
The Generalized DCell Network Structures and
Their Graph Properties

Markus Kliegl∗, Jason Lee†, Jun Li‡, Xinchao Zhang§, David Rincón¶, Chuanxiong Guo]

∗Swarthmore College, †Duke University, ‡Fudan University, §Shanghai Jiaotong University,
¶Universitat Politècnica de Catalunya, ]Microsoft Research Asia

Abstract—DCell [7] has been proposed as a server centric
network structure for data centers. DCell can support millions
of servers with high network capacity and provide good fault
tolerance by only using commodity mini-switches. In this paper,
we show that DCell is only a special case of a more generalized
DCell structure. We give the generalized DCell construction
rule and several new DCell structures. We analyze the graph
properties, including the closed form of number of servers,
bisection width, diameter, and symmetry, of the generalized DCell
structure. Furthermore, we show that the new structures are
more symmetric, have much smaller diameter, and provide much
better load-balancing than the original DCell by using shortest-
path routing. We demonstrate the load-balancing property of the
new structures by analysis and extensive simulations.

I. INTRODUCTION

Data centers are becoming increasingly important and com-
plex. For instance, data centers are critical to the operation
of companies such as Microsoft, Yahoo!, and Google, which
already run data centers with several hundreds of thousands
of servers. Furthermore, data center growth for e.g. Microsoft
exceeds even Moore’s Law [18]. It is clear that the traditional
tree structure employed for connecting servers in data centers
will no longer be sufficient for future cloud computing and
distributed computing applications. There is, therefore, an
immediate need to design new network topologies that can
meet these rapid expansion requirements.

Current network topologies that have been studied include
Ring, Torus, Butterfly, HyperCube, FatTree, BCube [6], and
FiConn [12]. However, except for the last three, these were
proposed in the context of parallel processing and do not meet
all of the requirements for large data center use. Some do not
scale quickly enough or cannot be incrementally deployed.
Others are not robust enough, require too much wiring, have
too large diameters, or suffer from bottlenecks. The last
three address different issues: For large data centers, FatTree
requires the use of expensive high-end switches to over come
bottleneck problems, and is therefore more useful for smaller
data centers. BCube is meant for container-based data center
networks, which are of the order of only a few thousand
servers. FiConn is designed to utilize currently unused backup
ports in already existing data center networks. See also [7] for
discussion of these topologies except BCube and FiConn.

Researchers at Microsoft Research Asia have recently pro-
posed in [7] a novel network structure called DCell, which

addresses the needs of a mega data center. Its desirable
properties include that it

• scales doubly exponentially;
• supports a high bandwidth;
• has a large bisection width;
• has a small diameter;
• is very fault-tolerant;
• can be built from commodity network components;
• supports an efficient and scalable routing algorithm.

One problem that remains in DCell is that the load is not
evenly balanced among the links in all-to-all communication.
This is true for the proposed DCellRouting algorithm as well
as shortest path routing. This could be an obstacle to the use
of the DCell topology for applications such as MapReduce,
Google’s framework for distributed computing [3].

In this report, we address this problem by showing that
DCell is but one member of a family of graphs satisfying
all of the good properties listed above. After introducing this
family of generalized DCell graphs, we explore the graph
properties common to all of them as well as some differences
between individual members of the family. In particular, we
provide better bounds than [7] for the number of servers, the
diameter, and the bisection width of DCells; and we explore
the symmetries of the graphs.

Next, we provide an autoconfiguration algorithm and a
generalized version of the DCellRouting algorithm. These are
crucial to making DCells a viable candidate for data center
networks. We also prove a number of results concerning
the path length distribution in one-to-one communication and
the flow distribution in all-to-all communication when using
generalized DCellRouting.

Finally, we show simulation results on the path length
distribution and flow distribution for both DCellRouting and
shortest path routing for several realistic parameter values.
The most important finding here is that other members of
the generalized DCell graph family have significantly better
load-balancing properties than the original DCell graph.

The rest of the report is organized as follows. In Section II,
we introduce the generalized DCell design. In Section III,
we present our results on the graph properties of generalized
DCells. In Section IV, we give autoconfiguration and routing
algorithms. In Section V, we present simulation results for
path length and flow distribution using shortest path routing



and DCellRouting. We conclude the report in Section VI and
provide ideas for future research.

II. GENERALIZED DCELL

A. Construction

The general construction principle of the generalized DCell
is the same as that of the original DCell [7]. A DCell0 consists
of n servers connected to a common switch—as an abstract
graph, we model this as Kn, the complete graph on n vertices.
From here, we proceed recursively. Denote by tk the number
of servers in a DCellk. Then, to construct a DCellk, we take
tk + 1 DCellk−1’s and connect them in such a way that

(a) there is exactly one edge between every pair of distinct
DCellk−1’s, and

(b) we have added exactly one edge to each vertex.
Requirement (a) means that, if we contract each DCellk−1

to a single point, then the DCellk is a complete graph on
tk + 1 vertices. This imitation of the complete graph is what
we believe gives the DCell structure many of its desirable
properties. Requirement (b) is the reason why we must have
exactly tk + 1 DCellk−1’s in a DCellk. It ensures that every
server has the same number of links and is the reason why
DCell scales doubly exponentially.

This is precisely the point of divergence from the original
DCell proposal. There, one specific way of meeting require-
ments (a) and (b) was proposed, which we name the “α con-
nection rule” later on. But there are many other possibilities.
Before we can make this idea more precise, we need to discuss
how we label the vertices.

Each server is labeled by a vector id [ak, ak−1, ..., a0]. Here
ak specifies which DCellk−1 the server is in; ak−1 specifies
which DCellk−2 inside that DCellk−1 the server is in; and so
on. So 0 ≤ a0 ≤ n, and for i ≥ 1, we have 0 ≤ ai ≤ ti−1.
We can convert a vector id to a scalar uid (unique identifier)
as follows:

u = a0 + a1t0 + a2t1 + · · ·+ aktk−1. (1)

Note that we have 0 ≤ u ≤ tk − 1. Most often, we will
label servers just by [a, b] where a ' ak is the number of the
DCellk−1, and b is the uid corresponding to [ak−1, ..., a0].

Using these notions, we can define mathematically what a
connection rule is. Namely, it is a perfect matching ρL of the
vertices

{0, ..., tL−1} × {0, ..., tL−1 − 1}

that must satisfy the following two properties:
1) ρ2

L must be the identity, so that the graph is undirected.
(This is also implicit in the term “perfect matching”.)

2) For all a 6= c, there exist b and d such that ρL([a, b]) =
[c, d]. This ensures that there is a L-level link between
each pair of distinct DCellL−1’s.

This encapsulates precisely the requirements (a) and (b) above.
For completeness’s sake, we present a formal definition of

a generalized DCell.

Fig. 1: Physical and abstract DCell0 for n = 4.

