compiled to
use only a single cluster. A similar approach, Multithreaded
extension to clustered VLIWs [3] also uses compiler gener-
ated threads to run multiple threads on a clustered VLIW
processor.

Balanced MultiThreading [21] is a related multithread-
ing technique proposed for high end out-of-order superscalar
processors. Balanced multithreading combines the SMT
ability with Block MultiThreading. To do so, extra thread
contexts are stored in a special storage location on-chip. If
a running thread encounters a L2 cache miss, it is swapped
with one of the extra contexts. Use of balanced multithread-
ing saves the register file space requirement for the extra
thread contexts but several cycles are required for context
swapping.

Subset Static Interleaved Multithreading (SSIMT)
[12] is a technique similar to Balanced MultiThreading. SSIMT
combines Block MultiThreading with IMT for embedded
VLIW Processors. SSIMT maintains several background
thread contexts on-chip. The background threads are swapped
with a running thread if that thread encounters a cache miss
at a low swapping penalty. Both Subset Static Interleaved
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Figure 3: Average IPC for IMT, CSMT and SMT

Multithreading and Balanced multithreading proposals are
orthogonal to Hybrid MultiThreading, the approach pre-
sented in this paper.

3. MOTIVATION
Supporting a larger number of threads is a possible way

for improving performance. However, some multithreaded
schemes do not benefit from an increase beyond a small num-
ber of threads. To illustrate this, Figure 3 shows the average
IPC obtained by IMT, CSMT and SMT for the workloads
evaluated in this paper (explained later in Section 5) on a
single-thread, 2-thread, 4-thread and an 8-thread machine.
In the figure, the filled portion of the bars is the IPC ob-
tained for the real memory system (described in Section 5)
and the extra white bar on top represents the additional IPC
obtained for a perfect memory model assuming no cache
misses. For an ease of comparison, the single-thread IPC
bar is shown for all IMT, CSMT and SMT.

The first thing to notice is that even with a perfect mem-
ory model, IMT does slightly better than the single-thread
processor. This is because, despite the fact that there is
no vertical waste due to memory stalls, a few issue cycles
are still lost due to taken branches and def-to-use latency
of operations like loads, multiplies and comparisons. IMT
also hides this vertical waste by issuing instructions from
an alternate thread. However, little improvement in per-
formance is achieved in moving from a 2-thread machine to
a 4-thread or an 8-thread machine. With a real memory
system, a moderate performance difference still exists be-
tween a 2-thread and a 4-thread machine, but an 8-thread
machine provides only marginal performance improvement
over a 4-thread machine. This happens because IMT can
only remove vertical waste. Vertical waste keeps on reduc-
ing with an increase in number of threads. Thus, IMT gets
little benefit by supporting more than 4 threads. In contrast
to IMT, CSMT and SMT also remove horizontal waste, and
thus, both CSMT and SMT performance keep on improving
significantly up to 8 threads. In moving from a 4-thread ma-
chine to an 8-thread machine, CSMT performance improves
by 15% while SMT performance improves by 29% for the
perfect memory model, while for the real memory system,
there is a performance improvement of 22% for CSMT and
37% for SMT.

Supporting a large number of threads on a SMT or CSMT
processor is desirable because of the performance gains that
are achieved. However, the hardware complexity increases
with the number of threads and limits the number of threads
that can be supported simultaneously. In general, most of
the hardware complexity can be attributed to the extra reg-
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ister sets required to support multiple threads and the merg-
ing hardware required to merge instructions from different
threads. Most of the multithreading schemes including IMT,
SMT, CSMT, etc. require a register set per thread. The cost
of extra register sets is not trivial. Nevertheless, systems like
Cray MTA/Tera [2] had 128 register sets per processor to
support 128 threads using IMT with a VLIW ISA. Com-
pared to extra register sets, which has the same cost for all
multithreading schemes, the cost of merging hardware varies
significantly depending on the multithreading scheme used.

3.1 Merging Hardware
This section compares the merging hardware for the mul-

tithreading schemes IMT, CSMT and SMT. Figure 4 shows
the merging hardware required for a N-Thread M-cluster
4-issue per cluster processor. The merging hardware con-
sists of 2 parts, a thread merge control and a merging block
per cluster. Thread merge control takes the resource usage
information of the instructions as input and generates con-
trol signals for the merging block. The merging uses these
control signals to generate the execution packet by merging
the instructions of the threads. Next we discuss the imple-
mentation of the merge control and merging block for IMT,
CSMT and SMT.

IMT thread merge control selects a different thread at
each cycle. Hence IMT thread merge control can be simply
implemented as a counter which is incremented at each cycle.
The merging block for IMT is simply a multiplexer at each
cluster. The output of the thread merge control is used by
all the multiplexers to select the instruction of a thread to
be issued as the execution packet.

