

Parc Mediterrani de la Tecnologia Edifici ESAB Avinguda del Canal Olímpic 15 08860 Castelldefels

Analytical Hierarchy Process Versus The Choice Experiments: A Stated Preference Analysis

Zein KALLAS; Fatima LAMBARRAA & José M. GIL

Polytechnic University of Catalonia

Center for Agro-food Economy and Development - UPC - IRTA (CREDA)

Outline

1. INTRODUCTION	
2. OBJECTIVE	
3. METHODOLOGY	
4. EMPIRICAL APLICATION	
5. RESULTS	
6. CONCLUSIONS	

1. INTRODUCTION

- Within the range of methods that analyze individuals' preference for "complex goods and services", several alternative are available.
- Choice Experiment (CE) is one of the most recently used in exploration of consumers' preferences (Carlsson et al., 2007; Alfens, 2004; Burton and Pearse, 2002 and Burton et al., 2001).
- ♣ The CE has demonstrated its capacity to simulate the "purchasing" stated preferences, since consumers are asked in an hypothetical market; which product they would "buy" among competing products at different prices.

1. INTRODUCTION

- The Analytical Hierarchy Process (AHP) has also been used as a suitable method to asses individuals' preferences for "complex goods and services" (Sedef et al., 2007; Scholz and Decker, 2007; Parra et al., 2005; Scholl et al., 2005 and Ramanathan and Ganesh, 1994).
- The AHP allow for seeking the "theoretical" stated preferences, since consumers are asked to state their preferred attributes and levels of the analyzed products in a pair-wise comparison following a structured hierarchy.

1. INTRODUCTION

- A key question is to know if asking consumers "what they prefer" using AHP or what "they would they buy" using CE could lead to different results.
- Several studies have compared individuals' preferences using the AHP and the Conjoint Analysis (Malvinas, et al. 2005; Scholz et al., 2005 and Meißner, et al. 2007) and the Case-Based ranking method (Perini, 2009). However, up to date there are no works that try to compare empirical results of the AHP and the CE.

2. OBJETIVE

- To assess the differences between the "purchasing" and "theoretical" stated preferences using the CE and the AHP respectively.
- To know if asking consumers "what they prefer" using AHP or what "they would they buy" using CE could lead to different preferences results.

3. METHODOLOGY: 3.1. The Choice Experiment

- The CE is based on the characterization of the analyzed product through a series of attributes (which one is a monetary attributes).
- The combination of attributes' levels allow to create hypothetical scenarios or product that will be evaluated by subjects.
- Scenarios are presented following "orthogonal designs" in order to form a "choice sets".
- Respondent are asked to chose between the hypothetical products in each Choice Set.

3. METHODOLOGY: 3.1. The Choice Experiment

- The conceptual foundations of CE rely on two main theories:
 - a) <u>Lancaster's Theory of Value</u> (Lancaster, 1966), which proposes that utilities for goods can be decomposed into separable utilities for their characteristics or attributes, and
 - b) Random Utility Theory (Thurstone, 1927), which explains the dominance judgments made between pairs of offerings.
- Based on this theoretical framework, subjects choose among alternatives according to a utility function.

10th ISAHP 2009, Pittsburgh

3. METHODOLOGY: 3.1. The Choice Experiment

Utility of the hypothetical scenarios $U_{in} = V_{in} (Z_i . S_n) + \varepsilon_{in}$

- \bullet U_{in} : utility provided by alternative *i* to subject *n*.
- V_{in} is the systematic component of the utility.
- \triangleright Z_i is a vectors of attributes of alternative i.
- \circ S_n socio-economic characteristics of respondent n. ε_{in} : random term.
- Probability that an individual n choose the scenario i (P_{in}):
- Conditional Logit Model (McFadden . 1974):

$$P_{in} = \frac{e^{\mu V_{in}}}{\sum_{j=1}^{J} e^{\mu V_{jn}}}$$

10th ISAHP 2009, Pittsburgh

3. METHODOLOGY: 3.1. The Choice Experiment

$$V_{in} = ASC + \sum_{k} \beta_{k} X_{ki}$$

ASC =Alternative Specific Constant, representing the utility of the fixed comparator

i = 1...I, representing the selected alternative i within the choice sets

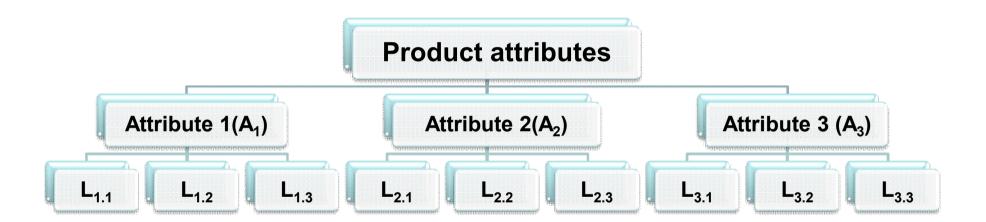
k = 1...K, representing the attributes;

 β = model parameter of attribute k;

 X_{ki} = value of attribute k in alternative l;

IMPLICIT PRICE OF ATTRIBUTE

$$IP_{attribute} = -\left(\frac{eta_{attribute}}{eta_{monetary_attribute}}\right)$$



3. METHODOLOGY: 3.2. The Analytical Hierarchy Process

Hierarchical structure used to value product attributes and levels:

The relative importance or weights (w) of attributes (A_n) and levels ($L_{n,p}$), where; n (1, ..., N) is the number of attributes and p (=1, ..., P) is the number of levels, are obtained from a pair-wise comparisons.