Definition 1. A generalized DCell with parameters n ≥ 2,
k ≥ 0, and R = (ρ1, ..., ρk) is constructed as follows:

• A DCell0 is a complete graph on n vertices.
• From here we proceed recursively until we have con-

structed a DCellk: A DCellL consists of tL−1 + 1
DCellL−1’s, where tL−1 is the number of vertices in a
DCellL−1. Edges are added according to the connection
rule ρL.

Finally, we have two more remarks to make on this defini-
tion:

• We require n ≥ 2, since n = 1, k = K is the same as
n = 2, k = K − 1.

• As already mentioned, in a physical network, a DCell0
consists of n servers connected to a switch (except for
n = 2), but for mathematical purposes, it is more
convenient to model this as a complete graph. Only in
the following two instances is the difference important to
us:

1) The graph is regular of degree k + (n − 1), while
physically each server has only k + 1 links.

2) The load on a physical 0-level link is actually the
sum of the loads on the corresponding n−1 abstract
edges. See figure 1.

B. Examples of connection rules

Some examples of connection rules are:

α. The connection rule for the original DCell is

αL : [a, b]↔

{
[b+ 1, a] if a ≤ b,
[b, a− 1] if a > b.

(2)

β. A mathematically simple connection rule is

βL : [a, b]↔ [a+ b+ 1 (mod tL−1 + 1), tL−1 − 1− b].
(3)

γ. For tL−1 even, we can leave b unchanged by the switch,
except for a change inside the DCell0.

γL : [a, b] =


[a+ b (mod tL−1 + 1), b− 1]

if b is odd,
[a− (b+ 1) (mod tL−1 + 1), b+ 1]

if b is even.
(4)



(a) α-DCell (b) β-DCell

(c) γ-DCell (d) δ-DCell

Fig. 2: Generalized DCells with different connection rules for
n = 2, k = 2.

δ. For tL−1 even:

δL : [a, b]↔


[a+ b+ 1 (mod tL−1 + 1), b+ tL−1

2 ]
if b < tL−1

2 ,
[a− b+ tL−1

2 − 1 (mod tL−1 + 1), b− tL−1
2 ]

otherwise.
(5)

For n = 2, k = 2, these graphs are shown in figure 2.
It is not hard to see that these are indeed valid connection

rules. As an example, we show the details for the β connection
rule.

1) We have

[a+ b+ 1 (mod tk−1 + 1), tk−1 − 1− b]
↔ [(a+ b+ 1) + (tk−1 − 1− b) + 1 (mod tk−1 + 1),

tk−1 − 1− (tk−1 − 1− b)]
= [a+ (tk−1 + 1) (mod tk−1 + 1), b]
= [a, b].

So β2
k is indeed the identity.

2) a + b + 1 (mod tk−1 + 1) ranges, in cyclic order, from
a + 1 to a − 1 modulo tk−1 + 1 as b ranges from 0 to
tk−1 − 1. So there is indeed a k-level link from a to
every DCellk−1 distinct from a.

In the rest of this report, when the specific connection rule
used is not important, we will speak of just DCells. If we need
to make reference to a specific connection rule, we will speak
e.g. of α-DCells, meaning DCells with R = (α1, ..., αk). In
this context, we should clarify why the requirement that tk−1

be even is not a practical problem for the γ and δ connection
rules. The reason is the following fact.

Fact 1. tk is even for k ≥ 1. For k = 0, t0 is even if and only
if n is even.

Proof: This follows at once from the definition t0 = n
and the recurrence tk = tk−1(tk−1 + 1) for k ≥ 1.

It follows that we could define γ-DCell’s for odd n by
R = (ρ1, γ2, ..., γk), where ρ1 is any 1-level connection rule
that works for odd n. (And similarly for δ.) However, almost
all real switches have an even number of ports. So we will
focus on even n for the remainder of the paper.

Fact 1 also explains why a connection rule of the form
[a, b] ↔ [f(a, b), b] is not possible. For if there are an odd
number of DCellk−1’s, then there are an odd number of
vertices for each value of b; but it is impossible to find a perfect
matching for an odd number of vertices. Hence, the slightly
more complicated form [a, b] ↔ [f(a, b), g(b)] is required if
the second component is to be independent of a. Observe that
this is the form of the β, γ, and δ connection rules.

III. GRAPH PROPERTIES

In this chapter, we give expressions and bounds for graph
properties such as the number of servers, the diameter, and
the bisection width. We also investigate the symmetries of the
different connection rules.

A. The number of servers

1) Previous results: No closed-form expression for the
exact number of servers tk in a DCellk is known. However,
it is clear from the DCell construction that tk satisfies the
following recurrence relation:

tk+1 = tk(tk + 1), for k ≥ 1, (6)
t0 = n.

This permits tk to be easily and quickly computed for small n
and k. Using this recurrence, the following bounds have been
proved in [7]:(

n+
1
2

)2k

− 1
2
≤ tk ≤ (n+ 1)2

k

− 1. (7)

These bounds show that tk grows doubly exponentially.
2) An exact expression: Following a hint by D. E. Knuth

in [15], we use the methods of [1] to solve the recurrence (6),
leading to the following theorem.

Theorem 1. We have

tk +
1
2
< c2

k

< tk +
6
10
, (8)

and hence
tk = bc2

k

c, (9)

where

c =
(
n+

1
2

) ∞∏
i=0

(
1 +

1

4
(
ti + 1

2

)2
)1/2i+1

. (10)



We remark two things about this theorem:
• Since we know from (7) that tk grows doubly expo-

nentially, the infinite product in (10) will converge to c
very rapidly. Thus, although in principle knowledge of
the sequence tk is required to compute c—defeating the
whole purpose of this endeavor—in practice, knowing
only the first few terms of tk will allow for c to be
computed to extraordinary accuracy.

• We see that, as n increases, c asymptotically approaches
n+ 1

2 from above; that is, it approaches the lower bound
in (7).

The rest of this section is concerned with the proof of this
theorem. First, letting

sk = tk +
1
2
, (11)

we end up with the simpler recurrence relation

sk+1 = s2k +
1
4

= s2k

(
1 +

1
4s2k

)
, for k ≥ 1, (12)

s0 = n+
1
2
.

Next, letting

yk = log sk, (13)

αk = log
(

1 +
1

4s2k

)
, (14)

and taking the logarithm of both sides of (12), we find

yk+1 = 2yk + αk. (15)

Thus, we have

y1 = 2y0 + α0, (16)
y2 = 2(2y0 + α0) + α1, (17)

... (18)

yk = 2k
(
y0 +

α0

2
+
α1

22
+ · · ·+ αk−1

2k
)
. (19)

Now look instead at

Yk = 2k
(
y0 +

∞∑
i=0

αi
2i+1

)
. (20)

We will show in a moment that the error arising from looking
at Yk instead of yk is small. Exponentiating, we find

Sk = eYk = c2
k

, (21)

where

c = exp

(
y0 +

∞∑
i=0

αi
2i+1

)

= s0

∞∏
i=0

(
1 +

1
4s2i

)1/2i+1

=
(
n+

1
2

) ∞∏
i=0

(
1 +

1

4
(
ti + 1

2

)2
)1/2i+1

. (22)

It remains to show that Sk closely approximates tk. Write

Yk = yk + rk, (23)

rk = 2k
∞∑
i=k

αi
2i+1

. (24)

From (12), it follows that sk+1 > sk and hence that αk >
αk+1. Thus, we have

rk = 2k
∞∑
i=k

αi
2i+1

(25)

< 2k αk
∞∑
i=k

(
1
2

)i+1

(26)

= αk, (27)

and so

Sk = eykerk (28)
< ske

αk (29)

= sk

(
1 +

1
4s2k

)
(30)

= sk +
1

4sk
(31)

≤ sk +
1
10

(32)

= tk +
6
10
. (33)

where for the last inequality we used sk ≥ s0 ≥ 2.5. So we
see that, in fact,

tk = bSkc = bc2
k

c, (34)

where c is given by (22).

