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Abstract: This paper reviews the use of set-membership methods in robust fault detection and isolation 
(FDI) and tolerant control (FTC). Set-membership methods use a deterministic unknown-but-bounded 
description of noise and parametric uncertainty (interval models). These methods aims to check the 
consistency between observed and predicted behavior by using simple sets to approximate the set of 
possible behaviors (in parameter or state space). When an inconsistency is detected a fault can be 
indicated, otherwise nothing can be stated. The same principle can be used to identify interval models for 
fault detection and to develop methods for fault tolerance evaluation. Finally, some real application of 
these methods will end the paper exemplifying the success of these methods in FDI/FTC. 
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1. INTRODUCTION 

 
Model-based fault detection of dynamic processes is based on 
the use of models to check the consistency of observed 
behaviours. However, when building a model of a dynamic 
process to monitor its behaviour, there is always some 
mismatch between the modelled and real behaviour due to the 
fact that some effects are neglected, some non-linearities are 
linearised in order to simplify the model, some parameters 
have tolerance when are compared between several units of 
the same component, some errors in parameters or in the 
structure of the model are introduced in the model calibration 
process, etc. These modelling errors introduce uncertainty in 
the model, but many times they could be bounded and 
included in the fault detection model. There are several ways 
of considering the uncertainty associated with the model 
(structured or non-structured). In FDI community a fault 
detection algorithm able to handle uncertainty is called 
robust. The robustness of fault detection algorithm is the 
degree of sensitivity to faults compared to the degree of 
sensitivity to uncertainty (Chen and Patton 1999). Research 
on robust fault detection methods has been very active in the 
FDI community these last years. One of the most developed 
families of approaches, called active, is based on generating 
residuals which are insensitive to uncertainty, while at the 
same time sensitive to faults. This approach has been 
extensively developed by several researchers using different 
techniques: unknown input observers, robust parity 
equations, H, etc. In the book of Chen and Patton (1999), 
there is an excellent survey of this active approach. On the 
other hand, there is a second family of approaches, called 
passive, which enhance the robustness of the fault detection 
system at the decision-making stage. This approach is still 
under research. Several techniques have been used, but most 

of them are based on using an adaptive threshold at the 
decision-making stage.  
 
In the present paper, passive robust fault detection when 
considering the nominal model plus the uncertainty on every 
parameter bounded by intervals is presented and reviewed. 
This type of uncertainty modelling provides a type of models 
known as an interval model. The use of interval models has 
received several names depending on the field of application 
(Jaulin et al., 2001): in circuit analysis it is known as worst-
case (or tolerance analysis), in automatic control as set-
membership (also known, in this field as bounding or robust  
approach) and in qualitative reasoning as semi-quantitative. 
In the automatic control literature, the set-membership (or 
robust) approach applied to parameter and state estimation 
has been treated extensively in the book of Milanese et al.  
(1996) while their application to control can be found in 
(Bhattacharyya, 1995; Ackermann, 2002). The worst-case 
analysis of circuits has been treated in the book of Kolev 
(1993) and in several research papers appearing in circuits 
journals and congresses. Finally, the semi-quantitative 
approach is treated in the book of Kuipers (1994) and in 
several papers appearing in artificial intelligence journals and 
congresses.  
 
In FDI, the use of interval models for adaptive threshold 
generation started with the seminal work of Horak (1988). 
Since then several research groups have been working these 
last years to develop and apply this approach to FDI and 
FTC, see for example: (Armengol et al., 2000;2008; Hamelin 
et al, 2001; Sainz et al., 2002; Puig et al., 2002; 2008;  Tornil 
et al, 2003; Fagarasan et al., 2004 and Ploix et al., 2006; 
Adrot et al, 2008). This approach has also been integrated 
with Qualitative Reasoning tools (from AI communities) 
giving a diagnostic tool known as CA~EN (Travé-Massuyes 
et al, 2001).  



 
 

     

 

 
The paper also reviews the different approaches that can be 
used to identify interval models for fault detection. This 
research has started with the seminal work of (Ploix et al., 
1999). New fields of applications of set-membership methods 
to areas close to FDI as fault tolerant control are also 
presented. Finally, the paper presents several industrial 
applications where set-membership have been successfully 
used. 
 
The remainder of the paper is organized as follows: in 
Section 2, interval models of dynamic systems for fault 
detection are introduced. In Section 3 fault detection using 
the worst-case approach is recalled, while Section 4 presents 
the fault detection using the set-membership approach. 
Section 5 reviews the methods for identification of interval 
models using real data. Section 6 presents the use of set-
membership methods to the fault tolerance evaluation of 
control laws.   Section 7 presents several successful 
application of set-membership methods for fault detection 
based on interval models. Finally, the major conclusions are 
drawn in Section 8. 
 