In comparison to IMT, CSMT can issue instructions from
multiple threads at a time. Hence, CSMT also requires
to check for resource collisions at cluster-level amongst the
threads. This results in a more complex thread merge con-
trol than for IMT. However, the cost of the merging block
for CSMT is the same as for IMT, since CSMT also requires
only one multiplexer per cluster (each multiplexer is driven
by different control signals).

SMT checks resource collisions1 at operation-level and can
select operations from multiple threads at the same cluster,
in contrast to CSMT. To fit operations from multiple threads
in the same cluster, SMT merging hardware needs to route
the operations of the instructions. SMT thread merge con-
trol also generates the appropriate signals for routing the
operations. The merging block uses these routing signals to
produce the final execution packet. The thread merge con-

1In most VLIW processors, certain type of operations can
be executed only at fixed issue slots. For instance, in our
base architecture, while ALU operations may be executed at
any issue slot, operations like memory load/store, multiply
and branch can only be executed at their fixed slots.
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trol is more complex for SMT than CSMT. However, the
area required by the merging block to do the routing is sim-
ilar to the area required for the multiplexers in both IMT
and CSMT, assuming the methodology used in [14] for in-
terconnect area computation. This is because the number
of input and output wires for the merging block is the same
as that of the multiplexers.

For all the 3 schemes considered namely IMT, CSMT and
SMT, the cost of the thread merge control is the only vari-
able cost in the merging hardware. Thus, the cost of the
thread merge control is the only factor that influences scal-
ability of CSMT and SMT compared to IMT. Next, we dis-
cuss this cost.

3.2 Thread Merge Control Cost Analysis
Two implementations of thread merge control for CSMT

and SMT [9] are considered in this paper viz. serial and par-
allel. The serial implementation is a cascading logic checking
a different thread at each level. The parallel implementation,
on the other hand, checks all the possible thread selections
in parallel and selects the one conforming to the selection
policy. The parallel implementation has lower delay than
the serial one but has a much higher hardware overhead,
which grows exponentially with number of threads.

Figure 5 shows the cost of the thread merge control with
varying number of threads for a 4-cluster 4-issue per cluster
architecture for both CSMT and SMT. Figure 5(a) shows the
cost in terms of number of transistors required on a logscale,
and Figure 5(b) shows the cost in terms of gate delays. In
the figures, labels ’CSMT PL’ and ’CSMT SL’ refer to the
parallel and serial implementations of CSMT thread merge
control, while labels ’SMT PL’ and ’SMT SL’ refer to the
parallel and serial implementations of SMT thread merge
control. The values for CSMT have been taken from [9]. The
computation details of the gate delays and transistor count
for SMT thread merge control are computed following the
same methodology as in [9] and are omitted from this paper
for space reasons. As shown in the figures, the complexity
of the thread merge control for SMT increases significantly
with the number of threads, both in terms of transistors
required and gate delays, and constrain its scalability. In
particular, the increase in gate delays limits the scalability
of SMT to 2 threads. Higher delays in thread merge control
can be tolerated by implementing it using extra pipeline
stages. Increasing pipeline stages, however, degrades single-
thread performance significantly when only one thread is
present, and may not be acceptable.

Compared to SMT, CSMT scales better with number of
threads. However, despite having lower complexity than



T0

TS

Ta

Fetch

Buffers
T0

TS ........Fetch MergeMerge
DecodeSMT CSMT

Buffers
Instruction Instruction

(b) CSMT Pipeline with HMT(a) SMT Pipeline with HMT
Tb

Tb

Partial
DecodingTa

T1

T2

T1

T2

T3 T3

Figure 6: HMT Pipeline

Selected for
4 Threads

Merging

T0 T1 T2 T3 T4 T5 T6 T7

(a) (b)
Execution Packet

Thread Select

Merging Hardware

 
  

Interleaving step=1 Interleaving step=2

Cycle 0: T0  T1  T2  T3

Cycle 1: T2  T3  T4  T5

Cycle 2: T4  T5  T6  T7

Cycle 3: T6  T7  T0  T1

Cycle 4: T0  T1  T2  T3

Threads Selected for Merging

Cycle 0: T0  T1  T2  T3

Cycle 4: T4  T5  T6  T7

Cycle 3: T3  T4  T5  T6

Cycle 2: T2  T3  T4  T5

Cycle 1: T1  T2  T3  T4

Figure 7: Hybrid Multithreading Example

SMT, CSMT still suffers from scalability issues. While gate
delays is an issue for the serial design, the parallel design
requires a large number of transistors for large number of
threads. Thus, none of these approaches is suitable for sup-
porting a large number of threads.