B. Bisection Width

Ideally, data center networks should have very large bisec-
tion widths. There are two reasons for this. First, the bisection
width is a measure of the robustness of a network, since a
high bisection width ensures that communication within a
network will remain possible and efficient even when some
links fail. Second, in distributed computing applications, the
bisection width is, as Leighton puts it, “often a critical factor
in determining the speed with which a network can perform a
calculation” [10].

1) A lower bound: Using the methods of [10, §1.9], a lower
bound on the bisection width may be found that takes the
following form:

BW ≥ t2k
4Fmax

, (35)

where Fmax is the maximum number of flows carried by
an edge in an all-to-all communication scenario. In [7], it is
shown that, when using DCellRouting, we have Fmax < 2ktk,
and hence that

BW ≥ tk
4 · 2k

. (36)



Later on, in corollary 4, we will prove a more accurate upper
bound on Fmax for a generalized recursive routing scheme,
namely

Fmax <
n− 1
n+ 1

2

2k(tk + 0.6). (37)

Using this, we find the following, slightly improved lower
bound on the bisection width.

Corollary 1. We have

BW ≥
n+ 1

2

n− 1
· t2k

4 · 2k(tk + 0.6)
=
n+ 1

2

n− 1
· tk

4 · 2k
(1− o(1)).

(38)

Note that, as n increases, this asymptotically approaches the
bound (36).

We can improve this bound slightly by counting the flows
between the two sides of the bisection more carefully. For
the bound (37) on Fmax we just used a bound on the flow
across a 0-link in an all to all communication scheme (called
F0), since higher-level links carry fewer flows. However for
the purpose of using the technique given in [10], we only
need to upper bound the number of flows on the 0-link due to
communication between the two sides of a bisection. Many of
the flows counted by F0 are due to communication between
a pair (u, v) where u and v are in the same side of the
bisection. We can tighten the bisection width lower bound by
enumerating some of these flows and subtracting them off from
F0.

Theorem 2. We have

BW ≥ t2k
4(F0 + tk − 2n−1

n tk)
(39)

Proof: Let σ0 denote the number of nodes that are reached
from a server through its 0-link using DCellRouting. Due to
symmetry,

σ0 =
n− 1
n

tk ≥
tk
2
. (40)

Thus at least
n− 1
n

tk −
tk
2

of the flows are from communication between servers on one
of the sides of the bisection. The same applies to the other
side of the bisection and hence at least

2
(
n− 1
n

tk −
tk
2

)
of the flows are due to communication within a single side
of the bisection. Subtracting these flows off in inequality 35
gives the inequality in the theorem.

Notice that this gives us no improvement for the n = 2 case
and the bound gets better for larger n. An exact expression
for F0 is derived later on, in theorem 9.

n k (35) (41) for α (41) for β (41) for γ (41) for δ
2 2 7 5 6 7 7
4 2 50 43 53 64 55
6 2 189 178 201 264 213
2 3 148 103 185 226 182

TABLE I: Comparison of lower bounds for bisection width.
In inequality (35), we used the exact value of F0 for DCell-
Routing (see theorem 9).

n k α β γ δ

2 2 11 11 11 11
4 2 72 98 108 110
6 2 355 431 551 541
2 3 288 402 426 420

TABLE II: Upper bounds on bisection width found using the
Kernighan-Lin heuristic. At least 1000 trials were used for
each of these numbers.

2) A spectral lower bound: A well-known (e.g. [4, p.293])
spectral lower bound on the bisection width of a graph with
an even number of vertices is given by

BW ≥ Nλ2

4
, (41)

where N is the number of vertices and λ2 is the second
smallest eigenvalue of the Laplacian matrix. (Recall that tk
is even for k ≥ 1.)

The performance of bounds (41) and (35) is compared in
table I for some small values of n and k. For the γ connection
rule in particular, the spectral bound appears to be significantly
better than the bound (35). However, we emphasize that these
lower bounds are not tight, and that table I hence does not
permit to draw conclusions on whether the bisection width is
larger for some connection rules than for others.

3) Some heuristic upper bounds: Using the Kernighan-Lin
(K-L) heuristic for graph partitioning [9], we found small
bisections for some small values of n and k. The results are
shown in table II. All values differ from the best lower bound
in the previous section by less than a factor of 3.

We also tried the Randomized Black Hole (RBH) heuris-
tic [5], but this produced larger bisections. K-L and RBH are
also reviewed in [8].

C. Diameter

It is desirable for a data center network to have as small
a diameter as possible. For if the diameter is large, then
communication between some pairs of servers will necessarily
be slow, no matter which routing algorithm is used.

1) Previous α-DCell specific results: In [7], it is shown
that the diameter satisfies

D ≤ 2k+1 − 1. (42)

However, it is also shown that this bound is not tight. For
example, for n = 2 and k = 4 the graph has diameter 27, but
the bound yields 31. Finally, it should be remarked that it was
not even known yet whether the diameter depends on n.



2) Generalized upper bound: We first restate and reprove
the upper bound (42) for generalized DCells.

Theorem 3. For fixed n, the diameter Dk of a DCellk satisfies

Dk+1 ≤ 2Dk + 1. (43)

If Dk0 is known for some k0, we have

Dk+1 ≤ (Dk0 + 1)2k−k0 − 1. (44)

Proof: The first statement follows from the recursive
definition of the DCell structure: Take any two elements in a
DCellk+1. If they are in the same DCellk, the distance between
them is at most Dk. If they are in different DCellk’s, we can
find a path of length at most 2Dk+1 between them by joining
each by a path of length at most Dk to the respective vertices
linking the two DCellk’s.

As for the second statement, just add 1 to both sides of the
first inequality, yielding

Dk+1 + 1 ≤ 2(Dk + 1). (45)

Then Sk = Dk + 1 clearly satisfies Sk ≤ 2k−k0Sk0 .
Noting that D0 = 1, this theorem leads immediately to

inequality (42).
3) A lower bound: A well-known (e.g. [10, p.238]) lower

bound on the diameter of a graph G with N vertices and
maximum degree ∆ is

D ≥ logN
log ∆

. (46)

It is not hard to see that a DCellk is regular of valency n+k−1.
Recall from theorem 1 that

N = bc2
k

c, (47)

where c is approximately n+ 1
2 for large n.