 
2. INTERVAL MODELS OF DYNAMIC SYSTEMS FOR 

FAULT DETECTION 
 

2.1 Interval models of dynamic systems 
 
Considering that the system to be monitored can be described 
by a MIMO linear uncertain dynamic model in discrete-time 
and state-space form as follows  
 

( k 1) ( ) ( k ) ( ) ( k ) ( k )

( k ) ( ) ( k ) ( ) ( k ) ( k )

   
  

x A θ x B θ u w

y C θ x D θ u v
    (1) 

 
where y(k)ny, u(k) nu, x(k)nx  are the system output, 
input and the state-space vectors respectively; A( θ )nxnx, 
B( θ )nxnu, C( θ )nynx and D(θ )nynu are the state, 
the input, the output and the direct transmission matrices 

respectively; nθ  is the vector of uncertain parameters 
where Θ   is a bounded set of box (interval) type θ Θ  such 

that each component  iii ,  i=1,..n,.  This is why the 

resulting model is known as an interval model.  The set  Θ  
contains all possible values of θ  when the system operates 
normally.  Intervals for uncertain parameters can also be 
inferred from real data as will be discussed in Section 5. 
 
The system in Eq. (1) can, alternatively, be expressed in 
input-output form using the shift operator q-1 and assuming 
zero initial conditions as follows:  
 

     1( ) ( , ) ( )k q ky M θ u                                    (2) 

 

where 1( , )qM θ  is given by 

 
1 1( , ) ( )( ( )) ( ) ( )q q   M θ C θ I A θ B θ D θ  

 
2.2 Interval models for fault detection 
 
The principle of model-based fault detection is to test 
whether the measured input and output from the system is 
consistent with the behaviour described by a model of the 
faultless system. If the measurements are inconsistent with 
the model of the faultless system, the existence of a fault is 
proved. The residual vector, known also as analytical 
redundant relation (ARR),  is usually used to check the 
consistency between the predicted, ˆ( )ky , and the real 

measured behaviour, y(k) 
 

)k(ˆ)k()k( yyr            (3) 

 
Ideally, the residuals should only be affected by the faults. 
However, the presence of disturbances, noise and modelling 
errors causes the residuals to become nonzero and thus 
interferes with the detection of faults. Therefore, the fault 
detection procedure must be robust against these undesired 
effects (Chen and Patton, 1999). In case of modelling a 
dynamic system using an interval model, the worst-case 
predicted output is described by a set that can be bounded at 
any iteration by an interval  
 

ˆ ˆ ˆ( ) [ ( ), ( ) ]ii i
y k y k y k                            (4) 

 
in a non-faulty case. Such interval is computed independently 
for each output (neglecting couplings between outputs) as 
follows 
 

ˆ ˆ( ) min( ( , ))i iy k y k



θ Θ

θ  and ˆ ˆ( ) max( ( , ))i iy k y k



θ Θ

θ  (5) 

 
Such interval can be computed using the algorithm based on 
numerical optimization presented in (Puig et al., 2003). Then, 
the fault detection test is based either on propagating the 
parameter uncertainty to the residual, and checking if 
 

ˆ ˆ( k ) ( k ) , ( k )     y y y                 (6a) 

or, equivalently   
 

ˆ ˆ0 ( k ), ( k ) ( k ) ( k ) , ( k )           r r y y y            (6b) 

 
holds or not. In case it does not hold a fault can be indicated.  
This test is named as direct test. Alternatively,  the inverse 
test consists on checking if there exists a parameter values in 
the parameter uncertainty set Θ  such that model (2) is 
consistent with the system measurements. More formally, to 
check if 
 

 ˆ| ( , ) ( ) , ( )k k k     θ Θ y θ y y           (7) 

 
In the case that is condition is not satisfied, a discrepancy 
between measurements and the model is detected and a fault 
should be indicated. This test can be implemented with the 



 
 

     

 

parameter estimation algorithms used in the set-membership 
approach (Milanese et al., 1996). 
 

3. FAULT DETECTION USING THE WORST-CASE 
APPROACH 

3.1  Fault detection using interval observers 

The system described by Eq. (1) can be monitored using a 
linear observer with Luenberger structure.  The resulting 
interval observer can be written as:   
 

ˆ ˆ( 1, ) ( ( ) ( )) ( ) ( ( ) ( )) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( , ) ( ) ( ) ( ) ( )
o o

k k k

k k k k

k k k

    
   

 

x θ A θ LC θ x B θ LD θ u

Ly A θ x B θ u Ly

y θ C θ x D θ u

 (8) 

 
where u(k) is the measured system input vector, ˆ ( , )kx θ  is the 

estimated space-state vector and ˆ ( , )ky θ  is the estimated  

output vector for a given value of θ Θ . The observer gain 

matrix nx nyL  is designed to stabilize the matrix ( )oA θ  
and to guarantee a desired performance regarding fault 
detection for all θ Θ (Chilali et al, 1996). Alternatively, the 
observer given by Eq. (8) can be expressed in input-output 
form using the q-transform and considering zero initial 
conditions as follows:  
 

1 1ˆ ( k ) ( q , ) ( k ) ( q , ) ( k )  y G θ u H θ y        (9) 
where 

  11
o o( q , ) ( ) q ( ) ( ) ( )

