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C. Mineŕıa 1, Esc C, 1o-3a

08038 Barcelona, Spain
E-mail: maria.isabel.garcia@upc.edu

Abstract:- We consider triples of matrices (E,A, B), representing singular linear time invariant
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1 Introduction

We denote by Mr×s(C) the space of com-
plex matrices having r rows and s columns,
and in the case which r = s we write Mr(C).

We consider the set M of triples of matri-
ces (E,A, B) representing families of general-
ized linear time invariant systems in the form
Eẋ(t) = Ax(t)+Bu(t), with E, A ∈ Mp×n(C),
B ∈ Mn×m(C), (n,m, p > 0).

The concept of structural stability, in
the qualitative theory of dynamical sys-
tems (structurally stable elements being those
whose behavior does not change when apply-
ing small perturbations) has been widely stud-
ied by several authors in control theory (see
[6], [7], for example).

The Arnold’s techniques of versal defor-
mations [1], provide a special parametrization
of matrix spaces, which can be effectively ap-
plied to perturbation an structural stability
analysis.

2 Background and notation

In this paper we will use the following no-
tations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its re-
duced form N = diag(N1, . . . , N`), Ni =(

0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J =
diag(J1, . . . , Jt), Ji = diag(Ji1 , . . . , Jis), Jij =
λiI + N ,
- L = diag = (L1, . . . , Lq), Lj =

(
Inj 0

) ∈
Mnj×(nj+1)(C),

- R = diag(R1, . . . , Rp), Rnj =
(
0 Inj

) ∈
Mnj×(nj+1)(C).

In the sequel we identify triples of ma-
trices (E, A, B) with rectangular matrices(
E A B

)
in order to use matrix expressions.
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3 Equivalence relation

The standard transformations in state
and input spaces x(t) = Px1(t), u(t) =
Ru1(t) premultiplication by an invertible ma-
trix QEẋ(t) = QAx(t)+Qu(t), as well as feed-
back u(t) = u1(t)−V x(t) and derivative feed-
back u(t) = u1(t) − Uẋ(t), realized over gen-
eralized systems relate them in the following
manner, two systems are related when one can
be obtained from the other by means of one,
or more, of the transformations considered.
In fact, this transformations define an equiv-
alence relation in the corresponding space of
triples of matrices in the following manner.

Definition 1 Let (Ei, Ai, Bi), i = 1, 2
be two triples in M. Then, (E1, A1, B1) is
equivalent to (E2, A2, B2) if and only if there
exist invertible matrices Q ∈ Gl(p; C), P ∈
Gl(n;C), R ∈ Gl(m; C), and matrices U, V ∈
Mm×n(C), such that

(
E2 A2 B2

)
=

Q
(
E1 A1 B1

)



P 0 0
0 P 0
U V R


 .

(1)

It is easy to check that this relation is an
equivalence relation.

Theorem 1 ([5]) Let (E, A,B) be a
triple. Then, it is equivalent to

((
E1

SE

)
,

(
A1

SA

)
,

(
B1

0

))
, (2)

where (E1, A1, B1) is a regular triple in its
Kronecker reduced form (see [3]), concretely

(E1, A1, B1) =





I1

I2

N2


 ,




N1

J
I3


 ,




B1

0
0







The triple (I1, N1, B1), is a controllable sys-
tem in its Kronecker reduced form, (I2, J, 0)
corresponds to the finite zeros of the triple
and J in its Jordan reduced form, (N2, I3, 0)

corresponds to the infinite zeros of the triple
and N2 in its Jordan reduced form. The triple
(SE , SA, 0) is the strictly singular part of the
system in its Kronecker reduced form:

((
L1

Lt
2

)
,

(
R1

Rt
2

)
,

(
0
0

))

A complete system of invariants to obtain
the canonical reduced form can be fond in [5].