Using this information, the inequality (46) yields the fol-
lowing lemma.

Theorem 4. The diameter D is bounded below by

D ≥ 2k
log c

log(n+ k − 1)
. (48)

Note that, by theorem 1, we have

log c
log(n+ k − 1)

≥
log
(
n+ 1

2

)
log(n+ k − 1)

. (49)

Asymptotically, as n/k →∞, this bound approaches 2k. More
generally, this lower bound is useful whenever k is small
compared to n. For example, we have

log
(
n+ 1

2

)
log(n+ k − 1)

≥ 1
2

(50)

when k ≤ n2 + 5
4 . Since k is an integer, we can write this

result as follows.

Corollary 2. For k ≤ n2 + 1, the diameter D is bounded
below by

D ≥ 2k−1. (51)

n k α β γ δ

2 2 7 6 6 6
4 2 7 7 7 7
2 3 15 10 10 10
4 3 15 13 12 12
2 4 27 17 15 16

TABLE III: Comparison of the diameter for different connec-
tion rules.

Fig. 3: Notation for proof of fact 2.

Together with the upper bound (42), this narrows the
diameter down to within a factor of 4 for the cases when
k ≤ n2 + 1. Since n2 + 1 is never smaller than 5 (since we
require n ≥ 2), this corollary applies to all realistic cases,
since those will have k = 3 or k = 4.

4) Dependence on n and R: We can now answer in the
affirmative the question whether the diameter of an α-DCell
depends on n. It is known that the diameter of an α-DCell
with n = 2 and k = 4 is 27 [7]. However, we found compu-
tationally that the distance between vertices 0 ([0, 0, 0, 0, 0])
and 537468775 ([21944, 104, 8, 2, 1]) in a n = 3, k = 4 α-
DCell is 31. Since we know from the upper bound (42) that
the diameter of a k = 4 DCell can be at most 31, this shows
that the diameter for n = 3, k = 4 is exactly 31.

The other connection rules similarly exhibit n-dependence,
as can be seen in table III. Furthermore, the diameter appears
to depend significantly on the choice of connection rule R.
It seems, therefore, that a search for tighter bounds on the
diameter will have to take R into account.

As an example, we consider the case n = 2, k = 2. For this
case we can prove that 5 ≤ D ≤ 7, and that it is impossible to
find tighter bounds that are independent of R. This is shown
in the following two facts.

Fact 2. For n = 2, k = 1, the generalized DCell is isomorphic
to a 6-cycle, and hence has diameter 3; for n = 2, k = 2, it
is at least 5 and at most 7.

Proof: For n = 2, k = 1, the graph is connected and
2-regular; hence it is a cycle.

Now look at n = 2, k = 2. Fix a source vertex, and denote
by 01 the vertex reached by first taking the 0-link from the
source vertex and then the 1-link from the next vertex, etc.
See figure 3. There are three vertices that are one hop away:
0,1,2. There are 6 vertices that are two hops away: 01, 02,



n k (52) Dk (53)
2 1 0.667 3 3
2 2 0.204 7 8
2 3 0.010 15 24
4 1 0.200 3 5
4 2 0.024 7 15

(a) α-DCell

n k (52) Dk (53)
2 1 0.667 3 3
2 2 0.185 6 8
2 3 0.005 10 18
4 1 0.200 3 5
4 2 0.019 7 14

(b) β-DCell

n k (52) Dk (53)
2 1 0.667 3 3
2 2 0.151 6 7
2 3 0.004 10 17
4 1 0.200 3 5
4 2 0.016 7 12

(c) γ-DCell

n k (52) Dk (53)
2 1 0.667 3 3
2 2 0.151 6 7
2 3 0.006 10 18
4 1 0.200 3 5
4 2 0.018 7 13

(d) δ-DCell

TABLE IV: Comparison of the spectral bounds (52) and (53)
to the actual diameter.

10, 12, 20, 21. Since the case n = 2, k = 1 is a 6-cycle, we
have 010 = 101, and hence there are at most 11 vertices that
are three hops away. Consequently, there can be at most 20
vertices that are four hops away, since 0101 = 1011 = 10,
1010 = 0100 = 01, 0102 = 1012, and 2010 = 2101. But
3 + 6 + 11 + 20 = 40 < 41. So at least one vertex must be at
distance 5 or more.

The upper bound is just the familiar 2k+1 − 1 bound.

Fact 3. This lower bound of D = 5 when n = 2, k = 2 is
achieved for R = (α1, β2). As can be seen in table III, D = 6
is achieved e.g. for a β-DCell, while D = 7 is achieved for
an α-DCell.

5) Spectral bounds: Mohar proved the following lower
bound for the diameter D of a graph of N vertices [13] (also
cited in [4, p.305]):

D ≥ 4
Nλ2

, (52)

where λ2 is the second smallest eigenvalue of the Laplacian.
The following spectral upper bound was proved by

Chung [2]:

D ≤
⌈

cosh−1(N − 1)
cosh−1 λN+λ2

λN−λ2

⌉
. (53)

Here λN is the largest eigenvalue of the Laplacian.
The difficulty of finding λ2 and λN for large n or k aside, it

appears that these bounds do not perform well even for small
values of n and k, as table IV shows.

Given this discouraging performance, we have decided to
not further pursue the spectral approach to bounding the
diameter.

D. Symmetry

The symmetries of a data center network are of importance
for two reasons. On the one hand, more symmetry makes for
a more regular network and facilitates the initial wiring. On
the other hand, a high degree of asymmetry could allow for
nearly perfect autoconfiguration.

1) Generalized DCell: It turns out that, at least for n ≥ 3,
every graph automorphism of a generalized DCell respects its
leveled structure; that is, a DCellL will be mapped to another
DCellL for all L, and all link levels are preserved.

Definition 2. A link level preserving graph automorphism
(LLPGA) is a graph automorphism that maps L-level links
to L-level links for each L.

Lemma 1. For n ≥ 3, every graph automorphism of a DCell
is a LLPGA.

Proof: The proof is by induction on the link level L. The
base case is L = 0. If two adjacent vertices are connected
by a 0-link, then they have n− 2 ≥ 1 common neighbors. If
they are connected by a link of degree k ≥ 1, however, they
have no common neighbors. This shows that 0-links must be
mapped to 0-links, and hence DCell0’s must be mapped to
DCell0’s.

Now suppose a graph automorphism τ preserves link levels
for all levels L < k and maps DCellk−1’s to DCellk−1’s.
Then, contracting each DCellk−1 to a single point is invariant
under τ . In the contracted graph, a DCellk is a complete graph,
and so adjacent vertices have tk−1 − 1 common neighbors if
they are connected by a k-link, but no common neighbors if
they are connected by a link of greater degree. As desired, we
see that k-links must be mapped to k-links by τ , and hence
DCellk’s must be mapped to DCellk’s by τ .

