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Abstract:- We consider quadruples of matrices (E, A,B, C), representing singular linear time
invariant systems in the form Eẋ = Ax + Bu, y = Cx with E, A ∈ Mp×n(C), B ∈ Mp×m(C)
and C ∈ Mq×n(C)under proportional and derivative feedback and proportional and derivative
output injection.

In this paper we present a canonical reduced form preserving the structure of the system and
we obtain a collection of invariants that they permit us to deduce the canonical reduced form.
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1 Introduction

We denote by Mp×n(C) the space of com-
plex matrices having p rows and n columns,
and in the case which p = n we write Mn(C).

We consider the set M of quadruples of
matrices (E,A, B, C) representing families of
singular linear time invariant systems in the
form

Eẋ(t) = Ax + Bu
y = Cx

}
(1)

with E, A ∈ Mp×n(C), B ∈ Mp×m(C) and
C ∈ Mq×n(C). These equations arise in theo-
retical areas as differential equations on man-
ifolds as well as in applied areas as systems
theory and control, [8], [10].

Different useful and interesting equiva-
lence relations between singular systems have
been defined. We deal with the equivalence re-

lation that accepting one or more, of the fol-
lowing transformations: basis change in the
state space, input space, output space, feed-
back, derivative feedback, output injection,
derivative output injection and premultiplica-
tion by an invertible matrix.

The obtention of canonical forms for this
equivalence relation defined in the space of
quadruples of matrices is an open problem.
For regularizable systems A. Dı́az, Ma I.
Garćıa-Planas and S. Tarragona [4] a canoni-
cal reduced form was proposed.

We recall that L. Dai [2], studied canoni-
cal forms for singular systems but they do not
consider feedback and derivative feedback nor
output injection and derivative output injec-
tion in the equivalence relation, only consider
basis change in the state space and premulti-
plication by an invertible matrix.
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2 Notations

In the sequel we will use the following no-
tations.
- In denotes the n-order identity matrix,
- N denotes a nilpotent matrix in its re-
duced form N = diag(N1, . . . , N`), Ni =(

0 Ini−1

0 0

)
∈ Mni(C),

- J denotes the Jordan matrix J =
diag(J1, . . . , Jt), Ji = diag(Ji1 , . . . , Jis), Jij =
λiI + N ,
- L = diag = (L1, . . . , Lq), Lj =

(
Inj 0

) ∈
Mnj×(nj+1)(C),

- R = diag(R1, . . . , Rp), Rnj =
(
0 Inj

) ∈
Mnj×(nj+1)(C).

3 Equivalence of singular linear
systems

We consider singular linear as in (1), many
interesting and useful equivalence relations
between singular systems have been defined.
We deal with the equivalence relation accept-
ing one or more, of the following transfor-
mations: basis change in the state space, in-
put space, output space, operations of state
and derivative feedback, state and derivative
output injection and to pre-multiply the first
equation in (1) by an invertible matrix. That
is to say.

Definition 1 Two quadruples
(Ei, Ai, Bi, Ci) ∈ M, i = 1, 2, are equiv-
alent if and only if there exist matrices
P ∈ Gl(n;C),Q ∈ Gl(p;C), R ∈ Gl(m;C),
S ∈ Gl(q;C), FB

E , FB
A ∈ Mm×n(C), FC

E , FC
A ∈

Mp×q(C) such that

E2 = QE1P + QB1F
B
E + FEC1P,

A2 = QA1P + QB1F
B
A + FAC1P,

B2 = QB1R,
C2 = SC1P,

Given a quadruple of matrices (E, A,B,C)
∈ M, we can associate the following matrix
pencil

H(λ) =




λE + A λB B
λC 0 0
C 0 0


 ,

and we have
Proposition 1 Two quadruples are

equivalent under equivalent relation considered
if and only if the associates matrix pencils
are strictly equivalent. So, we can apply kro-
necker’s theory of singular pencils as presented
in [5].

Corollary 1 Let H(λ) be a matrix pen-
cil associated to the quadruple (E, A, B, C) ∈
M. Then H(λ) its is equivalent to the pencil
λF + G with

F =

(
L

LT

I1
N

)
, G =

(
R

RT

J
I2

)

Remember that the kronecker canonical
form of a pencil characterized by two sets of
minimal indices and sets of finite and infinite
elementary divisors.

Remark 1 Given a quadruple of matri-
ces (E, A,B, C), will call eigenvalues of the
quadruple to the eigenvalues of the associate
pencil H(λ). Obviously, the collection of
eigenvalues of a quadruple are invariant un-
der equivalence relation considered.