Remark 1 Controllable blocks in con-
trollable part of the system are obtained join-
ing one block L of size one with one among of
the blocks L of biggest size in the correspond-
ing associate pencil λ

(
E B 0

)
+

(
A 0 B

)
,

(see [5]).
Equivalence relation given in definition (1)

may be seen as induced by the action of
the Lie group G = {(Q,P,R, U, V ) | Q ∈
Gl(p; C), P ∈ Gl(n; C), R ∈ Gl(m;C), U, V ∈
Mm×n(C)}. Using short notations g =
(Q,P, R,U, V ) ∈ G and x = (E,A, B) ∈ M,
we define multiplication in G, action of the
group G, and equivalence condition (1) as fol-
lows

g1g2 =

(Q2Q1, P1P2, R1R2, U1P2 + R1U2, V1P2 + R1V2),

g ◦ x = Q
(
E1 A1 B1

)



P 0 0
0 P 0
U V R


 ,

x2 = g ◦ x1.
(3)

Multiplication in the group corresponds to
successive equivalence transformations: g2 ◦
(g1 ◦ x) = (g1g2) ◦ x. Unit element of G has
the form e = (Ip, In, Im, 0, 0), where Ip, In and
Im are the identity matrices.

Let us fix a triple x0 = (E0, A0, B0) ∈ M
and define the mapping

αx0(g) = g ◦ x0. (4)

The equivalence class of the triple x0 under
equivalence relation considered coincides with
the equivalence class of the triple with respect
to the action of G; that is, the equivalence
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class is the range of the function αx0 and it is
called the orbit of x0 and denoted by

O(x0) = Imαx0 = {g ◦ x0 | g ∈ G}. (5)

The stabilizer of x0 under the G-action is a
null-space of the function αx0 − x0. We de-
note it by

S(x0)=Ker (αx0 − x0)={g ∈ G | g ◦ x0 = x0}.
(6)

The mapping αx0 is differentiable, and O(x0)
and S(x0) are smooth submanifolds of M and
G respectively.

Let us use the notation TeG for a tan-
gent space to the manifold G at the unit
element e. Since G is an open subset of
Mn(C)×Mm(C)×Mm×n(C)×Mm×n(C), we
have

TeG=Mp(C)×Mn(C)×Mm(C)× (Mm×n(C))2

and, since M is a linear space,

Tx0M = M.

The Euclidean scalar products in the spaces
M and TeG considered in this paper are de-
fined as follows

〈x1, x2〉1 = tr(E1E
∗
2 ) + tr(A1A

∗
2) + tr(B1B

∗
2),

where xi = (Ei, Ai, Bi) ∈M,

〈y1, y2〉2=
tr(Q1Q

∗
2) + tr(P1P

∗
2 ) + tr(R1R

∗
2)+

tr(U1U
∗
2 ) + tr(V1V

∗
2 ),

where yi = (Qi, Pi, Ri, Ui, Vi) ∈ TeG,
(7)

Matrix A∗ denotes the conjugate transpose of
a matrix A and tr the trace of the matrix.

Let dαx0 : TeG −→ M be the differential
of αx0 at the unit element e. Using expressions
(3) and (4), we find,

dαx0(y) = (X, Y, Z) ∈M, , with
X = E0P + QE0 + B0U,
Y = A0P + QA0 + B0V,
Z = B0R + QB0)
y = (Q, P, R,U, V ) ∈ TeG.

(8)

The adjoint linear mapping dα∗x0
: M −→

TeG is defined by the relation

〈dαx0(y), z〉1 = 〈y, dα∗x0
(z)〉2, y ∈ TeG, z ∈M.

(9)

The mappings dαx0 and dα∗x0
provide

a simple description of the tangent spaces
Tx0O(x0), TeS(x0) and their normal comple-
ments (Tx0O(x0))⊥, (TeS(x0))⊥.

Theorem 2 The tangent spaces to the
orbit and stabilizer of the triple of matrices x0

and the corresponding normal complementary
subspaces with respect to M and TeG can be
found in the following form

i) Tx0O(x0) = Im dαx0 ⊂M,

ii) (Tx0O(x0))⊥ = Ker dα∗x0
⊂M,

iii) TeS(x0) = Ker dαx0 ⊂ TeG,

iv) (TeS(x0))⊥ = Im dα∗x0
⊂ TeG.

Proof.
Assertions i and iii follow from (8). Then

assertions ii and iv follow from properties of
the adjoint function dα∗x0

(see [4] for example).
¤

Corollary 1 The mappings dαx0

and dα∗x0
define one-to-one correspon-

dences between the subspaces Tx0O(x0) and
(TeS(x0))⊥.

Proposition 1 Let x0 = (E, A,B) ∈ M
be a triple of matrices. Then,

Tx0O(x0) =
{(QE + EP + BU,QA + AP + BV,QB + BR) |

∀(Q,P, R,U, V ) ∈ G}.
(Tx0O(x0))⊥ =
{(X, Y, Z) | EX∗ + AY ∗ + BZ∗ = 0,
X∗E + Y ∗A = 0, X∗B = 0, Y ∗B = 0, Z∗B = 0}.

