Identification of one-parameter bifurcations giving rise to periodic orbits, from their period function

Armengol Gasull ${ }^{1}$, Víctor Mañosa ${ }^{2}$, and Jordi Villadelprat ${ }^{3}$

${ }^{1}$ Departament de Matemàtiques
Universitat Autònoma de Barcelona
${ }^{2}$ Departament de Matemàtica Aplicada III
Control, Dynamics and Applications Group (CoDALab)
Universitat Politècnica de Catalunya.
${ }^{3}$ Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili.

15th International Workshop on Dynamics and Control.
May 31-June 3, 2009, Tossa de Mar, Spain.

1. MOTIVATION

Suppose that we have a model for a realistic phenomenon

$$
\dot{x}=X_{\mu}(x)=X(x ; \mu, \lambda), \quad x \in \mathbb{R}^{n}, \text { where }
$$

1. MOTIVATION

Suppose that we have a model for a realistic phenomenon

$$
\dot{x}=X_{\mu}(x)=X(x ; \mu, \lambda), \quad x \in \mathbb{R}^{n}, \text { where }
$$

- $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).

1. MOTIVATION

Suppose that we have a model for a realistic phenomenon

$$
\dot{x}=X_{\mu}(x)=X(x ; \mu, \lambda), \quad x \in \mathbb{R}^{n}, \text { where }
$$

- $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).
- and $\lambda \in \mathbb{R}^{p}$ are uncertain parameters that need to be estimated.

1. MOTIVATION

Suppose that we have a model for a realistic phenomenon

$$
\dot{x}=X_{\mu}(x)=X(x ; \mu, \lambda), \quad x \in \mathbb{R}^{n}, \text { where }
$$

- $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).
- and $\lambda \in \mathbb{R}^{p}$ are uncertain parameters that need to be estimated.

If it is possible to measure the period $T(\mu)$ of some periodic or-
 bits observed experimentally, and its evolution as μ varies.

Then perhaps it is possible to extract information on the uncertain parameters λ from $T(\mu)$?

This problem arises when studying neuron activities in the brain with the aim of determining the synaptic conductances λ that it receives.

By injecting external currents μ, in the neurons it is possible to extract information about the period of the oscillations of the voltage of the cell $T(\mu)$.

This problem arises when studying neuron activities in the brain with the aim of determining the synaptic conductances λ that it receives.

By injecting external currents μ, in the neurons it is possible to extract information about the period of the oscillations of the voltage of the cell $T(\mu)$.

From measurements $T\left(\mu_{i}, \lambda\right)$ for $i=1, \ldots, q$ some kind of regression is needed to estimate λ.

The analytical knowledge of $T(\mu, \lambda)$ is an advantage to do this regression.

2. STARTING POINT

From the knowledge $T(\mu)$ of a one parameter family of P.O. it is possible to identify the type of bifurcation which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated \Rightarrow better knowledge of the model.

2. STARTING POINT

From the knowledge $T(\mu)$ of a one parameter family of P.O. it is possible to identify the type of bifurcation which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated
\Rightarrow better knowledge of the model.

Our results are restricted to the planar analytic case where the dependence of the differential equation on μ is also analytic.

$$
\left\{\begin{array}{l}
\dot{x}=P(x, y ; \mu), \tag{1}\\
\dot{y}=Q(x, y ; \mu) .
\end{array} \quad \text { or equivalently } \quad X(x, y ; \mu)=P(x, y ; \mu) \frac{\partial}{\partial x}+Q(x, y ; \mu) \frac{\partial}{\partial y}\right.
$$

where $(x, y) \in \mathbb{R}^{2}$ and $\mu \in \Lambda \subset \mathbb{R}$ an open interval containing zero.

2. STARTING POINT

From the knowledge $T(\mu)$ of a one parameter family of P.O. it is possible to identify the type of bifurcation which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated
\Rightarrow better knowledge of the model.

Our results are restricted to the planar analytic case where the dependence of the differential equation on μ is also analytic.

$$
\left\{\begin{array}{l}
\dot{x}=P(x, y ; \mu), \tag{1}\\
\dot{y}=Q(x, y ; \mu) .
\end{array} \quad \text { or equivalently } \quad x(x, y ; \mu)=P(x, y ; \mu) \frac{\partial}{\partial x}+Q(x, y ; \mu) \frac{\partial}{\partial y}\right.
$$

where $(x, y) \in \mathbb{R}^{2}$ and $\mu \in \Lambda \subset \mathbb{R}$ an open interval containing zero.
Our objective is to relate the form of $T(\mu)$ with the type of bifurcation of limit cycles.

2. "MOST ELEMENTARY" BIFURCATIONS

The most elementary bifurcations of planar vector fields of the above form occur when the the vector field

$$
X(x, y ; \mu)=P(x, y ; \mu) \frac{\partial}{\partial x}+Q(x, y ; \mu) \frac{\partial}{\partial y}
$$

has a first degree of structural instability.

