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An objective of the European Commission’s 6th Framework Research Project, 

Sustainable Bridges, is to advance our understanding of the behaviour of existing 

railway bridges and develop tools to assess their ability to safely handle future traffic 

demands and extend their service lives. This paper presents the findings of a study that 

reviews structural safety models applicable to the assessment of existing bridges.  The 

study proposes the use of simplified probabilistic non- linear structural analysis methods 

to provide more accurate assessments of the load capacity of bridge systems than 

traditional methods. The simplified methods use the results of a limited number of 

deterministic non-linear structural analyses and apply these results into a reliability 

framework.  The application of the proposed methods is illustrated by assessing the 

safety of an existing bridge. The accuracy and efficiency of the simplified methods are 

verified by comparing the results of the simplified methods to those obtained from full 

probabilistic non- linear analysis procedures. 

 

Keywords: Existing bridges; Capacity assessment; System capacity; Safety formats; 

Non-linear analysis. 



 3 

1 Introduction 

The vast majority of Europe’s railway bridges were built more than 50 years ago and 

35% of the bridge stock is older than 100 years (Bell 2004). Hence, many bridges are 

subjected to loads far higher than those envisaged during design. Also, due to 

insufficient investment in bridge maintenance, many of the existing railway bridges 

have significantly deteriorated over their years of service.  The  enlargement of the 

European Community and the continuous growth of its economy, have led to an 

increase in traffic loads and speeds on its railway lines, a trend that is expected to 

continue into the foreseeable future. Therefore, it is of vital importance to ensure that 

the existing railway network and its bridges, which form its critical links, can still 

provide adequate levels of safety under increased loads and higher speeds.  

The safety assessment of railway bridge structures can in many cases be addressed 

using traditional bridge load capacity evaluation methods. However, current load 

evaluation procedures for existing structures are usually adopted from design codes, 

which are meant for new bridges, and may not be adequate for the assessment of certain 

types of existing bridges. Most current methods of safety assessment are based on a 

linear elastic structural analysis and a deterministic evaluation of individual member 

strengths. In reality, a bridge consists of a system of interconnected members where the 

failure of any single member may not necessarily cause the collapse of the whole 

structure. Therefore, the reliability of the member may not be representative of the 

reliability of the whole bridge. Furthermore, most of the variables describing the 

bridge’s geometry, material properties, structural response, and applied loads are not 

deterministic parameters and their design or characteristic values, which are often also 

used during the assessment of existing bridges, do not always properly reflect the in-situ 
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conditions.  Even when such parameters are measured on site, the inherent uncertainties 

in estimating their values are not adequately considered. Due to all the simplifications 

and conservative assumptions usually made during the design process, using the same 

standards for the assessment of existing bridges may lead to having many bridges that 

are in reality completely safe be rated as unsafe.  For these reasons, many researchers 

have recommended the application of advanced probabilistic analysis methods for 

assessing the safety of existing structures (Schneider 1997, BRIME 2001, Enevoldsen 

2001, COST354 2004, Lauridsen 2004). 

The benefits gained by performing a full- fledged structural system reliability analysis 

during the process of designing new ordinary bridges are usually quite low. This is due 

to the fact that the more advanced analysis, in most cases, will only lead to a small 

decrease in member sizes and a negligible reduction in amount of the materials used for 

construction which contribute to a small fraction of bridge construction costs. 

Therefore, the significant computational effort necessary to perform system reliability 

analysis is not usually justified at the design level. Alternatively, the explicit 

consideration of structural redundancy and that of the uncertainty in estimating the most 

important parameters can be significant and could lead to considerable economical 

benefits when assessing the safety of existing bridges. This is especially the case when 

decisions have to be made regarding what appropriate maintenance actions to undertake 

such as rehabilitation, strengthening or replacement of bridges that may not satisfy the 

design member-based safety criteria but are known to have significant levels of reserve 

strength. For this reason, the use of probability-based safety assessment methods for 

existing bridges is increasing in practical applications (Casas 1999, 2000, Enevoldsen 

2001, Lauridsen 2004). To avoid the need to perform a probabilistic analysis for all 
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bridges, several research studies (BA79/98 1998, BRIME 2001, COST354 2004, 

SAMARIS 2006) have recommended that structural assessment strategies be based on 

different analysis levels with increasing degrees of complexity. The recommendation to 

go forward to the next analysis level is made only if the bridge fails to pass the previous 

assessment level.  

This “step- level” philosophy has been also proposed in the soon to appear European 

Guideline for the load capacity and safety assessment of existing railway bridges (SB-

LRA 2007), currently under preparation within the Sustainable Bridges project, where 

three levels of assessment are proposed. The most advanced assessment method 

recommended in this Guideline combines a load redistribution analysis (non-linear 

analysis) with a probabilistic analysis. This level can be applied as a last resort to save a 

bridge from unnecessary repair/strengthening or replacement.  

The quantification of bridge system reliability with the required accuracy is possible 

thanks to available non- linear probabilistic analysis methods, the most commonly used 

of which are summarized in this paper. The problem with the practical application of 

these methods is that they require excessive computational effort, which in many cases 

can be difficult to accommodate, without necessarily providing a commensurate level of 

accuracy.  For this reason, two simplified probabilistic methods are also presented in 

this paper. These simplified models require much less computational effort while 

providing a sufficient level of accuracy.  The benefits of these simplified methods lie in 

the ease of their use by bridge evaluators with standard computational tools. 



 6 

2 Probabilistic non-linear analysis 

2.1 General formulation 

The probabilistic safety assessment of existing bridges using non- linear analysis can be 

formulated using a limit state function g(X), where X represents the vector of random 

variables. In the simplest case, the limit state function g(X) can be defined as the 

difference between the generalized structural resistance R and generalized action effect 

S, so that the probability of failure (or probability of limit state violation) pf is expressed 

as: 

( )( )0SRPr)0)X(gPr(p f <−=<=                     (1) 

In many bridge applications, the reliability index, ß, defined by equation (2) is a widely 

used measure of structural reliability:  

)(1
fp−Φ−=β                               (2) 

where F -1 is the inverse standard normal probability distribution function.  