5 A new reduced form
The Kronecker canonical form of a pencil

does not preserve the inner partitioning of the
matrix pencil H(λ) in matrices E, A, B,C de-
sirable when studying dynamical systems. In
this section, a new reduced form to respect the
equivalence relation considered and maintain-
ing the structure of the four matrices defining
the system is obtained.

Theorem 1 let (E, A, B, C) ∈ M be a
quadruple of matrices. Then it is equivalent
under equivalence relation considered to the
following quadruple.

((
Ek

0

)
,

(
Ak

0

)
,

(
0

Ib

)
,

(
0

Ic

))
.
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where (Ek, Ak) is a pair of matrices in its Kro-
necker reduced form (see [3]).

If confusion it is not possible, we denote
this quadruple by: (Ek, Ak, Ib, Ic).

Proof.
There exist matrices Q0 ∈ Gl(p;C), R0 ∈

Gl(m;C) such that

Q0BR0 =
(

0
Ib

)
= Bb, b = rank (B)

matrices P0 ∈ Gl(n;C), S0 ∈ Gl(q;C) such
that

S0CP0 =
(

0
Ic

)
= Cc, c = rank (C)

So, taking Q = Q0, P = P0, R = R0, S = S0,
FB

E = FB
A = 0, and FC

E = FC
A = 0, the

quadruple is equivalent to (E′, A′, Bb, Cc).
Partitioning matrices E′ and A′ following

the blocks in Bb and Cc E′ =
(

E1 E2

E3 E4

)
, A′ =

(
A1 A2

A3 A4

)
where E1, A1 ∈ M(p−b)×(n−c)(C),

E2, A2 ∈ M(p−b)×c(C), E3, A3 ∈ Mb×(n−c)(C)
and E4, A4 ∈ Mb×c(C).

Now, it suffices to apply the following
proportional and derivative feedbacks and
proportional and derivative output injections

FB′
E′ =

(
0 0

−E3 −E4

)
, FB′

A′ =
(

0 0
−A3 −A4

)
,

FC′
E′ =

(
0 −E2

0 0

)
, FC′

A′ =
(

0 −A2

0 0

)
and

S = Iq, R = Im Q =
(

Q1

Ic

)
, P =

(
P1

Ib

)
, and Q1 and P1 in such a way that

Q1(λE1 +A1)P1 = λEk +Ak with (Ek, Ak) in
its Kronecker reduced form. ¤

Proposition 5 Let (E, A,B, C) be a
quadruple and (Ek, Ak, Ib, Ic) its reduced form.
The eigenvalues of the pencil λEk + Ak

coincide with eigenvalues of the quadruple
(E,A, B, C).

Proof.
Taking into account that the eigenvalues

are invariant under equivalence relation we
can use the equivalent reduced form

rank




λE + A λB B
λC 0 0
C 0 0


 =

rank
(

λE + A B
C 0

)
=

rank (λEk + Ak) + b + c

¤

Definition 2 We define the following
matrices

Hi ∈ Mi(p+q)×i(n+m)(C)

H1 =
(

E B
C 0

)
,

H2 =




E B
C 0
A 0 E B

C 0


 ,

...

H` =




E B
C 0
A 0 E B

C 0
A 0 .

. . .
E B
C 0




,

` = 1, 2, . . .

if we need specify the quadruple we write
Hi(E,A, B, C).

Proposition 6 Let (E,A, B, C) be a
quadruple of matrices. Then, the numbers
rH` = rankH` are invariant under equivalence
relation considered.

Definition 3 For all λ ∈ C we define the
following matrices

Ji(λ) ∈ Mi(p+q)×i(n+m)(C)
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J1(λ) =
(

λE + A B
C 0

)
,

J2(λ) =




λE + A B
C 0
E 0 λE + A B

C 0


 ,

...

J`(λ) =




λE+A B
C 0
E 0 λE+A B

C 0
E 0 .

...
λE+A B

C 0




,

` = 1, 2, . . .

If we need to specify the quadruple we will
write Ji(λ,E,A, B, C).

Proposition 7 Let (E, A,B, C) be a
quadruple of matrices, for all λ ∈ C the num-
bers r`(λ) = rankJ`(λ) are invariants under
equivalence relation considered.

Definition 4 We define the following ma-
trices

Ci ∈ M(i+1)p+iq×in+(i+1)m(C)

C0 = (B),

C1 =




E B 0
C 0 0
A 0 B


 ,

C2 =




E B
C 0
A 0 E B 0

C 0 0
A 0 B




,

...

C` =




E B
C 0
A 0 E B

C 0
A 0 .

. . .
E B 0
C 0 0
A 0 B




,

` = 1, 2, . . ..
If we need to specify the quadruple we will
write Ci(E, A,B, C).