4. OUR PROPOSAL: HYBRID
MULTITHREADING

Hybrid MultiThreading (HMT) combines the advantages
of interleaving threads and executing simultaneously instruc-
tions from different threads. HMT merges, simultaneously,
instructions from only a subset of threads instead of merging
all the threads. Every cycle, a new subset is selected in a
manner analogous to IMT. If one or more threads produce a
cache miss (or even a short latency delay that arises because
of data dependencies), selecting a subset of threads helps in
hiding the latency efficiently. Moreover, the merging hard-
ware can still operate efficiently even if a few threads are
blocked. The number of threads that can be merged at a
time is dictated by the merging hardware cost. However,
HMT approach supports a larger number of threads with-
out incurring a large merging hardware cost. For instance,
4 threads can be supported with a merging hardware that
can merge only 2 threads at a time. HMT is independent of
the implementation of the merging hardware. Either SMT
or CSMT can be used to merge instructions from different
threads. Figures 6(a) and (b) show the first pipeline stages
for both SMT and CSMT processors with HMT respectively,
where 4 threads are supported but only 2 are merged at a
time by selecting a subset of 2 threads each cycle. In the
figure, TS represents the Thread Select which selects a sub-
set of threads for further execution. For a SMT processor,
using a subset of threads also means that fewer threads need
to be partially decoded (SMT requires partially decoded op-
eration to recognize the FU used).

Figure 7 shows an example of HMT. The HMT processor
shown in the figure 7(a) supports eight threads, T0-T7, but
the merging hardware has the ability to merge instructions
from only 4 threads at a time. Thus, up to 4 threads are se-
lected every cycle by the Thread Select. The merging hard-
ware takes the selected threads and produces an execution
packet by merging their instructions. Note that the selection
of a thread does not guarantee its inclusion in the execution

packet. The selection only implies that the thread’s instruc-
tion will be considered for merging. The actual inclusion in
the execution packet depends on the merging scheme used
by the merging hardware and whether the thread is blocked
or not. Every cycle, a new subset of threads is selected which
is decided by the interleaving step. Interleaving step is the
number of threads skipped to select the new set of threads.
Following section discusses interleaving step in detail.

4.1 Interleaving Step
The first step in HMT is to select the subset of the threads

that should be considered for merging in next cycle. The
primary factor that influences the selection of threads is the
value of interleaving step used. IMT, for instance, uses al-
ways an interleaving step of 1 and selects the next thread
every cycle. In HMT, using different values for interleaving
step creates interesting thread selections which may obtain
different performance. For example, for the 8-thread HMT
machine with a 4-thread merging hardware shown in figure
7(a), with an interleaving step of 1, the 4 threads selected
at a given cycle contain 3 threads that were also selected in
the previous cycle. With an interleaving step of 2, the se-
lected threads contain only 2 threads that were also selected
in previous cycle. Figure 7(b) shows the thread selections
obtained by using different values of interleaving step of 1
and 2. Initially, threads T0-T3 are selected at cycle 0 for all
examples. With an interleaving step of 1 (column 1 of Fig-
ure 7(b)), the first thread T0 is skipped at cycle 1, and the
next 4 threads T1-T4 are selected, and so on. With an in-
terleaving step of 2, first two threads T0 and T1 are skipped
at cycle 1, and the next 4 threads T2-T5 are selected. At
cycle 2, threads T2 and T3 are skipped and threads T4-T7
are selected, and so on.

Thread Select (TS) initially considers the selections ob-
tained by the interleaving. However, some of the threads in
a given selection may be blocked, lowering the opportunities
for merging. Following section discusses several thread se-
lection schemes that can be employed by the TS to replace
a blocked thread.

4.2 Thread Selection Schemes
Thread selection can be divided into two categories: Static

and Dynamic. In a static thread selection, TS does not take
any runtime decisions and completely relies on interleaving
for selecting the threads. In Dynamic thread selection, the
subset of threads obtained using interleaving is initially con-
sidered, but if some of the threads in the subset are blocked
(because of a cache miss, for instance), they can be replaced
by other threads. Dynamic thread selection is more complex
than a static one, but allows a better use of the resources.
In particular, an IMT implementation where the blocked
threads are skipped also belongs to dynamic thread selec-
tion category, as instructions from a non-blocked thread are
issued if the given thread is blocked.