3. METHODOLOGY: 3.2. The Analytical Hierarchy Process

Hierarchical structure used to value product attributes and levels:

$$A_{k} = \begin{bmatrix} a_{11k} & a_{12k} & \dots & a_{1nk} \\ a_{21k} & a_{22k} & \dots & a_{2nk} \\ \dots & \dots & a_{ijk} & \dots \\ a_{n1k} & a_{n2k} & \dots & a_{nnk} \end{bmatrix}$$

Weights assigned by subject to each attribute and levels are obtained using the following expression.

$$w_{ik} = \sqrt[N,P]{\prod_{i=1}^{i=N,P} a_{ijk}}$$

3. METHODOLOGY: 3.2. The Analytical Hierarchy Process

For aggregating individual weights (w_{ik}) in a social collective decision-making context is that of the geometric mean:

$$w_i = \sqrt[K]{\prod_{k=1}^{k=K} w_{ik}}$$

To obtain weights' order for levels we calculate a global weight obtained by multiplying aggregated levels' weights (w_i) for each levels $L_{n.p}$) with its corresponding weight (w_i) of attribute (A_n) as mentioned by Malvinas *et al.* (2005).

$$W_{G Ln.p} = W_{An} \times W_{Ln.p}$$

4. EMPIRICAL APPLICATION

- Analyze the stated preferences of restaurateurs for including rabbit meat in their menus.
- Realize an **EXPLORATORY STUDY** of preferences comparison.
- Face to face questionnaires realized in December 2008 for 50 restaurateurs.

4. EMPIRICAL APPLICATION:

Attributes and levels

- We relied on prior research performed on rabbit meat preference (Hoffman, et al., 2004).
- Subsequently discussed in a focus groups.
- A pilot questionnaire was applied.

Format	(A_2)	Pieced	$L_{2.2}$ *
		Boneless	$\mathbf{L_{2.3}}$
		Quality brand	L _{3.1*}
Brand	(A_3)	Commercial brand	$L_{3.2}$
		Unbranded	$L_{3.3}$
		5.50 €	$L_{4.1*}$
Price	(A_4)	6.00 €	$\mathbf{L_{4.2}}$
		6.50 €	$\mathbf{L_{4.3}}$

4. EMPIRICAL APPLICATION:

4.1. Experimental Design, CE

- From a full factorial design we obtain (3⁴× 3⁴)= 6,561 possible combinations.
- Following a main effect Orthogonal fractional factorial design: 9 choice set.

CHOICE SI	ET#1	Pro	duct "	A"	Pro	duct	"B"	Opt_o	out
Origin (A ₁)	Spain	C	atalo	nia		Spa	in		
Format (A ₂)		F	Bonele	ess		Enti	re	NI a 241a	
Brand (A ₃)	CO STANCE OF THE PARTY OF THE P	Uı	nbran	ded	Qua	ality	brand	Neith	er
Price (A ₄)	50		6.50	€		5.50	€		
Supposing these options ones available, which w	•								

4. EMPIRICAL APPLICATION:

4.2. AHP application

- The same attributes were used.
- An example of the application the AHP questionnaire.

			Or	igin								Bra	nd			
9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
Unbranded								Qu	ality	bran	ıd					
9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
			Bon	eles	S							Ent	ire			
9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
			Cata	aloni	a							Spa	iin			
9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9

Coefficients magnitude imply relative importance of levels.

Variables	Coefficients.	Standard error	p-value
ASC_Opt out	-7.1591	1.0677	0.0000
Spain	0.0714	0.0980	0.4662
Catalonia	0.7964	0.1006	0.0000

Overall, the model is highly significant and shows a good fit when comparing the log likelihood at zero and at convergence

Commercial broad	-0.0992/ / \0.1037	
Commercial pramu	-U.U33Z/ / \U.1U3/ U.3300	
	\circ \circ	
Drice	-1.1405 / 0.1730 0.0000	
Price	-1.1405 / U.1730 U.0000	
	7	

Summary statistics

No. of observations 450	
8888 N (
Log-Likelihood (0) -481.06	547 Log-Likelihood (t) -410.8064
· · · · · · · · · · · · · · · · · · ·	
Log-Likelihood ratio 140.51	6(0.030) p ² (pseudo R ²) 0.15

As the coefficient, they gives us the attributes ranking.