2. "MOST ELEMENTARY" BIFURCATIONS

The most elementary bifurcations of planar vector fields of the above form occur when the the vector field

$$
X(x, y ; \mu)=P(x, y ; \mu) \frac{\partial}{\partial x}+Q(x, y ; \mu) \frac{\partial}{\partial y}
$$

has a first degree of structural instability.

Intuitively

STRUCTURAL STABLE VECTOR FIELD

1st DEGREE OF STRUCTURAL INSTABILITY

2nd DEGREE OF STRUCTURAL INSTABILITY

All the possible bifurcations that can occur for a vector field with a 1st degree of structural instability are known (Andronov et al. 1973 and Sotomayor 1974)

Among them we only study the isolated ones that give rise to isolated periodic orbits (P.O.).

Elementary bifurcations giving rise to P.O.

(a) Hopf bifurcation.
(b) Bifurcation from semi-stable periodic orbit.
(c) Saddle-node bifurcation
(d) Saddle loop bifurcation.

We will characterize the asymptotic expansion of the period of the emerging P.O.

3. SUMMARY OF OUR RESULTS

"Theorem":

3. SUMMARY OF OUR RESULTS

"Theorem": Generically the form of $T(\mu)$ characterizes the type of bifurcation

3. SUMMARY OF OUR RESULTS
"Theorem": Generically the form of $T(\mu)$ characterizes the type of bifurcation
Under the conditions that give rise to a bifurcation of P.O. we have

3. SUMMARY OF OUR RESULTS

"Theorem": Generically the form of $T(\mu)$ characterizes the type of bifurcation

Under the conditions that give rise to a bifurcation of P.O. we have

- Hopf bifurcation: $T(\mu)=T_{0}+T_{1} \mu+O\left(|\mu|^{3 / 2}\right)$, with $T_{0}>0$ but T_{1} can be 0 .
- Bifurcation from semi-stable periodic orbit: $T^{ \pm}(\mu)=T_{0} \pm T_{1} \sqrt{|\mu|}+O(\mu)$, with $T_{0}>0$ but T_{1} can be 0 .
- Saddle-node bifurcation: $T(\mu) \sim T_{0} / \sqrt{\mu}^{(*)}$
- Saddle loop bifurcation: $T(\mu)=c \ln |\mu|+O(1)$, with $c \neq 0$.
${ }^{(*)}$ Where $T(\mu) \sim a+f(\mu)$ means that $\lim _{\mu \rightarrow 0} \frac{T(\mu)-a}{f(\mu)}=1$.

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

Theorem.

Under the conditions that give rise to a bifurcation of P.O. we have

$$
T(\mu)=T_{0}+T_{1} \mu+O\left(|\mu|^{3 / 2}\right)
$$

with $T_{0}>0$ but T_{1} can be 0 .

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

NOTHING BUT FLOW

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

NOTHING BUT FLOW

THE EMERGING LIMIT CYCLE SPLITS INTO TWO ORBITS (HYPERBOLIC)
EMERGING LIMIT CYCLE

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

$$
T^{ \pm}(\mu)=T_{0} \pm T_{1} \sqrt{|\mu|}+O(\mu)
$$

with $T_{0}>0$ but T_{1} can be 0 .

SADDLE-NODE BIFURCATION

The bifurcation takes place when a connected saddle and a node collapse.

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

$$
T(\mu) \sim T_{0} / \sqrt{\mu}
$$

SADDLE LOOP BIFURCATION

Occurs when a saddle loop breaks and the separatrices change their relative position

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

$$
T(\mu)=c \ln |\mu|+O(1)
$$

with $c \neq 0$.

4. WHAT ABOUT THE PROOFS?

(a) Hopf bifurcation. Usual arguments using polar coordinates, Taylor developments, and variational equations.
(b) Bifurcation from semi-stable periodic orbit. Try to reduce the problem to the Hopf bifurcation framework, but instead of using polar coordinates using specific local coordinates (Ye et al. 1983)
(c) Saddle-node bifurcation. Work with normal form theory (Il'yashenko, Li. 1999)

4. WHAT ABOUT THE PROOFS?

(a) Hopf bifurcation. Usual arguments using polar coordinates, Taylor developments, and variational equations.
(b) Bifurcation from semi-stable periodic orbit. Try to reduce the problem to the Hopf bifurcation framework, but instead of using polar coordinates using specific local coordinates (Ye et al. 1983)
(c) Saddle-node bifurcation. Work with normal form theory (II’yashenko, Li. 1999)
(d) Saddle loop bifurcation. Usual arguments+Normal forms but the framework is very different because the structure of the transition maps of the flow, and the transit time functions are NON-DIFFERENTIABLE!