Figure 8 shows a comparison of a static vs dynamic thread
selection for a machine with 8 threads (T0-T7) and a thread
select that can select up to 4 threads. An interleaving step of
1 is assumed in this example. As shown in the Figure 8(a),
Thread T1 is assumed to be blocked. Static thread selection
selects Thread T1 at both cycle 0 and cycle 1 despite T1 be-
ing blocked as shown in Figure 8(b). Thus, a selection slot
is wasted at these cycles. Dynamic thread selection, how-
ever, skips Thread T1 and instead selects the non-blocked
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threads T4 at cycle 0 and T5 at cycle 1. Thus, all selec-
tion slots are completely utilized. The following dynamic
thread selection schemes have been considered in this paper:
First Non Block (FNB): If one of the threads in the set
considered for merging is blocked, then it is substituted by
the first non-blocked thread. This scheme is used in the
example in Figure 8(b).
Equivalent (Eq): This scheme is a consequence of cluster
renaming. The use of cluster renaming creates an interesting
case: If the number of threads is greater than the number
of clusters, multiple threads share the same renaming value.
To try to maximize the number of instructions that can be
merged, the thread selection scheme should avoid the selec-
tion of threads that have the same renaming value. Using
FNB scheme, however, may result in cases where multiple
threads in the selected subset have the same renaming value,
resulting in an increased contention for resources for some
clusters. For instance, using the same example as in Figure
8(b), where Thread T1 is blocked, and assuming a 4-cluster
machine, FNB scheme selects at cycle 0 Thread T4 as the re-
placement for Thread T1. Thus, threads T0, T2, T3 and T4
are selected to be merged. However, Thread T4 and Thread
T0 have the same renaming value. Thus, both threads prob-
ably will compete for resources in same clusters. This limits
the benefits of selecting a replacement thread. An intelligent
choice would be to pick Thread T5 as the replacement for
Thread T1, as both of them have the same renaming value.
Then, if T0, T2, T3 and T5 (instead of T4) are the selected
threads, none of them have the same renaming value. Hence,
a better merging of the instructions from these threads can
be expected.
Equivalent + First Non Block (Eq+FNB): This scheme
is a combination of Eq and FNB schemes. If a thread is
blocked, first an equivalent thread is considered as the re-
placement. If the equivalent thread is also blocked, then the
first thread which is not blocked is used as a replacement for
the blocked thread.

To illustrate different thread selection schemes, Figure
9(b) shows the thread selections done by Static, FNB, Eq
and Eq+FNB schemes for an 8-thread 4-cluster machine
with a 4-thread merging hardware. For all the schemes,
an interleaving step of 1 is used. Threads T1, T2 and T6
are assumed to be blocked. At cycle 0, all the proposed
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schemes start with threads T0, T1, T2 and T3 as the ini-
tial subset. In static selection, since threads T1 and T2
are blocked, two selection slots are wasted. FNB skips the
blocked threads and thus 4 non-blocked threads T0, T3, T4
and T5 are selected. Eq scheme selects Thread T5 instead
of Thread T1, which is blocked, but cannot replace Thread
T2 since its equivalent Thread T6 is also blocked. This re-
sults in an unutilized selection slot. Eq+FNB selects Thread
T5 in place of Thread T1. Since both Thread T2 and its
equivalent Thread T6 are blocked, Eq+FNB selects the first
non-blocked Thread T4 as the replacement. At cycle 1, us-
ing an interleaving step of 1, the thread selection for all the
schemes starts from threads T1, T2, T3 and T4 and so on.

We now discuss the relative strengths and weaknesses of
both static and dynamic thread selection schemes. Fig-
ure 10(a) shows a very simple implementation for the static
thread selection scheme for an 8-thread architecture where
the merging hardware can support 4 threads. In the figure,
T0-T7 represent the 8 threads and S0-S3 are the select sig-
nals for the muxes. This design can be used with different
values of interleaving step by using a different select logic
for muxes. Figure 10(b) shows the corresponding select sig-
nals for the muxes with different values of interleaving step
and the selected threads. The select signals can either be
stored on-chip in a table or can be generated by an on-chip
logic. For instance, for an interleaving step of 1, a simple
4-bit twisted ring counter can be used.

In a dynamic thread selection, any thread can be selected
at any selection slot. For instance, in FNB scheme there is
no restriction in the selection. Hence, for each selection slot,
all threads have to be checked, as shown in Figure 11. How-
ever, each input line to a mux is a complete VLIW instruc-
tion. Hence, the muxes themselves consume significant area
and power as a lot of wiring and routing needs to be done.
The select signal generation for the muxes is also more com-
plex than for static selection, as the blocked threads need
to be skipped. This adds to the delay of the merging hard-
ware, which already has a high delay. Since the thread select
should fit in the same pipeline stage as merging hardware,
implementing a dynamic thread selection scheme may not
be practical.