1 Miniversal deformation

Let U0 be a neighborhood of the origin of C`.
A deformation x(γ) of x0 is a smooth mapping

x : U0 −→M
such that x(0) = x0. The vector γ =
(γ1, . . . , γ`) ∈ U0 is called the parameter vec-
tor. The deformation x(γ) is also called the
family of triple of matrices. The deformation
x(γ) of x0 is called versal if any deformation
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z(ξ) of x0, where ξ = (ξ1, . . . , ξk) ∈ U ′0 ⊂ Ck

is the parameter vector, can be represented in
some neighborhood of the origin in the follow-
ing form

z(ξ) = g(ξ) ◦ x(φ(ξ)), ξ ∈ U ′′0 ⊂ U ′0, (10)

where φ : U ′′0 −→ F ` and g : U ′′0 −→ G are dif-
ferentiable mappings such that φ(0) = 0 and
g(0) = e. The versal deformation with mini-
mal possible number of parameters ` is called
miniversal.

The following result, proved by Arnold [1]
for Gl(n;C) acting on Mn×n(C), provides the
relation between the versal deformation of x0

and the local structure of the orbit and stabi-
lizer of x0.

Theorem 3 i) A deformation x(γ) of x0

is versal if and only if it is transversal to the
orbit O(x0) at x0.
ii) Minimal number of parameters of a versal
deformation is equal to the codimension of the
orbit of x0 in M, ` = codimO(x0).
iii) If x(γ) is a miniversal deformation and
values of the mapping g(ξ) are restricted to
belong to a smooth submanifold R ⊂ G, which
is transversal to S(x0) at e and has the mini-
mal dimension dimR = codimS(x0), then the
mappings φ(ξ) and g(ξ) in representation (17)
are uniquely determined by z(ξ).

Let us denote by {t1, . . . , td}, d =
dimTx0O(x0), a basis of the tangent
space Tx0O(x0); by {n1, . . . , n`}, ` =
codimTx0O(x0), a basis the normal com-
plement (Tx0O(x0))⊥; by {c1, . . . , c`} a ba-
sis of an arbitrary complementary subspace
(Tx0O(x0))c to Tx0O(x0); and by {r1, . . . , rd}
a basis of (TeS(x0))⊥. By Corollary (2.1.1),
if we have the basis {t1, . . . , td}, then the
basis {r1, . . . , rd} can be chosen in the form
{dα∗x0

(t1), . . . , dα∗x0
(td)}, and vice versa, if

the basis {r1, . . . , rd} is known, then we
can choose the basis {t1, . . . , td} in the form
{dαx0(r1), . . . , dαx0(rd)}.

Corollary 2 The deformation

x(γ) = x0 +
∑̀

i=1

ciγi (11)

is a miniversal deformation. The functions
φ(ξ) and g(ξ) in the versal deformation re-
duction (16) are uniquely determined, if the
mapping g(ξ) is taken in the form

g(ξ) = e +
d∑

j=1

rjµj(ξ), (12)

where µj(ξ) are smooth functions in C such
that µj(0) = 0, j = 1, . . . , d.

If we take ci = ni, i = 1, . . . , `, in (18),
then the corresponding miniversal deforma-
tion is called orthogonal.

1.1 Explicit miniversal deformation

Solving the system defining (Tx0O)⊥ we de-
duce and explicit miniversal deformation. For
that we partition the system in four subsys-
tems corresponding to the partition of the
triple in the following manner

((
E1

SE

)
,

(
A1

SA

)
,

(
B1

0

))
,

(E1, A1, B1) being the regular subsystem,
(SE , SA) the completely singular part, and the

matrices X∗ =
(

X1 X2

X3 X4

)
, Y ∗ =

(
Y1 Y2

Y3 Y4

)
,

Z∗ =
(
Z1 Z2

)
corresponding to the partition

of the triple.