Definition 3. A sequence of nonzero link levels P =
(L1, ..., Lm) induces a function ρP from the graph to itself
as follows: ρP (v) is the vertex we arrive at if we start from
vertex v and take at the ith step the Li-level link. We call such
a function a path function.

Lemma 2. Path functions are set automorphisms. Further-
more, path functions commute with LLPGA’s.

Proof: First of all, note that path functions are well-
defined since each node has a unique L-level link for each
L satisfying 1 ≤ L ≤ k. Next, note that a path function ρP
where P = (L1, ..., Lm) has as its inverse the path function ρQ
where Q = (Lm, ..., L1). Finally, that path functions commute
with LLPGA’s is clear from the two definitions.

2) α-DCell: Despite its simple arithmetical definition, it
seems that α-DCell is highly asymmetric. In the following,
we discuss the only symmetry we could find.

Definition 4. The complement of a vertex v = [ak, ..., a1, a0]
is

v̄ = [tk−1 − ak, ..., t0 − a1, n− 1− a0].

The corresponding uid’s satisfy ū = tk − 1− u.

Note that ¯̄u = u. Furthermore, it is not hard to show
that mapping each vertex to its complement results in an
isomorphic graph.

Theorem 5. The map σ : v 7→ v̄ is a graph automorphism of
α-DCell.



Proof: The proof is by induction on k. A DCell0 is just
a complete graph, so for k = 0 the statement is certainly true.
If k ≥ 1, by the α connection rule, we have

[a, b]↔

{
[b+ 1, a] if a ≤ b,
[b, a− 1] if a > b.

(54)

Consequently, we have

[a, b] = [tk−1 − a, (tk−1 − 1)− b] (55)

↔


[tk−1 − 1− b+ 1, tk−1 − a]

if tk−1 − a > (tk−1 − 1)− b,
[tk−1 − 1− b, tk−1 − a− 1]

if tk−1 − a ≤ (tk−1 − 1)− b,
(56)

=

{
[tk−1 − (b+ 1), (tk−1 − 1)− a] if ā ≤ b̄,
[tk−1 − b, (tk−1 − 1)− (a− 1)] if ā > b̄,

(57)

=

{
[b+ 1, a] if ā ≤ b̄,
[b, a− 1] if ā > b̄.

(58)

Based on some empirical evidence, we are led to conjecture
that this is in fact the only symmetry of the graph.

Conjecture 1. For k ≥ 2, the automorphism group of an
α-DCellk consists of just the identity and σ.

So far, this conjecture has been verified for k = 2, 2 ≤ n ≤
6 by directly computing the automorphism group. It has also
been verified indirectly for k = 3, 2 ≤ n ≤ 4 by looking at
the shortest-path routing distribution for each vertex. In these
cases, each pair (v, v̄) had a unique distribution.

Fact 4. The conjecture holds for k = 2 and 2 ≤ n ≤ 6.

The rest of this section describes our work in progress on
proving the conjecture.

Lemma 3. For k ≥ 2, the special case [c, 0, 0] where c = 0̄
or c = [a, b] is routed via the link sequence (k, k − 1, k, k −
1, k, k − 1) as follows:

[c, 0, 0]⇒∗



[2tk−2 + 1, 2, 1] if a = 0, b = 0
[tk−2, a− 1, 0̄] if a ≥ 1, b = 0
[tk−2 + 1, a+ 1, b− 1] if 0̄ > a ≥ 1, b = 1
[tk−2 + 1, 0, 0] if a = 0̄, b = 1
[tk−2, a, b− 1]

if a < b, b ≥ 1 or a ≥ b, b ≥ 2
[tk−2, 0̄, 0̄] if c = 0̄

(59)
The only value of c for which [c, 0, 0] is routed to [c, 0, x] for
some x is tk−2 = [1, 0].

Proof: This can be computed directly from the definitions
of k and k − 1 level links. The second statement is found by
checking the six cases in equation (59).

Lemma 4. For k ≥ 2 and 2 ≤ n ≤ 6, the only LLPGA’s are
the identity and σ.

Proof: The proof is by induction on k. The base cases
are stated in fact 4.

Now suppose k ≥ 3 and the theorem holds for k − 1.
Let τ be a LLPGA. τ induces a link-preserving k − 1 graph
automorphism τ̃ as follows:

τ̃(x) = y, where [c, y] = τ([tk−2, x]). (60)

By the induction hypothesis, it follows that τ̃(0) = 0 or
τ̃(0) = 0̄. So it remains to show only that we must have
c = tk−2 or c = tk−2, respectively. Then, by the autoconfigu-
ration algorithm 1 proved later on, τ is completely determined
and is the identity in the former and σ in the latter case.

First suppose τ̃(0) = 0. Since τ is link level preserving,
by lemmas 2 and 3, we see that c must be tk−2, as desired.
Similarly, taking complements in lemma 3, we see that if
τ̃(0) = 0̄, then we must have c = tk−2.

Let us summarize our progress on the conjecture so far and
what remains to be done.
• Combining lemmas 1 and 4, we see that the conjecture

is proven for 3 ≤ n ≤ 6.
• For n = 2, we have only shown that the only LLPGA’s

are the identity and σ. To finish the proof of the con-
jecture, we would need to show that lemma 1 also holds
for n = 2 when k ≥ 2 (for n = 2, k = 1, the lemma is
false). A different proof (or at least a different family of
base cases) is needed to do this.

• To prove the conjecture for all n ≥ 7, we would have
to find a way of proving the base case in lemma 4 for
arbitrary n.

3) Other connection rules:

Theorem 6. Suppose the k-level connection rule of a DCell
is of the form:

ρk : [a, b]↔ [a+ b+ 1 (mod tk−1 + 1), g(b)], (61)

where g is any permutation on {0, ..., tk−1−1}. Then the map

τ : [a, b] 7→ [a+ 1 (mod tk−1 + 1), b] (62)

is a graph automorphism. τ generates a cyclic subgroup of
the automorphism group of order tk−1 + 1.

Proof: We have

τ([a, b]) = [a+ 1 (mod tk−1 + 1), b] (63)
↔ [(a+ 1) + b+ 1 (mod tk−1 + 1), g(b)] (64)
= [(a+ b+ 1) + 1 (mod tk−1 + 1), g(b)] (65)
= τ([a+ b+ 1 (mod tk−1 + 1), g(b)]). (66)

As for the second assertion, clearly τ is of order tk−1+1, since
for no smaller number c do we have a+c ≡ a (mod tk−1 + 1).

Note that β, γ, and δ are all of this form. Hence, these
connection rules lead to significantly more symmetric graphs



than the α rule. This group of symmetries is very apparent in
figure 2.

For β-DCell, the map σ : u 7→ ū of theorem 5 is also
a graph automorphism. As is apparent in figure 2, σ can be
viewed as a flip over an axis of the figure. So σ and τ together
generate a subgroup isomorphic to the dihedral group of order
2(tk−1 + 1).