However, the Eq thread selection scheme restricts the threads
that can be used for replacement. In Eq scheme, if a thread



is blocked, it can be substituted only by a fixed equivalent
thread. For instance, with a 8-thread 4-cluster machine and
a merging hardware of 4 threads, Thread 0 can be substi-
tuted only by Thread 4, Thread 1 by Thread 5, and so on. It
is possible that more than 2 threads have the same renam-
ing value. For instance, for a 2-cluster 8-thread machine,
4 threads have the renaming value of 0, and rest 4 have
the renaming value of 1. However, with Eq scheme, we re-
strict to one the number of threads that are considered as
replacement. This results in a design with significantly lower
complexity in comparison to the general dynamic thread se-
lection scheme. In fact, the same simple design used in static
thread selection shown in Figure 10(a) can be used to im-
plement Eq scheme. The generation of the select signals for
the muxes is different though, as the blocked state of the
threads has to be considered. Nevertheless, the complexity
and delay of Eq thread selection scheme is similar to static
thread selection. Note that the scheme Eq+FNB requires
a selection hardware similar to the general dynamic thread
selection presented at Figure 11.

4.3 Thread Merge Policy
HMT assigns a different priority to each hardware thread

in a round robin way every cycle. The execution packet is
formed by merging instructions from the selected threads
according to their priority. First, the instruction from the
highest priority thread is selected; then, the instruction from
the next highest priority thread is selected to be merged in
the execution packet if it does not collide with the already
formed packet, and so on.

5. EXPERIMENTAL SETUP
The HMT evaluation done in this paper is based on the

VEX clustered architecture [22] modeled upon the commer-
cial HP/ST Lx [4] VLIW family. The VEX C compiler [22]
used in this study is a derivation of the HP/ST ST200 C
compiler, which itself is a derivative of the Multiflow com-
piler [16] that uses Trace Scheduling [6] as global scheduling
algorithm.

VEX is a 32-bit clustered integer VLIW architecture that
provides scalability of issue-width and functionality. FUs
within a cluster can access only local register files with the
exception of Branch FU, which may read registers from other
clusters. Clusters are architecturally visible and require
explicit inter-cluster copy operations to move data across
them. VEX is a less-than-or-equal machine i.e. the actual
latency of any FU can be shorter than the compiler assump-
tion. No interlocks are required if hardware can complete an
operation in the same or fewer cycles. However, for opera-
tions like memory accesses, which may take longer than the
assumed latency, execution is stalled until the architectural
assumptions hold true. Each cluster has 2 multipliers and 1
load/store unit, and the number of ALUs is the same as the
issue width of the cluster (4 in our experiments). Memory
and multiply operations have a latency of 2 cycles, and the
rest have single-cycle latency. There is no branch predictor
and fall-through path is the predicted path. The incorrect
instructions issued following a taken branch are squashed.
Compare and branch is done as a pair of operations: first
operation does the comparison and sets the branch registers
ahead of the actual branch, and the second is the actual
branch operation. There is a 2-cycle delay from compare
to branch, and the taken branch penalty is 1 cycle. A trace

Table 1: Benchmarks
Benchmarks ILP Degree Description IPCr IPCp

mcf l Minimum Cost Flow 0.98 1.36
bzip2 l Bzip2 Compression 0.94 1.05
blowfish l Encryption 1.11 1.47
gsmencode l GSM Encoder 1.07 1.07
g721encode m G721 Encoder 1.75 1.76
g721decode m G721 Decoder 1.75 1.76
cjpeg m Jpeg Encoder 1.13 1.66
djpeg m Jpeg Decoder 1.76 1.77
imgpipe h Imaging pipeline 3.81 4.05
colorspace h Colorspace Conversion 5.47 8.88
x264 h H.264 Encoder 3.89 4.04
idct h Inverse DCT 4.79 5.27

based in-house simulator is used to simulate a multithreaded
VLIW processor.

Experiments have been done in a 16-issue, 4-cluster ar-
chitecture configuration (i.e. 4-issue per cluster). All the
experiments have been done for a perfect memory model
with no cache misses and for a real memory model assum-
ing a 64KB, 4-way set-associative, 20-cycles miss penalty
design for both ICache and DCache (assuming a processor
frequency of 4002 MHz. and a worst case DRAM latency of
50 ns for critical word transfer).

We have used a set of MediaBench [15] and a couple of
SpecInt 2000 [10] applications which we feel are relevant for
the embedded domain. We have also included production
color space conversion [1], imaging pipeline [22] used in high
performance printers, inverse discrete cosine transform (used
in various codecs) [13] and H.264 encoder [24]. The bench-
marks are shown in Table 1. Columns IPCr and IPCp show,
for each benchmark, the average IPC for real and perfect
memory models respectively. Benchmarks are classified by
their IPCp in three categories: high IPC (colorspace, img-
pipe, idct and x264), medium IPC (g721encode, g721decode,
cjpeg and djpeg) and low IPC (mcf, bzip2, blowfish and
gsmencode). This classification is shown in column ILP
Degree as l (low IPC), m (medium IPC) and h (high IPC).