E1X1 + A1Y1 + B1Z1 = 0
X1E1 + Y1A1 = 0

X1B1 = 0
Y1B1 = 0
Z1B1 = 0





(I)

E1X2 + A1Y2 + B1Z2 = 0
X2SE + Y2SA = 0

}
(II)

SEX3 + SAY3 = 0
X3E1 + Y3A1 = 0

X3B1 = 0
Y3B1 = 0





(III)

SEX4 + SAY4 = 0
X4SE + Y4SA = 0

}
(IV)
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The system (I) correspond to the miniver-
sal deformation of the regularizable subsystem
solved in [3] and system (IV) correspond to the
miniversal deformation of a pencil containing
only the singular part solved in [8].

Now, we solve systems II and III.
With respect system II, partitioning it fol-

lowing blocks in matrices:

E1=
(

I1
I2

N2

)
, A1=

( N1
J

I3

)
, B1=

(
B1
0
0

)
,

SE =
(

L1

Lt
2

)
, SA =

(
R1

Rt
2

)
,

and

X2=

(
X2

1 X2
2

X3
3 X2

4

X2
5 X2

6

)
, Y2=

(
Y 2
1 Y 2

2

Y 2
3 Y 2

4

Y 2
5 Y 2

6

)
, Z2=( Z2

1 Z2
2 ) ,

and each subsystem partitioned into blocks
corresponding to the partition of the matri-
ces N , J , L, Lt into blocks of the same type,
we obtain the following subsystems:

X2
1i + N1Y

2
1i + B1Z

2
1i = 0

X2
1iL1 + Y 2

1iR1 = 0

}
i)

X2
2i + N1Y

2
2i + B1Z

2
2i = 0

X2
2iL

t
1 + Y 2

2iR
t
1 = 0

}
ii)

X2
3i + JY 2

3i = 0
X2

3iL1 + Y 2
3iR1 = 0

}
iii)

X2
4i + JY 2

4i = 0
X2

4iL
t
1 + Y 2

4iR
t
1 = 0

}
iv)

N2X
2
5i + Y 2

5i = 0
X2

5iL1 + Y 2
5iR1 = 0

}
v)

N2X
2
6i + Y 2

6i = 0
X2

6iL
t
1 + Y 2

6iR
t
1 = 0

}
vi)

where matrices L1i, R1i ∈ Mq1i×(q1i+1)(C),
N1i ∈ Mp1i(C), J = aI + N ∈ M`i(C).

Systems iii), v) have zero solution.
The solutions of systems i) are:
X2

1i = 0, Z2
1i = 0 and Y 2

1i = 0 if p1i ≥ q1i+1
and

Y 2
1i =




y1 y2 ... yr 0 ... ... 0

0 y1

. . . yr

. . . 0

...
...

. . . . . .
...

0 0 y1 ... yr 0 ... 0




Z2
ii = ( 0 0 0 y1 ... yr 0 ... 0 )

with r = q1i − p1i.
The solutions of systems ii) are:

X2
2i = −

(
y2 y3 ... yq
y3 y4 ... yq+1

... ...
yq yq+1 ... zq

)

Y 2
2i =

(
y1 y2 ... yq+1
y2 y3 ... yq+2

... ...
yp yp+1 ... yp+q

)

Z2
2i = ( yp+1 yp+2 ... zq )

The solutions of systems iv) are

Y 2
4i=




y1 ay1+y2 a3y1+3a2y2+3ay3+y4 ...
y2 ay2+y3 a3y2+3a2y3+3ay4+y5 ...

...
yp−1 ayp−1+yp a3yp−1+3a2yp ...

yp ayp a3yp ... aq−1yp




and X2
4i = −JY 2

4i (a is the eigenvalue of the
block J .

The solutions of systems vi) are

X2
6i =




0 ... 0 xp xp−1 ... x1

. . . . . .
...

xp xp−1

0 ... 0 0 ... 0 xp


 ,

Y 2
6i =




0 ... 0 0 −xp ... −x2

. . . . . .
...−xp

0 ... 0 0 ... 0 0


 ,

if p2i ≤ q2i and

X2
6i =




xp−q+1 ... xp

...
...

x1 ... xq

. . .
...

0 ... x1


 ,

Y 2
6i =




xp−q ... xp−1

...
...

x1 ... xq

. . .
...