	Attributes	IP (€/kg)	95% C.I.
	IP _{L1.1} : Catalonia	0.698	(0.506 ;1.008)
Origin	IP _{L1.2} : Spain	/-0.063	(-0.213 ; 0.083)
(A ₁)	IP _{L1.3} : Foreign	-0.636	(-0.958 ; -0.404)
	IP _{L2.1} : Entire	0.243	(0.097; 0.419)
Format (A₂)	IP _{L2.2} : Pieced	0.110	(-0.036 ; 0.273)
	IP _{L2.3} : Boneless	-0.352	(-0.624 ; -0.134)
	IP _{L3.1} : Quality brand	0.086	(-0.053 ; 0.239)
Brand (A ₃)	IP _{L3.2} : Commercial brand	-0.087	(-0.244 ; 0.056)
t3/	IP _{L3.3} : Unbranded	0.001	(-0.194 ; 0.223)

UPC

5. RESULTS 5.3. Results of AHP

	Origin	Format	Brand
Aggregated weight (Geometric mean)	0.312	0.491	0.197
Arithmetic mean	0.323	0.485	0.192
Trimmed mean*	0.392	0.418	0.190
Variance	0.054	0.057	0.017

These results suggest that the "Format" attributes is the most important with an aggregate weight of 49.1%. Origin attribute occupies the second positions with aggregate weights of 31.2%. In the last position we found the brand" attribute with an aggregate weight of 19.7%.

The lowest weight is for the "foreign" origin (4.0%) followed by "unbranded" product (4.3%). (16.8%). W_{L2.1} $W_{L2.3}$ $W_{L1.3}$ $W_{L1.1}$ $W_{L1.2}$ $W_{L2.2}$ $W_{L3.1}$ $W_{L3.2}$ $W_{L3.3}$ 0.343 0.608 0.265 0.127 0.172 0.545 0.235 0.220 w_{L34} : Quality brand $w_{L1.1}$: Catalonia (regional) $w_{i,2/2}$: Entire

 $W_{L1.2}$: Spain (national)

w_{L1.3}: Foreign (international)

w_{2,2}: Pieced

W_{L2.3}: Boneless

 $w_{L3.2}$: Commercial brand

 $W_{L3.3}$: Without brand

W_{L1.1}

×
W_{A1}

=
W_{G_L1.1}

0.190

W_{L1.2}

×
W_{A1}

=
W_{G_L1.2}

0.083

W_{L1.2}

×
W_{A1}

=
W_{G_L1.2}
0.083

W_{L1.3}

×
W_{A1}

=
0.040

) | '

W_{L2.1}

×
W_{A2}

▼
G_L2.1

0.238

W_{L2.2}

W_{L2.3}

W_{A2}

=
W_{G_L2.2}

0.168

W_{L2.3}

W_{L2.3}

W_{A2}

=
W_{G_L2.3}

0.084

W_{L3.1}

x
W_{A3}

=
W_{G_L3.1}
0.107

W_{L3.3}

×
W_{A3}

W_{O_L3.3}

0.043

For the remaining levels, there is a small difference in the ranking between the "entire" and "Catalonian" levels

levels.

AHP results (Theoretical stated pro-	eference)		CE result (Purchasing stated)	
Levels	$W_{G_I_{\mathrm{n.p}}}$	Relative importance	Levels	IP
w _{G_L2.1} ; Entire	0.2384	1	IP _{L1.1} : Catalonia	0.6983
w _{G_L1.1} : Catalonia	0.1899	3,	IP _{L2.1} : Entire	0.2428
w _{G_L2.2} : Pieced	0.1682	3	IP _{L2.2} : Pieced	0.1094
w _{G_L3.1} : Quality brand	0.1072	4	IP _{L3.1} : Quality brand	0.0865
$W_{G_{-}L2.3}$: Boneless	0.0844	5	IP _{L3.3} : Unlabeled	0.0005
w _{G_L1.2} : Spain	0.0827	6	IP _{L1.2} : Spain	-0.0626
w _{G_L3.2} : Commercial brand	0.0462	7	IP _{L3.2} : Commercial brand	-0.0870
w _{G_L3.3} : Unbranded	0.0433	8	IP _{L2.3} : Boneless	-0.3521
w _{G_L1.3} : Foreign	0.0397	9	IP _{L1.3} : Foreign	-0.6357

6. CONCLUSIONS

- Results demonstrate that there is a 55.6 % of coincidence in the ranking of attributes and levels between the AHP and CE results.
- While the AHP allow for preference scores at individual level, the CE does not.
- The task of a pair wise comparison of attributes and levels seem to be easier than comparing two or more complex goods as is the case of the CE.
- More efforts are needed to investigate with more details the source of difference in results, taking into consideration the exploratory characteristics of our study.