The workload configurations used for evaluation are listed
in Table 2. In order to select appropriate thread configu-
rations, we have combined benchmarks with different IPC
degrees, attempting to cover representative combinations.
Column labeled as ILP Comb indicates these IPC combi-
nations. For example, configuration llmmmmhh in Table 2
has two benchmarks with low IPC, four benchmarks with
medium IPC and two benchmarks with high IPC, config-
uration llllmmhh has four benchmarks with low IPC, two
benchmarks with medium IPC and two benchmarks with
high IPC. The two configurations llllllll (all low IPC
benchmarks) and hhhhhhhh (all high IPC benchmarks) are
special configurations to evaluate the extreme cases.

We carried out the experiments by arranging the work-
loads in a multitasking environment. The number of threads
supported by the processor is exposed as virtual CPUs and
the OS task scheduler schedules as many threads to run as
the number of virtual CPUs, with a timeslice of 5 million cy-
cles. After the expiry of the timeslice, a context switch takes
place and the running threads are replaced by other threads
from the workload. The delay of a context switch is assumed
to be neglegible. For a single-thread processor, the threads
run in serial order with a single thread running in the whole
timeslice. For a 2-thread processor, 2 threads are scheduled
to run together in the same timeslice, for a 4-thread proces-

2Frequency of the fastest processor, ST231, in ST200 family



Table 2: Workload configurations
ILP Comb Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7
llllllll 181.mcf 256.bzip2 blowfish gsmencode 181.mcf 256.bzip2 blowfish gsmencode
llllmmmm 181.mcf 256.bzip2 blowfish gsmencode cjpeg g721encode g721decode djpeg
llllmmhh 181.mcf 256.bzip2 blowfish gsmencode g721decode djpeg colorspace imgpipe
llllhhhh 181.mcf 256.bzip2 blowfish gsmencode colorspace imgpipe idct x264
llmmhhhh 181.mcf 256.bzip2 g721encode cjpeg x264 idct colorspace imgpipe
llmmmmhh blowfish gsmencode cjpeg g721encode g721decode djpeg idct x264
mmmmhhhh cjpeg g721encode g721decode djpeg idct x264 colorspace imgpipe
hhhhhhhh x264 idct colorspace imgpipe x264 idct colorspace imgpipe

sor, 4 threads share the timeslice, and for a 8-thread proces-
sor all 8 threads share the timeslice. To improve fairness and
alleviate any bias, replacement threads are picked at random
from the workload, after the context switch. The workloads
are executed till one thread completes executing 200 million
VLIW instructions (1 VLIW instruction = 1 to 16 RISC in-
structions). If any of the benchmarks finishes before some
thread can finish executing 200M VLIW instructions, then
that benchmark is respawned again. All benchmarks except
mcf and bzip2 are relatively short (between 30-100M VLIW
instructions) and run to completion atleast twice.

6. RESULTS
This section presents the performance results obtained by

using HMT with both operation-level (SMT) and cluster-
level (CSMT) merging approaches. This section also evalu-
ates the influence of the thread selection schemes on HMT
performance. HMT performance results are shown in the fig-
ures 12 to 14. In the figures, a HMT approach with CSMT
merging hardware is referred as HCSMT, while a HMT ap-
proach with SMT merging hardware is referred as HSMT.
An extra label of the format A : B is appended to all multi-
threading configurations, where A is the number of threads
that can be merged by the merging hardware and B is the
number of the threads supported by the processor (virtual
CPUs). A and B values are always the same for a pure
CSMT and SMT machine, but are different for a HMT ma-
chine since the number of threads merged is lower than the
number of threads executed. Another label, indicating the
thread selection policy, is appended to HMT configurations.
For instance, label ”CSMT 4:4” indicates a pure 4-thread
CSMT machine (4 threads supported and also merged at
a time), and label ”HCSMT 4:8 FNB” states a HMT ma-
chine that supports 8 threads using the FNB thread selec-
tion policy with a CSMT merging hardware that can merge
4 threads at a time. In all the figures, the filled portion of
the bars is the IPC obtained for the real memory system,
and the extra white bar on top represents the additional
IPC obtained while using the perfect memory model. In all
the experiments shown in this section, an interleaving step
of 1 is used. We repeated the experiments with varying de-
gree of interleaving step. However, little difference in HMT
performance was observed. Hence, we restrict the results
presented to an interleaving step value of 1.