2.2 Computational methods 

Over the last few decades, several computational methods that can be linked to non-

linear Finite Element Method algorithms, FEM, have been proposed to obtain 

probabilistic evaluations of the safety of structural systems.  These methods can be 

broadly divided into three categories (Haldar and Mahadevan 2000): 1) Monte Carlo 

Simulations, MCS (including efficient sampling methods and variance reduction 
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techniques), 2) the Response Surface Method, RSM, and 3) sensitivity based analyses 

(including Stochastic Finite Element Methods, SFEM).  

Direct MCS (Melchers 1999, Haldar and Mahadevan 2000, Nowak and Collins 2000) 

and more advanced simulation techniques such as the importance sampling (IS) method 

(Melchers 1999), the Latin Hypercube Sampling (LHS) (Nowak and Collins 2000) or 

the directional sampling technique (DS) (Melchers 1999) give good overall results and 

have been applied for nearly all types of structural reliability problems (Eamon et al. 

2005). However, they require significant numbers of runs especially for problems with 

high numbers of random variables and low probabilities of failure.   

The RSM (Haldar and Mahadevan 2000, Nowak and Collins 2000) in its various 

forms has been often adopted as the method of choice for structural applications. It is 

quite practical and effective in most common situations even though it is designed to 

obtain the reliability index directly rather than calculate the probability of failure. The 

application of RSM for highly non- linear limit state functions or for problems with 

several modes of failure could be inefficient and may lead to divergence or inaccurate 

results, even when using its more advanced variants such as the adaptive method 

(Rajashekhar and Ellingwood 1993) or DARS, Directional Adaptive Response Surface 

sampling method (Waarts 2000).   

Sensitivity methods and SFEM (Haldar and Mahadevan 2000) offer solutions that are 

more mathematically elegant than MCS or RSM. These methods however require 

specialized programs that are not yet widely available or easily adaptable for practical 

applications.  

Although the methods described above are the most commonly used probabilistic 

non- linear analysis tools, modifications and refinements to these methods are 
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continuously being introduced to improve their efficiency or accuracy by using 

advanced interpolation techniques and neural networks to approximate the limit state 

function (Kaymaz 2005, Schueremans and Van Gemert 2005) or Genetic Algorithms 

that replace gradient-based optimization techniques during the search for the reliability 

index (Deng et al. 2005, Schueremans and Van Gemert 2005, Wang and Ghosn 2005). 

3 Simplified models 

3.1 Background 

The application of the advanced methods of probabilistic non- linear analysis requires 

advanced knowledge of the structural reliability theory as well as significant 

computational effort. For these reasons, simplified probabilistic non- linear analysis 

methods, which only require a single non-linear analysis performed with widely 

available non- linear FEM packages can provide adequate alternatives when evaluating 

the safety of common type bridges. This section describes two simplified probabilistic 

non- linear analysis methods that will be shown to be sufficiently accurate for the 

purpose of assessing the safety of existing common type railway bridges. 

3.2 Method of Ghosn and Moses 

According to the simplified method proposed by Ghosn and Moses (1998), a bridge 

may be considered safe if it provides a reasonable safety level against first member 

failure, it does not produce large deformations under high loads, it does not reach its 

ultimate system capacity under extreme loading conditions and it is able to carry some 

traffic loads after damage or the loss of a main load-carrying member. Hence, system 

safety is not only related to the ultimate system capacity, but also to the deformation, 
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and post-damage capacity. This implies that four limit sates should be checked to insure 

adequate bridge system safety. The first is a member failure limit state (this is the 

traditional check of individual member safety). The remaining three system limit states 

are the functionality limit state (this is defined to limit maximum live load 

displacements accounting for the non- linear behaviour of the bridge system to ensure 

that the bridge remains functional after high load crossings); ultimate limit state (this is 

the ultimate capacity of the bridge system or the formation of a collapse mechanism) 

and damaged condition limit state (this is defined as the ultimate capacity of the bridge 

system after the complete removal of one main load carrying component from the 

structural model).  This latter limit state is often referred to as structural robustness. 

The incorporation of system behaviour during the safety assessment is done using the 

relative reliability indices iβ∆ . For each of the three system limit states defined above, 

iβ∆  gives the difference between the safety indices for the system iβ  and the safety 

index for the member membβ . In order to guarantee bridge safety, each of the relative 

reliability indices must be greater than an appropriate target value targ
iβ∆ while at the 

same time member safety has to be assured by requiring that the member’s reliability 

index remains above an acceptable level defined by targ
membβ . This method was proposed 

for the design of new structures where the bridge members can be designed with 

appropriate level of safety. In existing structures, where in some cases individual 

members may not meet the safety requirements, global system safety should be 

exclusively used as criteria as proposed by Casas et al. (2007). In this case, the proposed 

safety format would take the form: 

targ
ultim

targ
memb

targ
ultimultimmembultim ββββββ =+∆≥=+∆                   (3a) 
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targ
func

targ
memb

targ
funcfuncmembfunc ββββββ =+∆≥=+∆                   (3b) 

targ
damage

targ
memb

targ
damagedamagemembdamage ββββββ =+∆≥=+∆                (3c) 

where targ
iβ  is target system reliability index. The subscripts ‘ultim’, ‘func’ and 

‘damage’ correspond to ultimate, functionality and damaged condition limit states 

respectively. 

The target values for the relative reliability indices proposed for highway bridge 

design by Ghosn and Moses (1998) and adopted for certain situations to railway bridges 

assessment by Casas et al. (2007) are presented in Table 1.  

The target value for member reliability should be defined for every specific situation 

based on a cost-benefit analysis (JCSS 2001a). However, in the cases when a cost-

benefit analysis cannot be performed, the target value for member reliability can be set 

to match that used for the calibration of traditional bridge assessment codes or 

conservatively those used in design codes. Usually, the target for the reliability index 

for the verification of bridge members takes a value between 2.5 and 4.7 (Casas et al. 

2007). As an example, Table 2 shows target reliability values for a one-year exposure 

period as proposed in JCSS (2001b).  