   G θ C θ I A θ B θ D θ    

  11
o( q , ) ( ) q ( )

  H θ C θ I A θ L  
 
Interval observation requires solving the optimization 
problems introduced in Eq. (5) using Eq. (9).  In order to 
preserve uncertain parameter time-invariance and to avoid 

the wrapping effect1, the observer output prediction in Eq. (5) 
is substituted by  

     

       

k
0 0

k 1
( k 1 j )

0
j 0

ˆ k

j


 





 

y C θ A θ x

C θ A θ B θ u
       (10) 

 

When proceeding in this way, the optimization problems in 
Eq. (10) will not be convex since the non-linearity with 
respect to parameters. Therefore, the existence of a unique 
optimum is not guaranteed. In order to guarantee that the 
global optimum is reached, a global optimization algorithm 
must be used. In particular, a branch and bound interval 
arithmetic global optimization based on Hansen’s algorithm 
(Hansen, 1992) can be used. An additional computational 

                                                 
1 The problem of wrapping is related to the use of a crude approximation of 
set of states associated with the interval simulation. If at each iteration, the 
true solution set is wrapped into its interval hull, since the overestimation of 
the wrapped set is proportional to its radius, a spurious growth of the 
enclosures can result if the composition of wrapping and mapping is iterated. 

problem appears when using Eq. (10) since the degree of the 
polynomial in the objective function increases with time. This 
implies that the amount of computation needed is also 
increasing with time, being impossible to operate over a large 
time period. This problem can be solved if the interval system 
(1) is asymptotically stable (Puig et al., 2003). In this case, 
the predicted system output at time k depends, approximately, 
only on the inputs that occurred in a time sliding window with 
a length   (whose value is of the order of the settling time) 
and the state at the beginning of such window. Then, Eq. (9) 
can be approximated by limiting the computation to a finite 
time horizon as it has been proposed in (Puig et al., 2003). 
 
In case that uncertain parameters are considered time-
varying,  an iterative algorithm can be used that obtains the 
set of uncertain states at time k, k  from the set 1k  using 

the algorithm presented in Figure 1 (Bravo et al., 2008). 
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Fig. 1. Worst-case observer 

 
 
To implement such algorithm the set of uncertain should 

be approximated since the exact set of estimated states would 
be difficult to compute.  Several geometrical has been 
proposed in the literature ranging from parallelotopes or 
ellipsoids to zonotopes as proposed  Alamo et al. (2005).  A 
zonotope  of order m can be viewed as the Minkowski sum 
of m segments: 

 

 :m mB B    H Hz zp p              (11) 

 
where the segments are defined by the columns of matrix 

H and mB  is a unitary box composed of m unitary intervals. 
The order m is a measure for the geometrical complexity of 
the zonotopes (see Figure 2 for a zonotope of order 14). 
 

 
Fig. 2. Zonotope 

 
Zonotope arithmetic possesses a set of operations (as sum, 
affine transformation, intersection) that can be very 



 
 

     

 

efficiently implemented since they only involve operations 
with matrices 
 
3.2 Interval ARMA parity equations 
 
In case the observer gain in Eq. (7) is taken equal to zero 
(L=0), the observer becomes an interval simulator, since the 
output prediction is based only in the inputs and previous 
output predictions, and Eq. (9) becomes: 

1ˆ ( ) ( , ) ( )k q ky M θ u  while the residual is given by 

 
ˆ( k ) ( k ) ( k ) ( k ) ( q, ) ( k )   r y y y M θ u        (12)      

 
According to (Gertler, 1998), Eq. (12) corresponds with 
ARMA primary parity equations or residuals. This is an 
open-loop approach. Interval simulation requires solving the 
optimization problems following the same strategy as in the 
case of the interval observer but using the system matrices 
(1). In order to reduce computing complexity, as in observer 
case, a time window could be used. In this case this approach 
is known as  order ARMA parity equation (Tornil et al., 
2003). 
 
3.3 Interval MA parity equations 
 

On the other hand, in case observer gain in Eq. (7) is 
designed such that on the poles are at the origin (deadbeat 
observer), the observer becomes an interval predictor, since 
the output prediction is based only in measured inputs and 
outputs. The prediction equation (9) is moving average (MA) 
and follows a closed-loop approach. Thus, the corresponding 
residuals (11) are called MA primary parity equations or 
residuals (Gertler, 1998).  The optimization problems (5) that 
must be solved now are linear with respect to parameters, 
and, therefore convex. This means that there exist very 
efficient algorithms to solve them (as the simplex algorithm). 
Because of the linearity, the existence of a unique optimum is 
guaranteed being located in one of the vertices of the 
parameter uncertainty intervals. Interval prediction is not 
affected by the problem of wrapping because the predicted 
output is based on the previous output measurements instead 
of the interval of the previous predicted outputs (Puig et al., 
2003). Thus, interval prediction considers uncertain 
parameters as time varying. But,  time invariance in uncertain 
is wanted to be preserved, a  -order MA parity equation 
should be used (Tornil et al, 2003). Finally,  Ploix et al. 
(2006) has, recently,  proposed a method to obtain the 
interval parity equations directly from state-space using the 
Chow-Wilsky scheme. 