6.1 Performance Evaluation of HMT with FNB
Thread Selection Policy

Figures 12(a) and (b) show the performance comparison
between HMT with the FNB thread selection policy and a
pure SMT/CSMT architecture. The figures also include the
performance of a single-thread machine and the peak per-
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Figure 12: IPC of the workloads for HMT with FNB
policy

formance achievable (”CSMT 8:8” and ”SMT 8:8”). In pure
CSMT and SMT machines, a significant amount of perfor-
mance is lost because of cache misses. Even short latencies
block threads from executing, which further results into a
reduction in the number of threads that can be merged dur-
ing this time. HMT mitigates this performance loss because
of its ability to issue instructions from different threads ev-
ery cycle. As a consequence, HMT approaches significantly
improve the performance over a pure CSMT/SMT machine
when using the same merging hardware. HMT achieves a
significant improvement in performance even with a perfect
memory model because of its ability to hide short latencies.

On an average, for a CSMT merging hardware, using
HMT improves the performance over pure CSMT by 38%
with a 2-thread merging hardware (”HCSMT 2:8 FNB” vs
”CSMT 2:2”), and 17% with a 4-thread merging hardware
(”HCSMT 4:8 FNB” vs ”CSMT 4:4”) with the real mem-
ory model. For the SMT merging hardware, there is a per-
formance improvement of 48% over pure SMT with a 2-
thread merging hardware (”HSMT 2:8 FNB” vs ”SMT 2:2”),
and 29% over pure SMT with a 4-thread merging hardware
(”HSMT 4:8 FNB” vs ”SMT 4:4”). Further, the performance
of a 4-thread merging hardware by using HMT is quite close
to the peak performance of 8-thread merging hardware in
pure CSMT and SMT (“CSMT 8:8“ and ”SMT 8:8”). On
an average, with a CSMT merging hardware, ”HCSMT 4:8
FNB”performance is within 4.3% of the the ”CSMT 8:8”per-
formance, while with a SMT merging hardware, ”HSMT 4:8
FNB”performance is within 6.3% of ”SMT 8:8”performance.
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Selection Schemes for HCSMT

Besides, HMT with a 2-thread merging hardware achieves
performance close to pure 4-thread CSMT/SMT configura-
tions (within 4% for CSMT merging hardware and 4.8% for
SMT merging hardware) and even outperforms them in some
cases (for instance, hhhhhhhh for CSMT merging hardware
and llllllll for SMT merging hardware) for the real mem-
ory model. Thus, using HMT improves the performance of a
pure CSMT/SMT machine significantly with a lower merg-
ing hardware cost.

6.2 Performance Evaluation of Thread Selec-
tion Schemes

Finally, we present an evaluation of the effect of the dif-
ferent thread selection schemes described earlier in Section
4, namely static, FNB, Eq and Eq+FNB. Figure 13 shows
the IPC obtained by different thread selection schemes for a
CSMT merging hardware for both perfect and real memory
models. Figure 14 shows the same data for a SMT merg-
ing hardware. The figures also include the performance ob-
tained by pure CSMT/SMT machines (”CSMT 2:2”, ”CSMT
4:4”, ”SMT 2:2” and ”CSMT 4:4”) and the peak performance
achievable (”SMT 8:8” and ”CSMT 8:8”). For clarity, only
the average IPC achieved for all workloads is shown in the
figures. The detailed set of results are available in [7] and
are omitted from the paper for space reasons.

In general, static thread selection has the lowest perfor-
mance across all the schemes, while scheme Eq+FNB per-
forms the best. On an average, for the real memory model,
the Eq+FNB scheme with a CSMT merging hardware ob-
tains a performance improvement of 38% over pure CSMT
with a 2-thread merging hardware (”HCSMT 2:8 Eq+FNB”
vs ”CSMT 2:2”) and an 18% performance improvement with
a 4-thread merging hardware (”HCSMT 4:8 Eq+FNB” vs
”CSMT 4:4”). With SMT merging hardware, Eq+FNB has
a performance improvement of 48% with a 2-thread merg-
ing hardware (”HSMT 2:8 Eq+FNB”vs ”SMT 2:2”) and 29%
with a 4-thread merging hardware (”HSMT 4:8 Eq+FNB”vs
”SMT 4:4”). Further, the performance achieved by Eq+FNB
with a 4-thread merging hardware is quite close to the peak
performance achievable (within 2.4% for CSMT and 6.3%
for SMT merging hardware).

Note that even though static thread selection is the lowest
performing scheme, it still improves the performance signif-
icantly. On an average, with the real memory model, static
selection has 29% higher performance than the pure CSMT
machine with a 2-thread merging hardware (”HCSMT 2:8
Static” vs ”CSMT 2:2”), and 11% with a 4-thread merg-
ing hardware (”HCSMT 4:8 Static” vs ”CSMT 4:4). With
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Figure 14: Average Performance of Different Thread
Selection Schemes for HSMT

the SMT merging hardware, static selection has 31% higher
performance than the pure SMT machine with a 2-thread
merging hardware (”HSMT 2:8 Static” vs ”SMT 2:2”), and
11% with a 4-thread merging hardware (”HSMT 4:8 Static”
vs ”SMT 4:4).