In this simplified approach, the reliability indices for individual members as well as 

for the system can be calculated using two different formats (normal or log-normal), 

depending on the assumed probability distribution types of random variables R and S. In 

this paper, the calculation of the reliability index ß is performed using the normal 

format:  

22
SR

SR

σσ
β

+

−
=                                 (4) 
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where R  and S  are the mean values of R and S respectively. s R  and s S are the standard 

deviations of R and S.  

Normalizing the resistance and load effects R and S in the equation (4), i.e. assuming 

that TRAIN1 LLFR ×=  and TRAINTRAIN LLLS ×= , the following equation for the member 

reliability index for a railway bridge can be obtained (Casas et al. 2007): 

22

1

LLLF

TRAIN
member

LLLF

σσ
β

+

−
=                           (5) 

In equation (5) 1LF is the mean value of LF1 which is the design load multiplier where 

the design load is given as LTRAIN. TRAINL  is the effect of the design train load (e.g. 

characteristic UIC train load) which is the original load that is incremented during the 

non- linear analysis. TRAINLL  is the mean value of the maximum expected lifetime live 

load (e.g. UIC train load) including dynamic allowance effect expressed as a function of 

the design train load LTRAIN. LFσ  is the standard deviation of 1LF  while LLσ  is the 

standard deviation of the maximum expected live load TRAINLL .  

The mean value of the load factor 1LF  can be calculated using the following 

expression: 

TRAINL
DR

LF
−

=1                                (6) 

where R  is the mean member resistance, D  is the mean dead load effect and TRAINL  is 

as defined above. The nominal value of 1LF  can be obtained using the same equation 

(6) but considering nominal values of R and D instead of the mean values. 

The standard deviation LFσ  of the load factor 1LF  is expressed by: 
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TRAIN

DR
LF L

22 σσ
σ

+
=                              (7) 

where Rσ  is the standard deviation of R and Dσ  is the standard deviation of D.  

Similarly, the system reliability indexes for the functionality, ultimate and damaged 

limit states are defined by:  

22
LLLF

TRAINf
func

LLLF

σσ
β

+

−
=                             (8a) 

22
LLLF

TRAINu
ult

LLLF

σσ
β

+

−
=                             (8b) 

22
LLLF

traind
damage

LLLF

σσ
β

+

−
=                             (8c) 

where fLF  (see Figure 1) is the mean value of the load factor corresponding to the 

functionality limit state. This is the load factor by which the design load has to be 

multiplied to reach the functionality limit state, normally represented by a maximum 

deflection allowance. uLF  (see Figure 1) is the mean value of the load factor 

corresponding to the ultimate limit state and dLF  (see Figure 1) is the mean value of 

the load factor corresponding to the damaged condition limit state.  For this purpose, the 

bridge model is modified to simulate a severe damage scenario. trainLL  is the mean 

value of the maximum expected load (including dynamic allowance effect) 

corresponding to a low return period usually selected to correspond to the period of 

routine inspection. The exposure period is made to coincide with the routine inspection 

period to reflect the fact that severe damage to the bridge would be detected during the 
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inspection and necessary repairs are made at that point. The remaining parameters are 

the same as those of equation (5). 

Because of lack of data on the coefficients of variation (COV’s) associated with 

estimating the capacity of bridge systems, it is herein assumed that the load factors LFu, 

LFf and LFd have the same COV, VLF, as that of the load factor LF1 which can be 

expresses as: 

1LF
V LF

LF

σ
=                                    (9) 

where s LF is as in equation (7) and mean value of LF1 is determined by equation (6).  

Also, the bias factor which relates the mean values to the nominal values of LF u, LFf 

and LFd is assumed to be equal to the bias associated with LF1. The bias factor ?LF can 

be calculated according to the expression: 

1

1

LF
LF

LF =λ                                  (10) 

It is noted that, generally speaking, system reliability analyses will lead to lower 

COV’s when evaluating system uncertainties as compared to ind ividual member 

uncertainties.  This assumes that the system analysis process and the system analysis 

tools and models are highly accurate.  However, in this paper the assumption that the 

COV of the member and the system are equal is made to account for the high level of 

modelling uncertainties associated with the finite element analysis of non- linear bridge 

structures in the as-built conditions.  

The calculation of LF1, LFu, LFf and LFd requires the development of the structural 

model of the railway bridge being assessed and the use of a finite element package that 

can perform a static non-linear analysis of the structure.  The input used for defining the 
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structural model includes the best estimates of material properties, geometry and dead 

loads, identification of the bridge’s most critical members and the identification of the 

loading positions and the most critical loading patterns for the critical members under 

consideration.  

3.3 Method of Sobrino and Casas 

Another simplified procedure for the reliability-based assessment of existing bridges at 

the structural system level was proposed by Sobrino and Casas (1994) and Casas et al. 

(2007). The method, which takes into account the redundancy in bending about the 

longitudinal direction, is most appropriate for continuous bridges. The proposed method 

requires the calculation of the probability of failure of the system (or safety index) and 

compares the calculated value with a target index for the system. The method defines 

the Limit State function g(X) in bending for each critical section i situated over 

intermediate supports or at mid-span as:  

( )e
IQ

e
G

ii
R MMMXg +−= .)( λ                            (11) 

where Mi
R is the ultimate resistance moment of the i-th section of the continuous beam, 

Me
G is the bending moment due to dead loads calculated for the equivalent simply 

supported beam and Me
IQ is the maximum bending moment due to traffic loads 

including impact, calculated also for the equivalent simply supported beam. The 

equivalent simply supported beam is defined as the simply supported beam with span-

length equal to the length of the span where section i is located (see Figure 2).  

In equation (11), ?i is the moment redistribution factor for the i- th section defined as: 
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2
31

.

2 nla
nlanla

i
nlai

M
MM
M

+
+

=λ                            (12) 

where Mi
nla, M1

nla, M3
nla and M2

nla are the bending moments at failure obtained in the 

non- linear analysis for the critical i-th section under consideration and the sections over 

the supports and at mid-span respectively, for the span where i-th section is located (see 

Figure 3). 