0 ... x1
0 ... 0


 ,

otherwise.
With respect system III, as in the case of

systems II, partitioning it following blocks in
matrices:

E1=
(

I1
I2

N2

)
, A1=

( N1
J

I3

)
, B1=

(
B1
0
0

)
,

SE =
(

L1

Lt
2

)
, SA =

(
R1

Rt
2

)
,

and
X3=

(
X3

1 X3
2 X3

3

X3
4 X3

5 X3
6

)
, Y3=

(
Y 3
1 Y 3

2 Y 3
3

Y 3
4 Y 3

5 Y 3
6

)
,
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and each subsystem partitioned into blocks
corresponding to the partition of the matri-
ces N , J , L, Lt into blocks of the same type,
we obtain the following subsystems:

L1iX
3
1i + R1iY

3
1i = 0

X3
1i + Y 3

1 N1i = 0
X3

1iB1 = 0
Y 3

1iB1 = 0





i)

L1iX
3
2i + R1iY

3
2i = 0

X3
2i + Y 3

1 Ji = 0

}
ii)

L1iX
3
3i + R1iY

3
3i = 0

X3
2iN2i + Y 3

1i = 0

}
iii)

Lt
2iX

3
4i + Rt

2iY
3
4i = 0

X3
3i + Y 3

4 N1i = 0
X3

4iB1 = 0
Y 3

4iB1 = 0





iv)

Lt
2iX

3
5i + Rt

3iY
3
5i = 0

X3
5i + Y 3

5iJi = 0

}
v)

Lt
2iX

3
6i + Rt

2iY
3
6i = 0

X3
6iN2i + Y 3

6i = 0

}
vi)

where matrices L1i, R1i ∈ Mq1i×(q1i+1)(C),
N1i ∈ Mp1i(C), J = aI + N ∈ M`i(C).

The solution of systems i) are:
X3

1i = 0 and Y 3
1i = 0 if p1i ≤ q1i + 1 and

Y 3
1i =




y1 y2 ... yr 0 ... ... 0

0 y1

. . . yr

. . . 0

...
...

. . . . . .
...

0 0 y1 ... yr 0 ... 0




with r = p1i − q1i.
The solution of systems ii) are

Y 3
2i =




y1 y2 ... y`i
ay1 y1+ay2 ... y`i−1+ay`i

a2y1 2ay1+a2y2

...
aqiy1




(yij = yi−1 j−1 + ayi−1 j).
The solution of systems iii) are

X3
3i =




0 . . . x1 . . . xpi−q1+1
... ...

... ...
...

x1 . . . xqi+1 . . . xpi


 ,

if pi ≤ qi,

X3
3i =




0 . . . 0
...

...
0 . . . 0
0 . . . x1
... ...

...
x1 . . . xpi




, if pi < qi.

The solution for systems iv), v) and vi) is
X = Y = 0.

Corollary 1. The codimension of a triple
(E, A, B) is the number of parameters appear-
ing in the miniversal deformation.

As application of miniversal deformations
we are going to analyze the structural stabil-
ity of the triples. First of all we will recall the
definition of structural stability, according to
that appearing in the paper by Willems (see
[9]).

Let X be a topological space and consider
an equivalence relation defined on it.

Definition 2 An element x ∈ X is struc-
turally stable if and only if there exists an open
neighbourhood U ⊂ X of x such that all the el-
ements in it are equivalent to x.

Applying this result a our particular setup
we have the following proposition.

Proposition 2 A triple (E,A, B) is
structurally stable if and only if the miniversal
deformation of the triple is zero.

As a consequence we have.

Theorem 4 A triple (E, A,B) is struc-
turally stable

1. for m ≥ n, p or n ≥ m > p, if and only
if rankB = p.

2. for n = p−m there are not stable triples.
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3. for n > p − m, if and only if there
are m blocks L1, ` − s blocks L`1 and
s L`1+1 where n = (p − m)c + `, and
p−m = ``1 + s

4. for n < p−m, if and only if there are m
blocks L1, ` − s blocks Lt

`1
and s Lt

`1+1

where p−m = nc + `, and n = ``1 + s

5. for n = p, m > 0, if and only if there
are not continuous invariants, nor in-
finite zeroes, and row minimal indices,
rankB = r = min {p,m}, there are r
column minimal indices of order 1, and
r column minimal indices equals or dif-
fering in only one unity.

Proof.
It suffices to analyze when the systems (I),

(II), (III), (IV) have zero as a unique solution.
¤

2 Conclusion

The knowledge of a canonical reduced form,
permit us to deduce explicit miniversal defor-
mations for triples of matrices under feedback
and derivative feedback equivalence. Then the
structural stability of triples of matrices can
be easily analyzed.
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