Proposition 8 Let (E,A, B, C) be a
quadruple of matrices. Then, the numbers
rC` = rank C` are invariant under equivalence
relation considered.

Definition 5 We define the following
matrices

Oi ∈ Mip+(i+1)q×(i+1)n+im(C)

O0 = (C),

O1 =




A B E
C 0 0
0 0 C


 ,

O2 =




A B E
C 0 0

A B E
C 0 0
0 0 C




,

...

O` =




A B E
C 0 0

A B E
C 0 0

.
. . .

A B E
C 0 0
0 0 C




,

` = 1, 2, . . .
If we need to specify the quadruple we will
write Oi(E, A,B, C)

Proposition 9 Let (E,A, B, C) be a
quadruple of matrices. Then, the numbers
rO
` = rankO` are invariant under equivalence

relation considered.

Now, we are going to relate the r-numbers
defined with the r-numbers of the pencil λEk+
Ak associated to the pair (Ek, Ak) (see [3] for
definition and properties.)

We denote by (1) the quadruple
(E, A, B, C) and by (2) the pair (Ek, Ak).
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With these notations we have the following
proposition.

Proposition 10

rH` (1) = rH` (2) + `(b + c)

rC` (1) = rC` (2) + (` + 1)b + `c

rO` (1) = rO` (2) + `b + (` + 1)c

r`(λ)(1) = r`(λ)(2) + `(b + c)

(2)

Proof. Taking into account propositions
6 to 9 Given a quadruple (E, A,B, C) ∈ M,
we can make use the equivalent reduced form
quadruple (Ek, Ak, Ib, Ic).

Making row and column block elementary
transformations operaciones to the matrices
H`, J`(λi), C` and O` for each ` = 1, 2, . . .,
the result is obtained. ¤

Proposition 11

rn(1) = rn(2) + b + c.

Proof.

rn(1) = rank
(

λE + A B
C 0

)

= rank (λEk + Ak) + b + c

= rn(2) + b + c.

¤
Corollary 3

rHn+1(1)− rHn (1) = rn(1).

Proof.

rn(1) = rn(2) + b + c =

rHn+1(2)− rHn (2) + b + c =

rHn+1(1)− (n + 1)(b + c)− rHn (1)+
+n(b + c) + b + c =

rHn+1(1)− rHn (1).

¤

Proposition 10 Let rCO` (2) be the r-
numbers corresponding to the infinite zeroes
of the pencil λEk + Ak. Then

rCO1 (2) = rn(1)− rH1 (1),
...

rCO` (2) = rH`−1(1)− rH` (1) + rn(1),
` = 2, . . .

Proof.

rCO1 (2) = rn(2)− rH1 (2) =

= rn(2)− rH1 (1) + b + c =

= rn(1)− rH1 (1).
...

rCO` (2) = rH`−1(2)− rH` (2) + rn(2) =

= rH`−1(1)− (`− 1)(b + c)− rH` (1)+

`(b + c) + rn(2) =

= rH`−1(1)− rH` (1) + rn(1).

¤
Definition 6 We will call infinite ze-

roes r-numbers of the quadruple (E,A, B, C)
to rCO` = rCO` (2), ` = 1, 2, . . .

Corollary 4

rCO1 = rn − rH1 ,
...

rCO` = rH`−1 − rH` + rn, ` = 2, . . .

Proposition 13 Let rCO` (λ)(2) be the
Jordan r-numbers corresponding to the eigen-
value λ to the pencil λEk + Ak. Then

rCO1 (λ)(2) = rn(1)− r1(λ)(1),
...

rCO` (λ)(2) = r`−1(λ)(1)− r`(λ)(1) + rn(1),
` = 2, . . .
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Proof.

rCO1 (λ)(2) = rn(2)− r1(λ)(2)

= rn(2)− r1(λ)(1) + b + c

= rn(1)− r1(λ)(1).
...

rCO` (λ)(2) = r`−1(λ)(2)− r`(λ)(2) + rn(2)

= r`−1(λ)(1)− (`− 1)(b + c)−
r`(λ)(1) + `(b + c) + rn(2)

= r`−1(λ)(1)− r`(λ)(1) + rn(1).

¤
Definition 7 We will call Jordan r-

numbers corresponding to the eigenvalue λ
of the quadruple (E,A, B, C) to rCO` (λ) =
rCO` (λ)(2), ` = 1, 2, . . .

Corollary 5

rCO1 (λ) = rn − r1(λ),
...

rCO` (λ) = r`−1(λ)− r`(λ) + rn, ` = 2, . . .

Proposition 14 Let rCO` (2) be the column
minimal r-numbers of the pencil λEk + Ak.
Then

rCO0 (2) = n− rn(1) + rC0 (1),
rCO1 (2) = rC1 (1)− rC0 (1)− rn(1),

...
rCO` (2) = rC` (1)− rC`−1(1)− rn(1), ` = 2, . . .