Sobrino and Casas (1994) verified that the variability in the mechanical properties 

and geometrical uncertainties do not change the failure mode of common type 

continuous bridge structures. Also, the COV of the moment response for each section 

remains practically constant after yielding. Therefore, because at failure the values of 

Mi
nla, M1

nla, M3
nla and M2

nla will be close to their ultimate values, it can be assumed that 

the COV of these variables is the same as the COV of the corresponding ultimate 

member bending capacity. The latter can be easily obtained for each section by 

simulation taking into consideration the random nature of the basic variables that 

control the bending capacity which are known to be the section’s dimensions, as well as 

the concrete and steel strengths. The mean values of variables the Mi
nla, M1

nla, M3
nla and 

M2
nla can be approximated by executing a non- linear analysis of the bridge members 

using as input the mean values of the basic variables.  

As with the previous method, the procedure to determine the reliability index 

associated with Equation (11) requires the development of a structural model of the 

bridge and the use of a finite element package allowing for the static non- linear analysis 

of structures. The best estimates of material properties, geometry and dead loads are 

used as input.  The analysis requires the identification of the bridge critical sections and 

the identification of the loading position and the most critical loading patterns for the 
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critical section under consideration. Only one non-linear analysis per failure mode or 

critical section is required. 

4 Application example – Brunna Bridge 

4.1 General information 

The Brunna Bridge is a four-span continuous reinforced concrete structure constructed 

in 1969. The bridge has the dimensions, cross section and reinforcing details presented 

in Figures 4 and 5. The values of the most important variables describing the geometry 

and mechanical properties of the bridge are presented in Table 3. The COV’s given in 

the table are collected from the work of various researchers and presented in Casas 

(2007). Other material properties such as the elastic modulus of concrete and the 

concrete tensile strength are considered to be functions of the compression strength of 

concrete as defined in EC2 (2003). All mechanical properties required as FEM input 

that are not presented in the table are taken as defined in EC2 (2003).  

The following loads were considered in the analysis : Gs - Self-weight of the 

structure; Ga - Additional permanent loads; Q - Live load on the railway track (UIC 

train load model) as presented in Table 3 along with the COV of each load.  

The values of railway traffic loads are obtained from the UIC train load model 

considering that the combined effect of the characteristic axle load (250kN) and 

distributed load (80kN/m) corresponds to the 98-th percentile of the PDF of the railway 

load assuming normal distribution. Considering this assumption, the mean value for the 

axle loads and distributed load are calculated to be respectively 207kN and 63.4kN/m. 

The values of the railway traffic load presented in Table 3 are obtained by equally 
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distributing the load to the two beam lines and distributing the concentrated load from 

the axles through the ballast (the distribution length was considered equal to 6.4m). 

The analysis is performed for a single loading scheme which causes the failure of the 

mid-span section of the first span (variable loads are applied on the first and the third 

span). Furthermore, the analysis is performed for two condition states of the bridge. The 

first analysis is carried out for the original bridge where it is assumed that the structure 

is in perfect condition. The second analysis is performed assuming a serious level of 

deterioration where 50% of the bottom reinforcement of the section in the middle of the 

first span is assumed to be corroded and is removed from the model. The situation, 

where only one section of the bridge is subjected to such high level of deterioration 

while other sections remain intact is hypothetical and is only considered to illustrate the 

benefits of the proposed method for the safety assessment of existing bridges in the case 

where the standard member level assessment technique recommended by existing codes 

fails. It also has to be stressed that the corrosion in this example is not considered as a 

stochastic process.  But, for the purpose of illustrating the procedure, it is assumed that 

the corrosion is a cause of damage of the reinforcement and that the extent of this 

damage has been identified with high level of certainty of the same order as the level 

associated with determining the properties of non-deteriorated structural members.  

4.2 Finite element model 

As an approximation, the girder is modelled as two equal and parallel longitudinal 

beams coinciding with the webs. Only one of the beams is analysed assuming that no 

transverse redistribution of loads between the two webs is allowed and that the effect of 

the skew is negligible. Thus, the load is equally distributed to each beam, which ignores 
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the random eccent ricity in the transverse location of the load. Furthermore, the bending 

moments due to dead loads are time invariant and the concrete behaviour throughout the 

design or effective life of the bridge remains as that obtained for the concrete at 28 days.  

The special structural analysis software Plastd90 , which accounts for material non-

linearity of structural steel and concrete, is used for modelling the bridge (Henriques 

1998). The boundary conditions between the main girder and the end piers (A and E of 

Figure 5) are assumed to be pinned supports since the connections were designed to 

only transfer the vertical reactions. Due to the fact that the interior reinforced concrete 

circular columns (B, C and D in Figure 5) were rigidly connected to the superstructure 

and to the footing, the model assumes a rigid frame connection between the columns 

and the longitudinal beams. The connections of the columns to the foundation are 

considered as fixed. 

4.3 Structural analysis 

4.3.1 Linear elastic analysis 

The bending moments for the middle span section (Sect.2) and the sections over the 

piers (Sect.1, Sect.3) of the first span, are listed in Table 4 for each of the loads obtained 

from the linear elastic analysis.  

Table 5 presents the results of the bending moments in the mid-span section (Sect.2) 

obtained for the equivalent simply supported beam, with a length of 13.5 m. The results 

in the first two rows correspond to the bending moments due to the mean values of the 

permanent loads. The last row corresponds to the bending moment due to the mean 

value of the railway traffic load without impact. 
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4.3.2 Non-linear analysis for Ghosn and Moses method 

The load factors for the functionality, LFf, ultimate, LFu, and damaged condition limit 

states, LF d, obtained from the non- linear analysis and using UIC characteristic train load 

model are presented in Table 6. Two major damage scenarios are assumed in this 

example. The first damage scenario consists of the formation of a hinge in the mid-span 

section. The second scenario assumes a hinge in the section over the pier B of the main 

girder (see Figure 5).  

4.3.3 Non-linear analysis for Sobrino and Casas method 

The bending moments prior to the failure of the sections, Sect.2, Sect.1, and Sect.3 of 

the first span are obtained from a non-linear analysis and presented in Table 7. The 

results are obtained considering that all the variables describing structure geometry and 

material behaviour take their mean values (see Table 3). The dead loads and the railway 

traffic loads were also considered at their mean values.  