3.3  Comparison 

In Puig et al. (2008), the behaviour of the different interval 
fault detection approaches considered so far are studied and 
compared using the FDI benchmark proposed in 
DAMADICS project. Table 1 summarises the results of this 
comparison. This table can be used as a guideline to decide in 
which applications an approach is more suitable than the 

others. Prediction and simulation approaches have antagonist 
properties: prediction does not suffer from the wrapping 
effect, has low computational complexity, has low sensitivity 
to unmodeled dynamics but can suffer the following sensor 
fault effect and has high sensitivity to sensor noise. On the 
other side, the simulation approach has the opposite 
properties, presenting good performance to detect sensor 
faults in noisy systems. Finally, the observer approach is in 
the middle, with the advantage that since it has one more 
degree of freedom (the observer gain), it can be designed 
trying to minimize the bad effects and maximize the good 
effects. 
 
  

Table 1. Interval-based fault detection approaches  
Issue Simulation Observation Prediction

Wrapping Effect Yes Yes No 

Computational Complexity High High Low 

Unmodeled Dynamics 

Sensitivity 

High Medium Low 

Initial Conditions Sensitivity High Medium Low 

Fault Sensitivity  actuator Dynamic 

response 

Dynamic 

response 

Constant 

 sensor Constant Pulse Deadbeat

Noise Sensitivity  process LP filter LP filter Gain 

 sensor Gain HP filter HP filter 

 
 

 
4. FAULT DETECTION USING SET-MEMBERSHIP 

APPROACH 
 

Alternatively to the worst-case approach presented in 
previous section, the set-membership (or consistency) based 
approach relies on checking whether the measured sequence 
of system inputs and outputs  available  at every time instant 
k could have been generated by the model (2) and  parameter 
values in the parameter uncertainty set Θ  (Ocampo-Martínez 
et al., 2006a). This approach is related with the inverse test 
described in Section 2.  

 

4.1 Fault detection test in the parameter space 

The inverse test consists on checking if there exists a 
parameter in the parameter uncertainty set kΘ  such that 

model (2) is consistent with the systems measurements. This 
test can be easily implemented using the set-membership 
parameter estimation procedure described in Section 5, that 
operates in the recursive form: 
 

1k k k  F                                  (13) 

 
where:  ( ) | ( ) ( ) ( ) ( )n

k k ky k k y k       F θ p φ θ p  is 

the strip of consistent parameters with the current 
measurement. In fault detection using the inverse test, the 



 
 

     

 

model is assumed invalidated and fault is indicated if 

1k  Θ (Ingimundarson et al., 2008) 

 
Despite of outer approximation is the most used in fault 
detection due to it contains all the consistent models, the 
inner approximation, that contains only consistent 
parameters, can complement the use of outer approximation 
in order to improve fault detection behavior. 

4.2 Fault detection test in the state space 

A consistency-based state estimator assumes a priori 
boundson noise and uncertain parameters and constructs sets 
of estimated states that are consistent with the a priori bounds 
and current measurements. Several researchers as (Chisci et 
al., 1996)(Maksarov and Norton, 1996) (Shamma, 1997), 
(Calafiore, 2001) and (Kieffer et al., 2002), among others, 
have addressed this issue.  Consider a system given by Eq. 
(1), an initial compact set o  and a sequence of measured 

inputs  and outputs, the uncertain state set at time k using the 
set-membership approach can computed using the algorithm 
presented in Figure 3. A fault is detected when 

e p y
k k k      (Planchon and Lunze, 2006; Guerra et 

al., 2007). 
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Fig. 3. Set-membership state estimation 
 

5. IDENTIFICATION FOR ROBUST FAULT DETECTION 

5.1  Model parametrisation 

One of the key points in model based fault detection is how 
models are calibrated. Calibration would deliver a calibrated 
nominal model plus its modelling error in the form of interval 
parameters, that it will provide an interval of confidence for 
predicted behaviour. This type of models are known as 
“interval models”. To this aim, several authors (Ploix et al.,  
1999;  Calafiore et al.,  2002; Campi et al.,  2009) have 
suggested an adaptation of classical system identifications 
methods to provide the nominal model plus the uncertainty 
intervals for parameters that guarantee that all registered data 
from the system in non-faulty scenarios will be included in 
the interval model. These algorithms are based on using 
classical identification methods (for example, least-squares) 
to provide the nominal estimate for system parameters. Then, 
the intervals of uncertainty for parameters are adjusted until 
all the measured data is covered by the model prediction 

interval. These algorithms proceed  considering that the 
interval model (1) to be identified can be expressed in 
regressor form as follows   