IV. APPLICATIONS

In the previous chapter, we have proved important properties
of the graph. To use a DCell network in practice, it is important
to be able to configure the servers automatically. Furthermore,
an efficient routing algorithm is needed, as shortest path rout-
ing can only be performed in small networks. In this chapter,
we present an autoconfiguration algorithm and generalize the
DCellRouting algorithm of [7].

A. Autoconfiguration

If a data center network of several hundreds of thousands
or even millions of servers were deployed, it would be nearly
impossible to correctly hardcode the uid on each individual
computer. For this reason, it is important that the network can
autoconfigure itself given only minimal initial information—
and do so efficiently in the face of power outages or other
network wide failures. We present in this subsection an algo-
rithm that accomplishes this purpose. Assuming only that each
server knows the level of each of its links, we show that it is
sufficient to hardcode the uid of only the first n servers.

Algorithm 1 (Autoconfiguration). Given a full DCellk and the
labels for a single DCell0 we can uniquely assign the uid’s
for the entire DCellk, assuming each server knows the level
of each of its links.

Proof: We prove this by providing an algorithm that
correctly labels DCell.

The algorithm proceeds level by level. We are assuming
one DCell0 is already labeled, so we need only provide
an algorithm for labeling a DCellk given a fully labeled
DCellk−1. First, we use the labeled DCellk−1 to fully label
the 0th node in every other DCellk−1 by following the level-k
link of each node in the DCellk−1. This gives the first entry
in every node’s uid.

Now consider a level-k link [ak, x] ↔ [bk, y]. Then x and
y are completely determined by the connection rule, since
we know that there is a unique k-level link between the
DCellk−1’s ak and bk. Thus, the entire uid of every node is
now determined.

B. Routing

Since shortest path routing is feasible only for small net-
works [14], it is important to have an efficient, locally com-
putable routing algorithm. In [7], a recursive routing algorithm
called DCellRouting is presented for the α-DCell. In this
subsection, we show that DCellRouting can be made to work
for any connection rule. We also prove a number of results
concerning the path length distribution and flow distribution
when using DCellRouting.

1) Generalized DCellRouting: Generalized DCellRouting
is quite simple, and works almost exactly like the original
DCellRouting algorithm.
• If the source and destination are identical, do nothing.
• If the source and destination are within the same DCell0,

just take the link connecting the two.
• Otherwise, determine the largest L such that the source

and destination are not within the same DCellL−1. We
know that there is a unique link between the two
DCellL−1’s. Call the nodes at the two ends of the link
a and b. Then we route from the source to a using
DCellRouting on a DCellL−1, then take the L-level link,
and finally route from b to the destination, again using
DCellRouting on a DCellL−1.

The only aspect of this algorithm that is connection-specific
is the computation of a and b. For simple rules such as α, β,
γ, and δ, this is a quick computation. If random connection
rules are used, this would necessarily involve a lookup in a
potentially very large table, which would significantly detract
from the usefulness of the algorithm.

2) Path-Length Distribution: As shown in [7], the longest
path using DCellRouting is 2k+1 − 1. In fact, the proof is
essentially identical to that of theorem 3.

Fix a vertex v in a DCellk and let Nk
i denote the number of

servers that are exactly i hops away from v in DCellRouting.
It turns out that Nk

i is independent of the choice of v, as the
following theorem shows. It is remarkable that DCellRouting
is so symmetric, given how asymmetric it is possible for a
DCell to be, especially for the α connection rule.

Theorem 7. Nk
i satisfies

Nk
0 = 1, (67)

N0
i = δi0 + (n− 1)δi1, (68)

Nk
i = Nk−1

i +
i−1∑
j=0

Nk−1
j Nk−1

i−1−j , for k, i ≥ 1. (69)

Here δij is the Kronecker delta, which is 1 if i = j and 0
otherwise.

Proof: Equations (67) and (68) are just the boundary
conditions: there is only one vertex at distance 0 from v,
namely v itself; and in a DCell0, all other vertices are at
distance 1, since a DCell0 is a complete graph.

Equation (69) is explained as follows: The number of
vertices i hops away is equal to the number of vertices i hops
away that are in the same DCellk−1 as v plus the number
of vertices i hops away that are in a different DCellk−1. The
former number is just Nk−1

i . For the latter number, we know
that exactly one of the hops must be a k-level link, since we
are using DCellRouting. The sum displayed counts for each j
the number of vertices we can reach by making j hops in the
DCellk−1 that v is in, then taking a k-level link, and finally
making (i− 1)− j more hops in the other DCellk−1.

For n = 2, these numbers are described in [16]. Following
the proof in [11], we arrive at the following result.



Theorem 8. Nk
i = [xi+1]fk(x), where

f0(x) = x+ (n− 1)x2, (70)

fk(x) = fk−1(x) + (fk−1(x))2 , for k ≥ 1. (71)

In words: For fixed k, the sequence Nk
i has a generating

function fk satisfying the above recurrence relation.

Proof: Boundary condition (68) is satisfied because of
equation (70). From (70) and (71) it is clear that [x]fk(x) = 1
for all k, which means that boundary condition (67) is also
satisfied. Finally, by (71) we have

[xi+1]fk(x) = [xi+1]fk−1(x) + [xi+1] (fk−1(x))2 (72)

= [xi+1]fk−1(x) +
i+1∑
j=0

[xj ]fk−1(x)[xi+1−j ]fk−1(x)

(73)

= [xi+1]fk−1(x) +
i−1∑
j=0

[xj+1]fk−1(x)[x(i−1−j)+1]fk−1(x),

(74)

where for the last inequality we changed the summation index
j 7→ j+ 1 and used the fact that [x0]fk(x) = 0 for all k. This
shows that the recurrence (69) is satisfied and concludes the
proof.

Using theorem 8, we may easily compute some special cases
of Nk

i .

Corollary 3. The following holds:

1) Nk
1 = n− 1 + k.

2) Nk
2k+1−2 = 2k(n− 1)2

k−1.

3) Nk
2k+1−1 = (n− 1)2

k

.

Proof: (1) is just the valency of a DCellk. (3) and (2) are
the leading two coefficients of

(
x+ (n− 1)x2

)2k

.
Now we turn to some empirical studies of the mean and

mode of the DCellRouting path length distribution. Table V
shows the ratio of the mode to the diameter 2k+1−1. It appears
to approach a constant depending only on n. This was also
observed for the special case n = 2 in [17]. The same appears
to be true for the variance of the distribution—see table VI.

Table VII shows the ratio of the mean to the mode. For
sufficiently large k, they are nearly identical. So it would
appear that a good estimate for the one would immediately
lead to a good estimate for the other.