4.4 Section resistances 

The bending resistance of each of the bridge’s critical sections is obtained from the 

ultimate analysis of reinforced concrete sections. The two previously defined condition 

states are considered, original and the deteriorated. At first, the sectional analyses are 

carried out for the characteristic values of the concrete compressive strength and steel 

yielding strength as defined in Table 3. These results are presented in Table 8. 

Subsequently, simulations using the LHS method were performed, as reported in Casas 

et al. (2007), to obtain the probabilistic resistance model of the sections subjected to 

bending. The results of the simulations sections Sec.2, Sec.1 and Sec.3, for both the 

original and deteriorated conditions are summarized in Table 8. 
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4.5 Safety assessment 

4.5.1 Partial safety factor method 

In order to compare the deterministic standard assessment method with the probabilistic 

methods proposed in this paper, as a first step, the safety of the main girder of the 

Brunna Bridge in bending was checked using the standard partial safety factor method 

and linear elastic analysis. The safety check is performed for the middle span section of 

the first span considering the original and the deteriorated bridge condition. 

For bending, the checking equation with the typical Eurocode load and resistance 

factors can be expressed by: 

QkGakGskRk IMMMM 5.135.135.186.0 ++≥                  (13) 

Using the values of the load effects as presented in Table 4, the moment capacity as 

presented in Table 8 and impact factor as presented in Table 3 the checking equations 

for the original bridge verifies that the safety of the mid-span section of the bridge in its 

original condition is satisfied with a high margin [ ]kNmQM iiR 29924441 ∑ =≥= γφ . 

Performing the same calculation for the deteriorated bridge and taking into account that 

the ultimate capacity of the mid-span section is reduced down to 2742 kNm, the safety 

check is not satisfied since  

[ ]kNmQM iiR 29922358 ∑ =<= γφ . 

Thus, due to damage, the bending capacity of the sections becomes lower than the 

applied design moments and the bridge should be declared as unsafe. The difference 

between the required and available member capacity is quite significant on the order of 

25%. 
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4.5.2 Latin Hypercube Sampling (LHS) method 

To perform the risk analysis using the LHS method, a set of sample values is generated 

for each of the 9 random variables that control the bridge strength listed in Table 3 (i.e. 

without the live loads and impact). A non- linear structural analysis is performed for 

each combination of random variables for a total of 100 simulations. The loads applied 

correspond to the mean live load augmented by the mean impact factor.  The strength 

capacity is thus expressed by the load factor by which the original mean load should be 

multiplied to cause the failure of the system. The means and standard deviations of the 

strength capacities of the original bridge system and the deteriorated bridge system are 

calculated and the histograms from the simulation’s results are approximated by Normal 

distributions.   

The reliability index ß for both the original and deteriorated states are calculated 

using the normal model defined by Equation (4), where the resistance R is modelled by 

the load factor by which the applied mean loads should be multiplied to cause the 

failure of the system. Thus, the mean value of the applied loads S in this case takes unit 

value. The standard deviation of S is considered to be equal to 0.14. This value is the 

effect of the multiplication of the railway load with a COV equal to 10% by the impact 

factor with a COV equal to 50%. Table 9 summarizes the results of the reliability index 

ß for both condition states. 

4.5.3 Response Surface Method (RSM) 

At first, a deterministic analysis is performed considering the mean values of all the 

structure-related independent random variables (9 variables), then 18 analyses are 

performed taking one of the 9 variables at its mean plus or minus 10% while the 

remaining variables are kept at their mean values. The results of the 19 analyses are 
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subsequently fitted in a linear polynomial function using a regression analysis. A first 

estimate of the reliability index ß is calculated using FORM for the limit state function 

defined as the response function obtained in the previous step minus the live load, Q. 

The FORM algorithm also gives the coordinates of the design point for the calculated 

reliability index. The next step follows the same process, however, instead of the central 

(mean) values of the parameters, the coordinates of the design point obtained are used to 

define the linear regression fit. The process is repeated until convergence while the 

perturbation of the values is progressively reduced from 10% to 2.5%. During the 

iterative process special care is taken to ensure that in each iteration the design point 

remains within a reasonable range from the previously estimated value to avoid that the 

algorithm converges to the less important failure modes. 

Equations (14) and (15) show the limit state functions obtained following the iterative 

procedure for the original and deteriorated condition states respectively.  

QGGG

AAf

hhfXg

AtAbS

StSby

sgc

−⋅−⋅−⋅−

+⋅+⋅+⋅+

+⋅+⋅+⋅+−=

0098242475.00092131489.00101214575.0

9844101575.07040553589.00000092929.0

1484513209.05205547862.10000052326.09718007335.3)(

(14) 

QGGG

AAf

hhfXg

AtAbS

StSby

sgc

−⋅−⋅−⋅−

+⋅+⋅+⋅+

+⋅−⋅+⋅+−=

0100000000.00101619433.00050335570.0

2471336042.16819640565.00000147243.0

3725490196.11547095388.10000057766.04776301070.3)(

(15) 

where the variables are defined a shown in Table 3. 

The reliability indices calculated by FORM for the ultimate limit state functions for 

the intact and deteriorated bridge defined by equations (14) and (15) are ß=7.37 and 

ß=6.17 respectively. The reliability indices were calculated assuming all the parameters 

have the values defined in Table 3. However, due to the fact that during the simulations 
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the railway loads were applied as their mean value including impact and later 

incremented (by multiplying the mean load by the load factor) to reach the structure 

failure, the mean value of Q is considered as unity. Furthermore, as already explained, 

the standard deviation of the Q was considered to be equal to 0.14. Similarly, the 

variability in the areas of the different reinforcement layers was considered to be fully 

dependent on the two random variables Asb and Ast (for bottom and top reinforcement 

respectively). Thus, the variability of the reinforcement areas was accounted for by 

multiplying the characteristic area of each layer by a random variable with a mean value 

equal to unity and a COV of 2%.  