 
ˆ( ) ( ) ( ) ( ) ( )y k k v k y k v k   φ θ            (14)  

 
where: ( )kφ  is the regressor vector of dimension 1 n  

which can contain any function of inputs ( )u k  and 

outputs ( )y k ; ( )v k is additive noise bounded by a constant 

( )v k  ; kθ Θ  is the parameter vector of dimension 

1n   and kΘ  is the set that bounds parameter values.  

described by a zonotope centered in the nominal model : 

 0 0 :n n
k B B    Θ θ H θ Hz z              (15) 

 
Notice that a particular case corresponds to the case the 
parameter set kΘ  is bounded by an interval box: 

  min max 0 0, ,i i i i i i i                

with i=1,…, n . This set can be viewed as a zonotope with 

H equal to a n n  diagonal matrix:  

 

1 2( , ,..., )ndiag


   H                            (16) 

 
Given a sequence of M regressor vector  values ( k )φ  in a 

fault free scenario and a model parameterised as in Eq. (14), 
the aim is to estimate  model parameters and their uncertainty 
(model set) following either a worst-case or set-membership 
parameter estimation approach.  
 

4.2  Worst-case parameter estimation 

In this case, the set of uncertain parameters kΘ  should be 

obtained in such a way that all measured data in a fault free 
scenario will be covered by the worst-case predicted output 
produced by using model (14) and the uncertainty parameter 
set (“worst-case model”), that is: 
ˆ ( ) ( )y k y k     and  ˆ( ) ( )y k y k        1,...,k M     (17) 

where: 

 ˆ ( ) max ( ) with ky k k φ θ θ Θ                 (18a) 

 ˆ( ) min ( ) with ky k k φ θ θ Θ                  (18b) 

 
This type of model identification was first suggested by Ploix 
et al. (1999)  in the context of fault detection using a direct 
test and an interval LTI model in prediction.  
 
Considering that the parameter set kΘ  can be described as 

the zonotope (15) and proceeding as in Ploix et al.  (1999), 
the maximum and minimum prediction provided by model 
(14) are given by 

0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                           (19a) 

      0
1

ˆ ˆ( ) ( ) ( )y k y k k  φ H                            (19b) 



 
 

     

 

where 0ˆ ( )y k  is the model output prediction with nominal 

parameters: 0 0ˆ ( ) ( ) ( )ky k k φ θ p  where 0 0
1( ,..., )n

n
  θ . 

 
Notice that in the particular case of interval parameters: 

1
1

( ) ( )
n

i i
i

k k


 φ H φ                               

Replacing equations (19a) and (19b) in inclusion conditions 
(17),  the optimal zonotope that fulfills the “worst-case 
condition” can be computed using the following algorithm. 
 
 
Algorithm 1 “Worst-case Parameter  Estimation “ (general case) 

min ( ( ))f k
H

Θ H  

subject to:  0
1

ˆ( ) ( ) ( )k y k y k  φ H     1,...,k M             
                              

where the cost function f in “worst-case approach” is usually 
the interval prediction thickness that can be calculated as 

1
1 1

ˆ ˆ( ( ) ( )) 2 ( )
N N

k k

y k y k k
 

   φ H                 (20) 

In order to reduce the complexity of Algorithm 1, the 
zonotope that bounds kΘ  can be parameterised such that 

0 H H , that corresponds with a zonotope with predefined 

shape (determined by 0H ) and a scalar  . Then, in this case 

interval prediction thickness (20) is given by 

0 1
1 1

ˆ ˆ( ( ) ( )) 2 ( ) ( )
N N

k k

y k y k k f
 

      φ H          (21) 

and restrictions of  Algorithm 1 can be expressed as follows: 
0

0
0 1

0 1

ˆ( ) ( )
ˆ( ) ( ) ( )

( )

y k y k
k y k y k

k

 
   φ H

φ H
             (22) 

such that Algorithm 1 can be  rewritten as 
Algorithm 2 “Worst-case Parameter Estimation” (particular case) 

0 1
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   H  
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The optimal solution provided by such algorithm is: 

 

0

1,..., 0 1
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sup

( )k M

y k y k

k

  
  
 
 

φ H
                 (23) 

 
4.3 Set-membership parameter estimation 
 
On the other hand, the set of uncertain parameters kΘ  using 

a set-membership parameter estimation approach is obtained 
in such a way that the predicted behavior is consistent with 
all the measured data in a fault-free scenario.  In this case the 
model is called a “consistent model” since the predicted 
behavior is always inside the interval of possible 
measurements. That is:  
 

ˆ ˆ( ) ( ) ( )y k y k y k          1,...,k M                   (24) 

 
where: ˆ( ) ( )y k k φ θ  and kθ Θ .  
 
Algorithms for identifying such kind of model are also 
known as “set-membership parameter estimation” 
algorithms. In Milanese et al. (1996) there is a survey of such 
methods. 
 