Conjecture 2. There exist constants an and bn such that 1
2 <

an < 1, limn→∞ an = 1, and

mean = (an + o(1)) · 2k+1, (75)

mode = (an + o(1)) · 2k+1, (76)

variance = (bn + o(1)) · 2k+1. (77)

for DCellRouting.

n\k 2 3 4 5 6 7 8
2 0.5714 0.5333 0.5806 0.5714 0.5748 0.5725 0.5734
3 0.7143 0.7333 0.7097 0.6984 0.7008 0.6980 0.6986
4 0.7143 0.8000 0.7742 0.7778 0.7717 0.7686 0.7691
5 0.8571 0.8667 0.8387 0.8254 0.8110 0.8118 0.8121
6 1.0000 0.8667 0.8710 0.8413 0.8425 0.8431 0.8415
7 1.0000 0.8667 0.8710 0.8730 0.8661 0.8667 0.8630
8 1.0000 0.8667 0.9032 0.8889 0.8819 0.8824 0.8806

TABLE V: Ratio of mode to diameter for DCellRouting.

n\k 2 3 4 5 6 7 8
2 0.3138 0.3556 0.3477 0.3422 0.3395 0.3382 0.3375
3 0.3187 0.3258 0.3157 0.3107 0.3083 0.3070 0.3064
4 0.2867 0.2810 0.2720 0.2677 0.2656 0.2646 0.2640
5 0.2532 0.2432 0.2354 0.2317 0.2298 0.2289 0.2285
6 0.2242 0.2132 0.2063 0.2030 0.2014 0.2006 0.2002
7 0.2002 0.1892 0.1831 0.1802 0.1788 0.1781 0.1778
8 0.1804 0.1699 0.1644 0.1618 0.1605 0.1599 0.1596

TABLE VI: Ratio of variance to diameter for DCellRouting.

3) All-To-All Communication:

Theorem 9. In all-to-all communication using DCellRouting,
the number of flows FL carried by a L-level link is

FL =



t2k−1 for L = k,

t2L−1

k−1∏
j=L

(1 + 2tj) for 1 ≤ L ≤ k − 1,

(n− 1)
k−1∏
j=0

(1 + 2tj) for L = 0.

(78)

Proof: For convenience, define a DCell−1 to be a single
node (so that t−1 = 1) and consider an abstracted DCell0
represented by a complete graph. Each physical 0-level link
then corresponds to n − 1 abstract 0-level links, and so we
need only multiply F0 by n− 1 in the end to get the physical
number of flows carried by a 0-level link. (Note that for n = 2,
the abstract and physical representations are identical from a
graph-theoretic point of view.)

Consider an L-level link. We prove the expression for FL by
induction on k. First suppose L = k. Then note that a k-level
link carries precisely all the flows between the two DCellk−1’s
it connects. Since each DCellk−1 has tk−1 servers, the link
must support t2k−1 flows.

Now suppose that k > L and that the expression for FL
holds for k − 1. Since we are using DCellRouting, the only
additional flows carried by the link as k increases by 1 are
those that have one server in a different DCellk−1 and then
have to cross the link. Each pair of vertices utilizing the link in
the original DCellk−1 thus leads to 2tk−1 further flows, since
each of the vertices has one k-level link that will be utilized
by all tk−1 vertices in the DCellk−1 that the link connects to.
So we see that the expression for k − 1 has to be increased
by a factor of (1 + 2tk−1).

Once again, it is remarkable that the number of flows carried
by a link depends only on the link level in DCellRouting. This
is another example of the symmetry of DCellRouting on top
of a potentially highly asymmetric DCell.



n\k 2 3 4 5 6 7 8
2 0.9329 1.0228 0.9639 0.9917 0.9918 0.9987 0.9987
3 0.9277 0.9257 0.9711 0.9938 0.9939 0.9995 0.9995
4 1.0325 0.9405 0.9821 0.9825 0.9927 0.9978 0.9978
5 0.9166 0.9215 0.9600 0.9792 0.9985 0.9985 0.9985
6 0.8191 0.9582 0.9598 0.9968 0.9968 0.9968 0.9991
7 0.8436 0.9849 0.9855 0.9858 0.9949 0.9949 0.9994
8 0.8623 1.0053 0.9692 0.9870 0.9959 0.9960 0.9982

TABLE VII: Ratio of expected value to mode for DCellRout-
ing.

Using theorems 9 and 1, we can derive from the exact
expression for FL a fairly tight upper bound that is more
readily compared to the previously known bound 2k−Ltk.

Corollary 4. We have

F0 <
n− 1
n+ 1

2

2k(tk + 0.6) =
n− 1
n+ 1

2

2ktk(1 + o(1)). (79)

For 1 ≤ L < k, we have

FL <
tL − tL−1

tL + 1
2

2k−L(tk+0.6) =
tL − tL−1

tL + 1
2

2k−Ltk(1+o(1)).

(80)

Proof: We know from theorem 1 that tk + 0.6 > c2
k

>
tk + 1

2 . It follows that 1 + 2tj < 2c2
k

, and hence

F0 = (n− 1)(1 + 2t0) · · · (1 + 2tk−1) (81)

< (n− 1)2kc2
0
· · · c2

k−1
(82)

= (n− 1)2kc2
0+21+···2k−1

(83)

= (n− 1)2kc2
k−1 (84)

=
n− 1
c

2kc2
k

(85)

<
n− 1
n+ 1

2

2k(tk + 0.6) (86)

=
n− 1
n+ 1

2

2ktk(1 + o(1)). (87)

The expression for FL is found using the same approxima-
tions.

Note that, as n gets large, this bound asymptotically ap-
proaches the bound of 2k−Ltk proved in [7]. In figure 4,
our exact expression for FL is compared graphically with the
upper bound 2k−Ltk. As we can see, FL indeed approaches the
upper bound for large n. Also, we see that the load balancing
across link levels is better for small n.

Finally, we show that the expected value of the path-length
distribution is related to the flow distribution.

Theorem 10. The expected value of the path-length distribu-
tion is given by

E =
∑k
L=0 FL
tk − 1

. (88)

Proof: Let d(u, v) denote the distance between nodes u
and v in DCellRouting. A flow between u and v is carried by
d(u, v) edges in DCellRouting. So the sum of d(u, v) over all
distinct u and v is equal to twice the sum over all edges of

(a) k = 3

(b) k = 4

Fig. 4: Number of flows by link level in all-to-all communi-
cation using DCellRouting for various n and k. Also shown
is the upper bound from [7]. The numbers are relative to the
number of flows carried by a k-level link.

the number of flows carried by the edge. Since there are tk/2
links of each level, we have

∑
u 6=v

d(u, v) = 2
k∑

L=0

FL

(
tk
2

)
. (89)

The theorem follows upon dividing both sides by tk(tk − 1),
the number of pairs (u, v) with u 6= v.