4.5.4 Method of Ghosn and Moses 

The analyses necessary to obtain the load factors for functionality LFf, ultimate LF u and 

damaged condition LFd limit states (see Table 6) were performed according to the 

methodology presented in section 3.2. After the determination of the load factors LFi, 

the parameters necessary for the reliability analysis (bias factor and COV) are 

determined by comparing the results of the analysis performed at the mean values of the 

input parameters and the results when the input parameters are taken at their nominal or 

characteristic values.  Thus, the nominal and mean load factors for first member failure 

are obtained from equation (6) considering that: RM , is the section resistance, R; the 

sum of GsM  and GaM  is the dead load effect, D; and QkM , is the effect of design train 

load, LTRAIN. Considering the moment capacity of the section as defined in Table 8 and 

considering the bending moments due to the dead loads and railway traffic load as 

defined in Table 4, the following values are obtained for the original bridge: 92.3LF1 = , 

45.41 =LF . The nominal and mean load factors for the deteriorated bridge are found to 
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be 84.1LF1 =  and 12.2LF1 = . Thus, the bias values for the original bridge and 

deteriorated bridge obtained from Equation (10) are respectively 135.1LF =λ  and 

152.1LF =λ . 

 The COV of the member capacity is obtained from Equations (9) and (7). In the 

analysed example QkM  is the effect of design train load, LTRAIN, and 22
DR σσ +  takes 

the form 222
MGaMGsMR σσσ ++ . Considering the values listed in Table 8, Table 4 and 

Table 3, the COV for the load capacity of the original bridge is obtained as 112.0VLF =  

and for the deteriorated bridge as 125.0VLF = . 

The member reliability index, memberβ , is calculated from Equation (5). The 

calculations are performed considering the mean value of the member capacity and its 

COV as defined above, the mean value of the maximum expected lifetime live load as 

the product of the impact factor (see Table 3) and the live load bias factor (the factor 

equal to 0.82 relating characteristic value of the railway traffic load effects to the mean 

value of the railway traffic load effects as presented in Table 4). The COV for the live 

load with impact is calculated to be equal to 0.14. The calculated values for memberβ for 

the original and deteriorated bridge respectively are presented in Table 10. 

The calculations of the system reliability index for the functionality, ultimate, and 

damaged condition limit state ( funcβ , ultβ  and damageβ ) are performed according to 

Equations (8a), (8b) and (8c).   The system reliability index for the functiona lity limit 

state is defined as the allowable deformation equal to span length/500. The calculated 

values of funcβ , ultβ  and damageβ  for the original and deteriorated bridge respectively are 

listed in Table 10. It is clearly observed that all the system reliability indices are higher 
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than the target values defined in Casas et al. (2007). Thus, the structure can be 

considered to be safe.  

To check the level of inherent redundancy of the bridge, the relative reliability indices 

of equations (3a, 3b and 3c) for the original bridge are calculated to be: 79.0=∆ ultβ ; 

01.0−=∆ funcβ ; 24.3−=∆ damageβ  and for the deteriorated bridge: 05.2=∆ ultβ , 

55.1=∆ funcβ ; 79.1−=∆ damageβ . Comparing the relative reliability indices with the 

target values defined in Table 1 it is concluded, that the bridge in its original condition 

is not sufficiently redundant. Nevertheless, the bridge is still considered to be safe due 

to the fact that the member safety is high. For the deteriorated condition the redundancy 

is already sufficiently high allowing us to consider the bridge safe even though the 

member safety is violated. 

Comparing the values of the reliability indices for the ultimate limit state calculated 

above (ß=7.40 and ß=5.69 for the original bridge and deteriorated bridge respectively) 

with the values of the reliability indices obtained with the LHS method (ß=9.65 and 

ß=6.48 for the original bridge and deteriorated bridge) or those of the RSM (ß=7.37 and 

ß=6.17) it can be concluded that the presented method is sufficiently accurate for 

practical applications. 

4.5.5 Method of Sobrino and Casas 

According to the procedure presented in section 3.3 the limit state function g(X)  is 

defined according to equation (11) and (12) considering that the i- th section in the 

analysed example is a middle span section (sect. 2) of the first span of the bridge. 

Furthermore, in the analysed example Me
G is the sum of the self weight and additional 
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dead load effects Me
Gs and Me

Ga defined in Table 5. However, Me
IQ is the product of the 

static live load moment Me
Q , defined in Table 5, and the impact factor I.  

The reliability analysis is executed using FORM. The distribution types and statistical 

parameters of the impact factor I are provided in Table 3. The mean value of Me
Gs, Me

Ga 

and Me
Q are presented in Table 5. The distribution types and COV’s of Me

Gs, Me
Ga and 

Me
Q are considered equal to those of the corresponding loads (see Table 3). The 

statistical definition of M2
R is provided in Table 8. The mean values of M1

nla, M3
nla and 

M2
nla are presented in Table 7. Their distribution types are assumed to be normal and the 

COV’s are taken equal to the COV’s of the moment capacity of the corresponding 

sections presented in Table 8. 

For the defined limit state function, the reliability indices obtained using FORM are 

found to be ß=6.61 and ß=4.67 for original bridge and deteriorated bridge respectively. 

The FORM analyses were performed assuming statistical independence between all the 

variables. When M2
nla and M2

R are assumed to be correlated, the reliability index 

increases to ß=7.16 and ß=9.21 for the correlation coefficients C=0.5 and C=0.99 

respectively when analysing the original bridge. When analysing the deteriorated 

bridge, the reliability index increases to the values ß=5.28 and ß=6.84 for the correlation 

coefficients C=0.5 and C=0.99 respectively. The effect of the statistical correlation 

between these two variables was studied due to the significant likelihood of their mutual 

dependency since they essentially represent the moments at the same section. 

Due to the fact that the calculated values of the reliability index ß are higher than the 

target values defined in Casas et al. (2007), the structure can be rated as safe. 

Comparing the calculated reliability indices with the values obtained from the LHS 

method (ß=9.65 and ß=6.48 for the original bridge and deteriorated bridge) or from the 
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RSM (ß=7.37 and ß=6.17) it can be concluded that this method is also sufficiently 

accurate for practical purposes. 

4.6 Analysis of results 

The safety assessment of this bridge performed using the simplified methods of Ghosn 

and Moses and Sobrino and Casas as well as the LHS and RSM advanced probabilistic 

non- linear analyses shows that the Brunna Bridge is sufficiently safe (see Table 11).  