Using this approach, the parameter set kΘ  that contains all 

models consistent with data, known as Feasible Parameter 
Set (FPS), is defined as follows: 
 

 | ( ) ( ) ( ) , 1, ,k y k k y k k M      FPS θ Θ φ θ    (25) 

 
The exact description of FPS  is in general not simple, and 
existing algorithms usually approximate the FPS using an 
inner/outer simpler shapes as  boxes, ellipsoids or zonotopes 
(Milanese et al. 1996). The approximation set is called 
approximated feasible parameter set ( AFPS ).  In this paper,  
algorithms that provided inner/outer  AFPS using zonotopes  
in case of using the model parameterised as in (14) are 
presented. 
 
Outer approximations 
Outer approximation algorithms find the parameter set kΘ  of 

minimum volume such that kFPS Θ . This kind of 

algorithms usually implies an excessive computational cost 
and recursive forms have been proposed as the one described 
in Bravo et al.  (2006). This recursive approach is based in 
computing iteratively the AFPS using zonotopes and related 
operations as follows: 

 1k k k  AFPS AFPS F                       (26) 

where  ( ) | ( ) ( ) ( ) ( )n
k k ky k k y k       F θ p φ θ p  

 
Inner approximations  
Inner approximation algorithms find the parameter set kΘ  of 

maximum volume such that k Θ FPS . 

 
A set-membership inner approximation using zonotopes 
parameterised as in Eq. (15) for models expressed as in (14) 
can be obtained in a similar way as proposed in Algorithm 2 
for the worst-case zonotope. The inner approximation 
algorithm comes from  fact the FPS conditions  (25) can be 
bounded by: 
 

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )ky k y k k y k y k     φ θ p         

where ˆ( )y k and ˆ ( )y k  are defined as in (18) and, in the case 

of kΘ  is a zonotope, calculated as in (19). Then, the 

maximum inner zonotope, centered in 0θ , with consistent 
parameters can be computed using the following algorithm 
 
 
 
 



 
 

     

 

Algorithm 3 “Inner Set-membership Zonotope”  (general case) 
max ( ( ))f k

H
Θ H  

subject to: 0
1

ˆ( ) ( ) ( )k y k y k  φ H    1,...,k M           
                             

where the cost function f in the “set-membership approach” 
is usually the volume of the zonotope defined by (15). This 

volume only depends of  matrix H and of nB  with a volume 

equal to n2 . In the particular case, H is a square matrix 

( n n  ): ( ) 2 det( )nvol kΘ H . See (Montgomery, 1989) 

for more details.  
 
As in Algorithm 1, it will be considered the particular case 

0 H H . Then, if H0 is a square matrix 

0( ) 2 det( )
n

vol kΘ H     and restrictions of Algorithm 3 can 

be expressed as: 
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such that it can be rewritten as follows 
 
Algorithm 4 “Inner set-membership zonotope”  (particular case)  

max ( ) ( )kvol fΘ


  
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The optimal solution provided by such algorithm is: 
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6. FAULT TOLERANCE EVALUATION USING SET-
MEMBERSHIP APPROACHES 

6.1  Motivation 

The objective of this section is to assess the tolerance of a 
certain actuator fault configuration considering a linear 
predictive/optimal control law with constraints. This problem 
has been already treated in the literature for the case of LQR 
problem without constraints (Staroswiecki, 2003), thanks to 
the existence of analytical solution.  However, constraints (on 
states and control signals) are always present in real industrial 
control problems and could be easily handled using linear 
constrained Model Predictive Control (MPC). In general, an 
analytical solution for these kind of control laws does not 
exist, which makes difficult to do this type of analysis. The 
method proposed in this section is not of analytical but of 
computational nature. 
 
It follows the idea proposed by (Lydoire, 2004) in which the 
calculation of the control law for a predictive/optimal 
controller with constraints can be divided in two steps: First, 
the calculation of solutions set that satisfies the constraints 

(feasible solutions) and then, the optimal solution 
determination. 

 
Faults in actuators will cause changes in the set of feasible 
solutions since constraints on the control signals have varied. 
This causes that the set of admissible solutions for the control 
objective could be empty. Therefore, the admissibility of the 
control law facing the actuator faults can be determined 
knowing the feasible solutions set. This section provides a 
method to compute this set and then evaluate the 
admissibility of the control law. 
 
To find the feasible solutions set for the problem of MPC, a 
constraints satisfaction problem could be formulated 
(Ocampo-Martínez et al., 2006b). However, this problem is 
computationally demanding and should be solved 
approximately in a iterative way in time, bounding it by its 
interval hull. Moreover, when proceeding in this way, an 
interval simulation problem is implicitly solved appearing 
typical difficulties associated with it (as wrapping effect, 
among others) (Puig et al., 2003).  In order to avoid such 
problems, the region of possible states should be 
approximated using more complex domains than intervals.  In 
this section, a zonotope-based method to evaluate the 
admissibility of fault actuator configurations is proposed and 
discussed. 

6.2  Admissibility of the control law 

The solution of a control problem consists on finding a 
control law in a given set of control laws   such that the 
controlled system achieves the control objectives    while 
its behavior satisfies a set of constraints   . The solution of 

the problem is completely defined by the triple: , ,   . 