Proof.

rCO0 (2) = (n− c)− rn(2) = n− (rn(2) + c)

= n− (rn(1)− b) = n− rn(1) + rC0 (1).

rCO1 (2) = rC1 (2)− rn(2) =
= rC1 (1)− 2b− c− rn(2)

= rC1 (1)− b− (rn(2) + b + c)

= rC1 (1)− rC0 (1)− rn(1).
...
rCO` (2) = rC` (2)− rC`−1(2)− rn(2)

= rC` (1)− `b− (`− 1)c− rC`−1(1)+

+(`− 1)b + (`− 2)c− rn(2)

= rC` (1)− rC`−1(1)− rn(1).

¤
Definition 8 We will call column min-

imal r-numbers of the quadruple (E,A, B, C)
to rCO` = rCO` (2), ` = 0, 1, . . .

Corollary 6

rCO0 = n− rn + rC0 ,

rCO1 = rC1 − rC0 − rn,
...

rCO` = rC` − rC`−1 − rn, ` = 2, . . .

Proposition 15 Let rCO` (2) be the row
minimal r-numbers of the pencil λEk + Ak.
Then

rCO0 (2) = p− rn(1) + rO0 (1),
rCO1 (2) = rO1 (1)− rO0 (1)− rn(1),

...
rCO` (2) = rO` (1)− rO`−1(1)− rn(1), ` = 2, . . .

Proof.

rCO0 (2) = (p− b)− rn(2) = p− (rn(2) + b)

= p− (rn(1)− c) = p− rn(1) + rO0 (1)

rCO1 (2) = rO1 (2)− rn(2)

= rO1 (1)− b− 2c− rn(2)

= rO1 (1)− c− (rn(2) + b + c)

= rO1 (1)− rO0 (1)− rn(1).
...

rCO` (2) = rO` (2)− rO`−1(2)− rn(2)

= rO` (1)− (`− 1)b− `c− rC`−1(1)+
+(`− 2)b + (`− 1)c− rn(2)

= rO` (1)− rO`−1(1)− rn(1).

¤
Definition 9 We will call row minimal

r-numbers of the quadruple (E,A, B, C) to
rCO` = rCO` (2), ` = 0, 1, . . .

Corollary 7

rCO0 = p− rn + rO0 ,

rCO1 = rO1 − rO0 − rn,
...

rCO` = rO` − rO`−1 − rn, ` = 2, . . .
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Collecting all these numbers information
we obtain a complete system of invariants giv-
ing us the reduced form presented for systems.

Theorem 2 For all quadruple of ma-
trices (E,A, B, C), the following collection of
números

i) (rCO1 ≥ rCO2 ≥ · · · ≥ rCO`1
≥ rCO`1+1 =

· · · = 0)

ii) (rC0 ≥ 0; rCO0 ≥ rCO1 ≥ · · · ≥ rCO`2−1 ≥
rCO`2

= · · · = 0)

iii) (rO0 ≥ 0; rCO0 ≥ rCO1 ≥ · · · ≥ rCO`3−1 ≥
rCO`3

= · · · = 0)

iv) (rCO1 (λ) ≥ rCO2 (λ) ≥ · · · ≥ rCO`(λ)(λ) ≥
rCO`(λ)+1(λ) = · · · = 0), λ ∈ C

constitutes a complete system of invariants
with respect equivalence relation considered.

Proof.
The non zero r-numbers permit us to de-

duce the collection of numbers

i) ω1 ≥ ω2 ≥ · · · ≥ ωs ≥ 1,

ii) k1(λ) ≥ k2(λ) ≥ · · · ≥ kj(λ)(λ) ≥
1, λ ∈ σ(E, A, B,C),

iii) ε1 ≥ ε2 ≥ · · · ≥ εrε > εrε+1 = · · · = εr =
0,

iv) η1 ≥ η2 ≥ . . . ηlη > ηlη+1 = · · · = ηl = 0.

that they are the structural invariants of the
quadruple (Ek, Ak, Ib, Ic). ¤

5 Conclusion
We consider quadruples of matrices

(E,A, B, C), representing singular linear time
invariant systems in the form Eẋ(t) = Ax(t)+
Bu(t), y(t) = Cx(t) with E, A ∈ Mp×n(C) no
necessarily squares, under equivalence that ac-
cept basis change in the state space input and
output spaces, feedback and derivative feed-
back as well output and derivative output in-
jection and premultiplication by an invertible
matrix. In this paper we obtain a canonical

reduced form and a collection of invariants,
that they permit us to deduce the canonical
reduced form.
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