This is found to be true for both the original (as constructed) and the deteriorated 

conditions.   The latter assumes that 50% of the mid-span reinforcement has corroded 

which would have meant that the bridge would have failed the standard safety check 

using code-specified partial safety factors and linear elastic analysis. 

The results in Table 11 show that the reliability index values obtained from the RSM 

and LHS are somewhat different. This lack of conformity can be explained by the fact, 

that the LHS is not sufficiently accurate for such high reliability levels. In the case of 

LHS, the reliability index is calculated based on the results of sampling performed in 

the region relatively close to the mean values of all the variables. However, for high 

reliability levels such as those observed in this analysis, the design point (failure region) 

is located far away from the region of mean values and the sampling performed there 

may not describe the failure region appropriately.  

In the case of the RSM used in this study, sampling is performed iteratively close to 

the design point (failure region). Due to the iterative procedure, the polynomial function 

determined by the regression analysis gives a fairly accurate representation of the 

tangent to the failure surface near the most likely failure point and the reliability index 

obtained by means of this method is more exact. It is noted however, that the ana lysis 
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performed using the RSM was designed to concentrate on the ultimate moment capacity 

and ignored other numerically possible failure modes. In the case of the deteriorated 

bridge, the reliability level is significantly lower than that of the original bridge and the 

reliability indexes obtained by the LHS and RSM for the deteriorated bridge are closer 

to each other than those of the original intact bridge. 

The reliability index values calculated using the simplified method of Ghosn and 

Moses are generally lower than those obtained from the more advanced methods (except 

for the results obtained by RSM for the original bridge where the results are very close). 

This is because the simplified method of Ghosn and Moses implicitly assumes full 

correlation between all the members’ strengths and that the COV’s for the system limit 

states are equal to the COV of the most critical member.  On the other hand, although 

the fully probabilistic non- linear analysis approaches (RSM and LHS) lead to some 

level of correlation between the member strengths since the basic parameters that 

control each member’s strength are the same (see Table 3), the various sizes, shapes and 

reinforcing details of each member would lead to slightly lower correlations in the 

member strengths, leading to slightly higher overall system reliability levels. 

Furthermore, the simplified reliability analysis of Ghosn and Moses assumes that the 

overall COV is the same as that of the most critical member.  This assumption would 

lead to a higher overall COV than that obtained from the full probabilistic non-linear 

system analysis.  The justification for using the higher COV in the Ghosn and Moses 

method is that the uncertainties in the modelling of the non- linear system effects must 

be at least as high as those for the modelling of the individual member effects.  It is well 

known that the non- linear finite element analysis of structural systems is not exactly 

accurate due to difficulties in modelling the material behaviour at high loads as well as 
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the variations in the bridge boundary cond itions and secondary member effects.  Thus, 

the method of Ghosn and Moses is generally more conservative than the more exact 

simulation methods when the latter do not explicitly consider the modelling 

uncertainties associated with the reliability analysis of the structural system.  

In the case of the Sobrino and Casas method, the reliability index calculated assuming 

no correlation between the bending moment at failure in the mid-span section M2
nla and 

moment capacity of the mid-span section M2
R, is significantly lower than that obtained 

from the more advanced methods. When assuming partial correlation between these two 

parameters the reliability index obtained is closer to the exact values. It is herein 

recommended to include, a partial correlation between the  bending moment at failure in 

the mid-span section M2
nla and the moment capacity of the mid-span section M2

R since 

the response of the same section at ultimate and the response very close to ultimate are 

expected to be correlated. 

5 Conclusions  

Two methodologies for the safety assessment of railway bridge systems are presented 

based on simplified probabilistic non- linear analysis procedures.  The detailed safety 

analysis of a typical railway bridge demonstrate that despite the simplifying 

assumptions, the proposed methods are still sufficiently accurate when compared to the 

results of full probabilistic non- linear analysis procedures. The combination of accuracy 

and simplicity would make these proposed methods more likely to be used by 

engineering practitioners for the safety assessment of existing railway bridges. 

Furthermore, the analysis of an example bridge shows how a bridge that would have 

been rated as deficient using traditional member safety analysis methods may in 
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actuality have sufficiently high reliability levels to eliminate the need for its 

replacement or rehabilitation.  
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Table 1: Target values of relative reliability indices. 

Relative reliability indices - target values 
Bridge part 

? ßult ? ßfunc ? ßdamage 
Superstructure +0.85 +0.25 -2.70 
Substructure +0.50 +0.50 -2.00 

 
 
Table 2: Target reliability indices related to 1 year reference period and ultimate limit states (JCSS 2001b). 

Consequences of failure 
Relative cost of safety measure 

Minor Moderate Large 
Large (A) 3.1 3.3 3.7 

Normal (B) 3.7 4.2 4.4 
Small (C) 4.2 4.4 4.7 

 
 

Table 3: Random variables considered in the analysis  

Random variable 
Symb

ol 
Unit 

Char. 
value 

Mean 
value 

COV PDF 

Concrete compressive strength fc MPa 28.00 34.00 0.15 normal 
Reinforcement yield strength fy MPa 400.00 454.00 0.10 normal 

Height of the girder hg m 1.50 1.50 0.02 normal 
Height of the slab hs m 0.40 0.40 0.07 normal 

Top Reinforcement area ASt m nominal nominal 0.02 normal 
Bottom Reinforcement area ASb m nominal nominal 0.02 normal 
Self weight of the structure GS kN/m 47.53 47.53 0.08 normal 

Additional dead loads (ballast) GAb kN/m 19.07 19.07 0.10 normal 
Additional dead loads (track) GAt kN/m 2.00 2.00 0.10 normal 
Railway traffic load (conc.) Qc kN/m 78.13 64.69 0.10 normal 
Railway traffic load (distr.) Qd kN/m 40.00 31.70 0.10 normal 

Impact factor I - 1.25 1.25 0.50 normal 
 
 

Table 4: Bending moments in the critical sections of the first span (13.5 m). 
Bending moment 

Load Symbol Unit 
Sect.1 Sect.2 Sect.3 

Self weight of the structure MGsk kNm -481.19 415.60 -853.10 
Additional dead loads MGak kNm -213.35 184.24 -378.25 
Railway traffic load MQk kNm 0 1163.58 -705.72 

Railway traffic load (mean) MQk kNm 0 955.89 -579.91 
 
 

Table 5: Bending moments in the equivalent simple supported beam (13.5 m). 