In the case of a linear constrained predictive control law:   
  

u
: min J( x,u )


 
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The feasible solution set is given by 
 

  N 1
k 1 k k 0

x,u x Ax Bu


      

 
and gives the input and state sets compatible with system 
constraints which originate the set of predictive states.  



 
 

     

 

 
The feasible control objectives set is given by 
 

 J J( x,u ) ( x,u )       

and corresponds to the set of all values of J( x,u )   obtained 

from feasible solutions. 
 
The admissible solution set is given by 
 

 f( x,u ) J( x,u )      AJ  

where   f   corresponds to the feasible solution set of a 

actuator fault configuration and  AJ defined as the admissible 

control objective set. 
 
The admissibility evaluation using a set computation 
approach starts obtaining the feasible solution set       given 
a set of initial states  o ,  the system dynamic and the 

system operating constraints over N using the algorithm 
presented in Figure 4. 
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Fig 4. Feasible solution set computation 
 
At the same time that the feasible solution set is computed  
 ,   the feasible control objectives set  J  at time k can be 

obtained using the algorithm presented in Figure 5. 
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Fig. 5. Admissibility evaluation 

 
 

 
 

7.  REAL APPLICATIONS 
 
The set-membership methods described in this paper have 
been used in some real applications where the SAC-UPC 
research group have been deeply involved.  

7.1  TIGER-SHEBA 

The TIGER and TIGER SHEBA European Projects were both 
leaded by Intelligent Applications Ltd. The consortium 
included end users and a research team composed of LAAS-
CNRS and SAC-UPC. TIGER, full name “Real-Time 
Assessement of Dynamic, Hard to Measure Systems”, ran 
within the European ESPRIT program from 1992 to 1995. 
This project set the basis of the TIGER

TM tool, 
commercialized by IA Ltd.  TIGER-SHEBA, full name “TIGER 
with Model Based Diagnosis”, succeeded to TIGER in the 
ESPRIT TRIAL Applications European program starting in 
1998 and ending in 2000 (Project n°27548). TIGER SHEBA 
enhanced TIGER

TM by integrating the model-based diagnosis 
system CA~EN. The design of TIGER

TM, the CA~EN software 
and its integration in TIGER-SHEBA have led to an innovative 
product for gas turbine monitoring and diagnosis that has 
been commercialized all over the world, and to the 
dissemination of scientific ideas in recognized scientific 
journals and conferences. The focus of the development 
performed within TIGER SHEBA was to use the CA~EN 
software. The CA~EN system was used on critical sub-
systems of several gas turbines such as the gas and liquid fuel 
systems. Extensive testing of the TIGER /CA~EN system was 
carried out. Numerous test runs were conducted varying from 
2 weeks to 2 months at a time covering key periods of 
operation for the considered gas turbines. In addition, the 
combined system runs continuously on-line on the Frame 6 
gas turbine of the National Power’s cogeneration plant at 
Aylesford (UK). Details about the application of set-
membership methods in TIGER and TIGER-SHEBA projects can 
be found in the following publications (Travé et al.  
1996;1997; 2001;2006) (Milne et al., 1995)(Escobet et al., 
2001).  
 

 
Fig 6. Fault diagnosis system used in TIGER project 

 

 



 
 

     

 

7.2  DAMADICS 

DAMADICS was a Research Trained Network funded by the 
European Commission under Framework V. It started in 
2000 and ends in 2003. The objectives were providing 
training and mobility in the synthesis and development of 
methods and on-line diagnostic tools for applications in 
power, food processing and chemical industries. During this 
Network, it was developed a diagnosis benchmark case study 
based on an industrial smart actuator used in the evaporation 
station of a sugar factory in Poland (Bartys and de las Heras, 
2003). The smart actuator consists of a control valve, a 
pneumatic servomotor and a smart positioner. It allowed 
testing and comparing the methods presented in Section 3. 
The obtained results are published in (Puig et al. 2006) and 
(Puig, et al. 2008), among others. The main conclusions of 
this comparative study were simulation/observation approach 
gives a very time consuming due to the complexity of 
optimisation problems must be solved, but, it provides a 
persistent fault indication when a fault appears in the control 
valve. This has lead to the research of new methods not based 
on optimization that try to alleviate such computational 
complexity (see Section 5.1). 
 