Another interesting thing to note is that for a CSMT
merging hardware, Eq scheme outperforms FNB scheme (though
the difference in performance is not much). This happens
because the replacement thread selected by Eq scheme does
not share the renaming value with other threads in the selec-
tion set. Thus, more instructions are in general issued simul-
taneously because of less resource conflicts. Even the best
performing scheme, Eq+FNB, has only a very small per-
formance advantage over Eq (1.6% with a 2-thread merging
hardware and only 0.8% with a 4-thread merging hardware).
Thus, Eq scheme seems to be the most suitable thread se-
lection scheme with a CSMT merging hardware as it has a
lower hardware complexity (similar to static) with a perfor-
mance similar to the most complex Eq+FNB scheme. With
SMT merging hardware, FNB scheme outperforms Eq in
the real memory model (but the performance difference is
small, on an average 2.4% with a 2-thread and 4.6% with
a 4-thread merging hardware). This is opposite to the be-
havior observed with the CSMT merging hardware, where
Eq outperforms FNB most of the time. This happens be-
cause CSMT merges instructions at cluster level, and thus
it heavily depends on cluster renaming to reduce contention
for clusters. On the other hand, SMT merging hardware can
merge instructions from different threads even if they use
same clusters. Hence, cluster renaming is not so critical for
SMT merging hardware as for CSMT. As a result, replacing
a blocked thread with a non-blocked one is more important
than only checking the equivalent thread in SMT merging
hardware. With perfect memory, where all the latencies
are short, Eq scheme outperforms FNB, as the replacement
threads selected by Eq fare better at merging because all
selected threads have different renaming values.

In conclusion, while Eq scheme is not the best performer
among the dynamic thread selection schemes, its perfor-
mance is very competitive with a significantly lower hard-
ware complexity. Hence, Eq is the most suitable dynamic
thread selection scheme.

7. CONCLUSIONS
Several multithreading schemes like Interleaved MultiThread-

ing (IMT) and Simultaneous MultiThreading (SMT) have
been proposed to reduce the resource underutilization in



VLIW processors. IMT provides significant performance im-
provements if the number of threads supported is small be-
cause of its ability to reduce vertical waste. With a larger
number of threads, less opportunities exist for removing ver-
tical waste, resulting in only marginal performance improve-
ments with IMT. On the other hand, SMT performance
keeps on improving significantly because of its ability to also
reduce horizontal waste by merging instructions from differ-
ent threads. However, in SMT it is difficult to support even a
small number of threads because of the complexity of merg-
ing hardware. In contrast, IMT does not require a merging
hardware and can support a larger number of threads.

In this paper, we have presented Hybrid MultiThreading
(HMT), a technique which combines the advantages of both
IMT and SMT. HMT supports a larger number of threads
than SMT with a given merging hardware cost. This is
achieved by merging only a subset of threads at a time.
Every cycle, a new subset of threads is selected. HMT is
independent of the merging scheme used by the merging
hardware. In particular, this paper evaluated HMT with
operation-level and cluster-level simultaneous multithread-
ing (SMT and CSMT). The paper also evaluated several
thread selection schemes that are used to select the subset
of threads to consider for merging every cycle namely static,
equivalent (Eq), first non-block (FNB), and a combination
of equivalent and first non-block (Eq+FNB).

The experimental results show that HMT significantly im-
proves the performance over a pure SMT/CSMT processor.
Even with the simplest static thread selection, there is a sig-
nificant performance improvement of 31% with a 2-thread
merging hardware and 11% with a 4-thread merging hard-
ware over pure SMT. While with a more complex thread
selection scheme like Eq+FNB, using HMT improves perfor-
mance by 48% with a 2-thread merging hardware and 29%
with a 4-thread merging hardware over pure SMT. Further,
using HMT with a 4-thread merging hardware achieves a
performance similar to an 8-thread merging hardware with-
out having to incur the cost of 8-thread merging hardware.
Also, the Eq scheme performs quite well even though it has a
much lower complexity compared to FNB and Eq+FNB. In-
terestingly, Eq outperforms FNB with CSMT merging hard-
ware but the contrary is true with SMT merging hardware.
This arises because cluster renaming is not so critical for
SMT merging hardware as for CSMT. Nevertheless, the per-
formance difference is quite small, making Eq scheme the
most attractive choice for the thread selection scheme, as
it has a performance close to the most complex Eq+FNB
scheme but a complexity similar to the simplest static thread
selection scheme.
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