Load Symbol Unit 
Bending moment – Sect. 

2 
Self weight of the structure (mean) Me

Gs kNm 1082.75 
Additional dead loads (mean) Me

Ga kNm 480.04 
Railway traffic load (mean) Me

Q kNm 1245.85 
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Table 6: Load factors for functionality, ultimate and damaged condition limit state. 
Load Factor 

Condition state Symbol Unit 
LFf LFu LFd

 a 
Original bridge LF - 3.93 5.80 1.66 (2.00) 

Deteriorated bridge LF - 2.85 3.43 1.66 (1.26) 
a The first value corresponds to the situation where a hinge is assumed in the mid-span section. The second value (in 
parenthesis) corresponds to the situation where a hinge is assumed over pier B. 
 
 

Table 7: Bending moments in the critical sections of the first span (13.5 m). 
Bending moment 

Condition state Symbol Unit 
Sect.1 Sect.2 Sect.3 

Original bridge Mnla kNm -639.76 5751.30 -8073.67 
Deteriorated bridge Mnla kNm -657.30 3010.65 -6321.26 

 
 

Table 8: Probabilistic ultimate response of critical sections 

Section Symbol Unit 
Char. 
Value 

Mean 
value 

COV PDF 

Section over the pier A M1
R kNm  2228 0.10 normal 

Mid-span section (original) M2
R kNm 5164 5772 0.10 normal 

Mid-span section (deteriorated) M2
R kNm 2742 3063 0.10 normal 

Section over the pier B M3
R kNm  8606 0.10 normal 

 
 

Table 9: Calculation of the reliability index 
Resistance R Action S Safety margin R-S Condition 

state Mean St. Dev. Mean St. Dev. Mean St. Dev. 
Reliability 

index ß 
Original 5.576 0.453 1 0.14 4.576 0.474 9.65 

Deteriorated 3.286 0.324 1 0.14 2.286 0.353 6.48 
 
 

Table 10: Reliability indices in Ghosn and Moses method. 
Reliability indices 

Condition state 
ßmember ßfunc ßult ßdamage 

Original bridge 6.61 6.60 7.40 3.37 
Deteriorated bridge 3.64 5.19 5.69 1.85 

 
 

Table 11: Results of the assessment of the Brunna Bridge 
Result of the safety assessment  

Safety format 
Original bridge Deteriorated bridge 

Partial safety factor method safe unsafe 
Member 

Mean Load Method ß = 6.61 ß = 3.64 
Method of Sobrino and Casas ß=6.61 (7.16;9.21)a ß=4.67 (5.28;6.84)a 
Method of Ghosn and Moses  ß = 7.40 ß = 5.69 

Latin Hypercube method (LHS) ß = 9.65 ß = 6.48 
System 

Response Surface method (RSM) ß = 7.37 ß = 6.17 
a Values in brackets were obtained considering correlations between M2

nla and u M 2
R C=0.5 and C=0.99 respectively. 
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Figure 1. Load factor versus deflection curves obtained due to non-linear analysis for original structure 

and for the structure with some hypothetical damage. 

 

Figure 2. Bending moments in the equivalent simple supported beam obtained due to linear analysis. 

 

Figure 3. Bending moments at the failure state obtained due to non-linear analysis. 

 

Figure 4. Brunna Bridge – Cross Section. 

 

Figure 5. Brunna Bridge – Outline of the longitudinal reinforcement (values in parenthesis are vertical 

location of reinforcement measured from the bottom of the girder). 
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Figure 1. Load factor versus deflection curves obtained due to non-linear analysis for original structure 

and for the structure with some hypothetical damage. 
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Figure 2. Bending moments in the equivalent simple supported beam obtained due to linear analysis. 
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Figure 3. Bending moments at the failure state obtained due to non-linear analysis. 
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Figure 4. Brunna Bridge – Cross Section. 

4.50 13.50 15.00 13.00 11.00 1.50

5Ø25 + 5Ø16 (0.05)
4Ø25 (0.05)
1Ø25 (0.10)

3Ø25 (0.05)
2Ø25 (0.10)
2Ø25 (0.10)
3Ø25 (0.10)

2Ø25 (0.10)
2Ø25 (0.10)

3Ø25 (0.05)
2Ø25 (0.10)

3Ø25 (0.05)
1Ø25 (0.05)

2Ø25 (0.05)
3Ø25 (0.05)

3Ø25 (0.10)
2Ø25 (0.10)
2Ø25 (0.10)

2Ø25 (0.05)
3Ø25 (0.05)

2Ø25 (0.10)
2Ø25 (0.10)

5Ø25 + 5Ø16 (0.05) 5Ø25 + 5Ø16 (0.05) 5Ø25 + 5 Ø16 (0.05)

3Ø25 (1.40)
4Ø25 (1.30)
2Ø25 (1.35)
3Ø25 (1.40)
3Ø25 (1.40)
2Ø25 (1.45)

2Ø25 (1.35)

2Ø25 (1.30)
3Ø25 (1.45)

5Ø25 (1.45)5Ø25 (1.45)
2Ø25 (1.45)
2Ø25 (1.45)

5Ø25 (1.45)
3Ø25 (1.30)
2Ø25 (1.35)
5Ø25 (1.40)
5Ø25 (1.45)
4Ø25 (1.40) 1Ø25 (1.40)

3Ø25 (1.45)
2Ø25 (1.40)
2Ø25 (1.40)
3Ø25 (1.35)
5Ø25 (1.45)

4Ø25 (1.40)
2Ø25 (1.45)

24
Ø

25

24
Ø

25 24
Ø

25
12

Ø
25

12
Ø

25

12
Ø

25

A B C D E  

Figure 5. Brunna Bridge – Outline of the longitudinal reinforcement (values in parenthesis are vertical 

location of reinforcement measured from the bottom of the girder). 