 

 
Fig 7. Fault diagnosis benchmark used in DAMADICS  

7.3 Barcelona Sewer Network 

Sewer networks are complex large-scale systems which in 
turn require highly sophisticated supervisory-control systems 
to ensure that high performance can be achieved and 
maintained under adverse conditions. They are 
geographically distributed and decentralized with a 
hierarchical structure. Each sub-system (catchment) is 
composed of a large number of elements with time-varying 
behavior, exhibiting numerous operating modes and subject 
to changes due to external conditions (weather) and 
operational constraints. Most cities around the world have 
sewage systems that combine sanitary and storm water flows 
within the same network. This is why these networks are 
known as Combined Sewage Systems (CSS). During rain 
storms, wastewater flows can easily overload these CSS, 
thereby causing operators to dump the excess of water into 
the nearest receiver environment (rivers, streams or sea). This 
discharge to the environment, known as Combined Sewage 
Overflow (CSO), contains biological and chemical 
contaminants creating a major environmental and public 
health hazard. Environmental protection agencies have 
started forcing municipalities to find solutions in order to 

avoid those CSO events. A possible solution to the CSO 
problem would be to enhance existing sewer infrastructure by 
increasing the capacity of the wastewater treatment plants 
(WWTP) and by building new underground retention tanks 
(see Figure 1). But in order to take profit of these expensive 
infrastructures, it is also necessary a highly sophisticated 
real-time control (RTC) scheme which ensures that high 
performance can be achieved and maintained under adverse 
meteorological conditions (Schütze, 2004) (Marinacki, 2005). 
The advantage of RTC applied to sewer networks has been 
demonstrated by an important number of researchers during 
the last decades. Comprehensive reviews that include a 
discussion of some existing implementations are given by 
(Schilling, 1996) (Schütze, 2004) and cited references 
therein, while practical issues are discussed by (Schütze, 
2002), among other.  The RTC scheme in sewage systems 
might be local or global. When local control is applied, flow 
regulation devices use only measurements taken at their 
specific locations. While this control structure is applicable in 
many simple cases, in a big city, with a strongly 
interconnected sewer network and a complex infrastructure of 
sensors and actuators, it may not be the most efficient 
alternative. Conversely, a global control strategy, which 
computes control actions taking into account real-time 
measurements all through the network, is likely the best way 
to use the infrastructure capacity and all the available sensor 
information. Global RTC deals with the problem of 
generating control strategies for the control elements in a 
sewer network, ahead of time, based on a predictive dynamic 
model of the system, and readings of the telemetry system, in 
order to avoid street  flooding, prevent CSO discharges to the 
environment, minimize the pollution, homogenise the 
utilization of sewage system storage capacity and, in most of 
cases, minimize the operating costs (Marinacki 2005). The 
multivariable and large-scale nature of sewer networks have 
lead to the use of some variants of Model Predictive Control 
(MPC), as global control strategy (Ocampo-Martínez, 2008).  

 
Fig 8. Elements of a sewer network 

 
The global RTC need of operating in adverse 

meteorological conditions involve, with a high probability, 



 
 

     

 

sensor and actuator malfunctions (faults). This problem calls 
for the use of an on-line FDI system  able to detect such 
faults and correct them (if possible) by activating fault 
tolerance mechanisms, as the use of soft sensors or using the 
embedded tolerance of the MPC controller, that avoid that the 
global RTC control should be stopped every time that a fault 
appears. 
 
The problem FDI in rain gauges and limnimeters used for the 
RTC of a sewer network is addressed in (Puig, 2009). The 
proposed FDI strategy is based on building an interval linear 
model for every instrument. Then, each instrument reading is 
compared with the prediction provided by its interval model. 
While, the real measurement of instrument is inside the 
interval of predicted behaviour (or envelope) generated using 
its interval model, no fault can be indicated. However, when 
the measurement is outside its envelope, a fault can be 
indicated using the approach presented in detail in (Puig, 
2008). Once the fault has been detected, a fault isolation 
procedure is initiated in order to isolate the faulty instrument. 
The proposed fault isolation algorithm is based on the 
combined use of several fault signature matrices that 
considers additional information to the typical binary one. 
More precisely, fault signature matrices containing 
information about residual fault sensitivity and time/order of 
residual activation are used.  To exemplify the FDI problem 
in sewer networks and the proposed FDI methodology, the 
Barcelona network is used as the case study. Such network  
has a telemetry system containing 22 rain gauges and more 
than 100 limnimeters used for the RTC system. The problem 
of reconstructing measurements from faulty sensors will also 
be addressed as once the FDI system has located them.  
 
Ocampo-Martínez et al. (2006; 2009) address the problem of 
faults in actuators by using the embedded fault tolerance in 
the MPC controller used for the global control of the network 
will be provided. In Ocampo-Martínez et al. (2007), the use 
of set-membership methods tolerance evaluation is presented 
in detail. 

 
8. CONCLUSIONS 

 
This paper has reviewed the use of set-membership methods 
in robust fault detection and isolation (FDI) and tolerant 
control (FTC). Alternatively to the statistical methods, set-
membership methods use a deterministic unknown-but-
bounded description of noise and parametric uncertainty 
(interval models). Using approximating sets to approximate 
the set of possible behaviours (in parameter or state space), 
these methods allows to check the consistency between 
observed and predicted behaviour. When an inconsistency is 
detected a fault can be indicated, otherwise nothing can be 
stated. The same principle has been used to estimate interval 
models for fault detection and to develop methods for fault 
tolerance evaluation. Finally, same real application of these 
methods has been used to exemplify the successful uses in 
FDI/FTC. 
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