As we have seen, FL asymptotically approaches 2k−Ltk for
large n and L < k. Furthermore, noting that Fk = t2k−1 =



n k DCR SP-α SP-β SP-γ SP-δ
2 2 3.73 3.48 3.50 3.46 3.46
4 2 5.16 4.87 4.71 4.68 4.67
6 2 5.73 5.48 5.30 5.26 5.28
8 2 6.04 5.82 5.66 5.59 5.64
2 3 8.18 6.95 6.58 6.44 6.49
4 3 11.29 9.96 8.99 8.68 8.81

(a) Mean

n k DCR SP-α SP-β SP-γ SP-δ
2 2 1.48 1.23 1.25 1.23 1.23
4 2 1.42 1.27 1.15 1.12 1.13
6 2 1.25 1.18 1.09 1.05 1.08
8 2 1.12 1.09 1.04 1.00 1.04
2 3 2.31 1.63 1.41 1.32 1.37
4 3 2.05 1.64 1.22 1.08 1.14

(b) Standard deviation

TABLE VIII: Expected value and standard deviation of path
length distribution. DCR and SP stand for DCellRouting and
shortest path routing, respectively.

tk − tk−1, we see that

E ≤
∑k−1
L=0 2k−Ltk + (tk − tk−1)

tk − 1
(90)

=
2k+1tk − tk−1

tk − 1
(91)

≈ 2k+1

(
1− tk−1 − 1

tk

)
(92)

= 2k+1(1− o(1)), (93)

with asymptotic agreement. This agrees with our claim in
conjecture 2 that

lim
n→∞

an = 1. (94)

V. SIMULATION

In this chapter, we compare empirically the performance
of DCellRouting and shortest path routing for the various
connection rules. The simulations were necessarily restricted
to small n and k; but given the doubly exponential growth of
DCells, these are the only realistic values anyway.

A. Path-Length Distribution

Table VIII compares, for some small n and k, the mean
and standard deviation of the path length distribution when
using DCellRouting or shortest path routing. Shortest path
routing for the γ connection rule has the lowest expected
value and standard deviation, making it the rule of choice for
shortest path routing. Figure 5 shows the different path length
distributions for the two k = 3 cases.

B. Flow Distribution

The flow distributions by link level using shortest path
routing and DCellRouting are shown in figure 6 for n =
2, k = 3, and in figure 7 for n = 4, k = 3. We observe
that DCellRouting does a poor job of load-balancing. Shortest
path routing for α-DCell does better than DCellRouting on

(a) n = 2, k = 3

(b) n = 4, k = 3

Fig. 5: Path length distributions for k = 3. DCR and SP stand
for DCellRouting and shortest path routing, respectively.

average, but has significant bottlenecks that exceed even those
of DCellRouting. Shortest path routing for the β, γ, and δ
connection rules does better on average and also exhibits very
good load-balancing: there are no significant bottleneck links.
It appears that γ is again the rule of choice for all-to-all
communication using shortest path routing.

VI. CONCLUSION

In constructing generalized DCells, we have exhibited a
new family of graphs that could be useful for large-scale data
center networks. We have proven that almost all properties of
the original DCell design carry over to the generalized DCell,
and in many cases we have provided improved bounds or even
exact expressions that were not formerly known. Furthermore,
we have presented an adapted version of DCellRouting as
well as an autoconfiguration algorithm that make the use of
generalized DCells feasible for real networks.

Furthermore, we have proposed three specific new instances
of the generalized DCell family, termed β, γ, and δ, and we



(a) α-DCell (b) β-DCell

(c) γ-DCell (d) δ-DCell

Fig. 6: Distribution of flows by link level using all-to-all communication for n = 2 and k = 3. DCR and SP stand for
DCellRouting and shortest path routing, respectively. The error bars indicate the maximum and minimum values.

have shown that these may have more desirable properties than
the original α-DCell design. In particular, we emphasize that
the β, γ, and δ designs

1) exhibit significantly better load-balancing properties in
all-to-all communication using shortest path routing than
the original design;

2) are a lot more symmetric than the original design.

Point 1 is of importance to data center networks in general
and to applications such as MapReduce [3] in particular. The
importance of point 2 is two-fold. First, more symmetry should
ease the wiring of the network. Second, heuristically speaking,
more symmetry means more regularity, and this increased
regularity, we hope, will facilitate the design of new algorithms
for DCell networks.

Our future research will focus on the following questions.

1) What other connection rules are possible, and what
properties should they have to make them most useful
for data center networks?

2) Is there an efficient, load-balancing routing algorithm for

one of the new connection rules? Shortest path routing
is only feasible for small networks, and without a new
routing algorithm we may not be able to reap the benefits
of the specific connection rule.

3) What are the minimal requirements for (robust) auto-
configuration? Can we draw on properties of a specific
connection rule to design a better autoconfiguration
algorithm? For example, the original DCell is highly
asymmetric and in principle nearly perfect autoconfigu-
ration should thus be possible. But so far we have not
found an efficient way of exploiting the asymmetry.

VII. ACKNOWLEDGEMENT

This work was performed when Markus Kliegl, Jason Lee,
Jun Li, and Xinchao Zhang were visiting students and David
Rincón was a visiting academic mentor for the MSRA and
UCLA IPAM RIPS-Beijing 2009 program at Microsoft Re-
search Asia. The four students are equal contributors. Funding
was provided by the NSF and MSRA.



(a) α-DCell (b) β-DCell

(c) γ-DCell (d) δ-DCell

Fig. 7: Distribution of flows by link level using all-to-all communication for n = 4 and k = 3. DCR and SP stand for
DCellRouting and shortest path routing, respectively. The error bars indicate the maximum and minimum values.

REFERENCES

[1] A. V. Aho and N. J. A. Sloane. Some Doubly Exponential Sequences.
Fibonacci Quarterly, Vol. 11 (1970), pp. 429–437.

[2] F. K. Chung. Spectral Graph Theory. CBMS no. 92. AMS, 1997.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Procesing on

Large Cluster. In OSDI’04, 2004.
[4] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.
[5] A. Ferencz, R. Szewczyk, J. Weinstein, and J. Wilkening. Graph

Bisection. Final Report. University of California at Berkeley, 1999.
[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S.

Lu. BCube: A High Performance, Server-centric Network Architecture
for Modular Data Centers In ACM SIGCOMM’09, 2009.

[7] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A
Scalable and Fault-Tolerant Network Structure for Data Centers. In ACM
SIGCOMM’08, 2008.

[8] G. Jäger. An Efficient Algorithm for Graph Bisection of Triangulariza-
tions. Applied Mathematical Sciences 25(1):1203-1215, 2007.

[9] B. W. Kernighan and S. Lin, An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, Vol. 49 (1970), pp.
291–307.

[10] F. Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays. Trees. Hypercubes. Morgan Kaufmann, 1992.

[11] J. B. Lewis. The Art of Problem Solving, 2008. http://www.
artofproblemsolving.com/Forum/viewtopic.php?t=203662

[12] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu. FiConn: Using
Backup Port for Server Interconnection in Data Centers. In IEEE
INFOCOMM’09, 2009.

[13] B. Mohar. Eigenvalues, diameter, and mean distance in graphs. Graphs
and Combinatorica 7(1), 1991.

[14] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-
Wesley Professional, 1998.

[15] N. J. A. Sloane, Ed. Sequence A007018. The On-Line Encyclopedia of
Integer Sequences, 2009.

[16] Ibid. Sequence A122888.
[17] Ibid. Sequence A122893.
[18] J. Snyder. Microsoft: Datacenter Growth Defies Moore?s Law. PCWorld,

2007. http://www.pcworld.com/article/130921/microsoft datacenter
growth defies moores law.html