SKETCH OF THE PROOF IN THE SADDLE LOOP CASE

(A) LOCATION. A periodic orbit can be seen as a zero of the displacement function

$$
\mathrm{D}(s ; \mu)=P_{1}(s ; \mu)-P_{2}(s ; \mu)
$$

So the P.O. are located by curve $s_{l}(\mu)$ such that

$$
\mathrm{D}\left(s_{l}(\mu) ; \mu\right)=0
$$

We would like to apply the implicit function theorem, but... $P_{1}(s)$ is not differentiable. (Roussarie, 1998)

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$
T(s ; \mu)=T_{1}(s ; \mu)+T_{2}(s ; \mu)
$$

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$
T(s ; \mu)=T_{1}(s ; \mu)+T_{2}(s ; \mu)
$$

So the period of each limit cycle is given by

$$
T(\mu)=T\left(s_{l}(\mu) ; \mu\right)=T_{1}\left(s_{l}(\mu) ; \mu\right)+T_{2}\left(s_{l}(\mu) ; \mu\right)
$$

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$
T(s ; \mu)=T_{1}(s ; \mu)+T_{2}(s ; \mu)
$$

So the period of each limit cycle is given by

$$
T(\mu)=T\left(s_{l}(\mu) ; \mu\right)=T_{1}\left(s_{l}(\mu) ; \mu\right)+T_{2}\left(s_{l}(\mu) ; \mu\right)
$$

But... $T_{1}(s)$ is also non-differentiable. (Broer, Roussarie, Simó, 1996)

To study $P_{1}(s)$ and $T_{1}(s)$ we need Normal forms

To study $P_{1}(s)$ and $T_{1}(s)$ we need Normal forms

Lemma.

Consider the family $\left\{X_{\mu}\right\}_{\mu \in \Lambda}$, such that for $\mu_{0} \in \Lambda, X_{\mu_{0}}$ has a saddle connection at $p_{\mu_{0}}$. Set $r(\mu)=\lambda_{1}(\mu) / \lambda_{2}(\mu)$, the ratio of the eigenvalues of the saddle.

For any $k \in \mathbb{N}$ there exists a \mathcal{C}^{k} diffeomorphism Φ (also depending \mathcal{C}^{k} on μ) such that, in some neighbourhood of $\left(p_{\mu_{0}}, \mu_{0}\right) \in \mathbb{R}^{2} \times \Lambda$:
(a) If $r\left(\mu_{0}\right) \notin \mathbb{Q}$,

$$
X_{\mu}=\Phi_{*}\left(\lambda_{1}(\mu) x \frac{\partial}{\partial_{x}}+\lambda_{2}(\mu) y \frac{\partial}{\partial_{y}}\right)
$$

To study $P_{1}(s)$ and $T_{1}(s)$ we need Normal forms

Lemma.

Consider the family $\left\{X_{\mu}\right\}_{\mu \in \Lambda}$, such that for $\mu_{0} \in \Lambda, X_{\mu_{0}}$ has a saddle connection at $p_{\mu_{0}}$. Set $r(\mu)=\lambda_{1}(\mu) / \lambda_{2}(\mu)$, the ratio of the eigenvalues of the saddle.

For any $k \in \mathbb{N}$ there exists a \mathcal{C}^{k} diffeomorphism Φ (also depending \mathcal{C}^{k} on μ) such that, in some neighbourhood of $\left(p_{\mu_{0}}, \mu_{0}\right) \in \mathbb{R}^{2} \times \Lambda$:
(a) If $r\left(\mu_{0}\right) \notin \mathbb{Q}$,

$$
X_{\mu}=\Phi_{*}\left(\lambda_{1}(\mu) x \frac{\partial}{\partial_{x}}+\lambda_{2}(\mu) y \frac{\partial}{\partial_{y}}\right)
$$

(b) If $r\left(\mu_{0}\right)=p / q$

$$
x_{\mu}=\Phi_{*}\left(\frac{1}{f(u ; \mu)}\left(x \frac{\partial}{\partial_{x}}+y g(u ; \mu) \frac{\partial}{\partial_{y}}\right)\right)
$$

where $f(u ; \mu)$ and $g(u ; \mu)$ are polynomials in $u:=x^{p} y^{q}$ with coefficients \mathcal{C}^{∞} functions in μ.

Proposition.

(a) If $r(0)>1$ then

$$
\begin{aligned}
& P_{1}(s ; \mu)=s^{r(\mu)}\left(1+\psi_{1}(s ; \mu)\right) \quad \text { and } \\
& T_{1}(s ; \mu)=\frac{-1}{\lambda_{1}(\mu)} \ln s+\psi_{2}(s ; \mu)
\end{aligned}
$$

Proposition.

(a) If $r(0)>1$ then

$$
\begin{aligned}
& P_{1}(s ; \mu)=s^{r(\mu)}\left(1+\psi_{1}(s ; \mu)\right) \quad \text { and } \\
& T_{1}(s ; \mu)=\frac{-1}{\lambda_{1}(\mu)} \ln s+\psi_{2}(s ; \mu)
\end{aligned}
$$

(b) If $r(0)=1$ then,

$$
\begin{aligned}
& P_{1}(s ; \mu)=s^{r(\mu)}\left(1+\alpha_{2}(\mu) s \omega\left(s ; \alpha_{1}(\mu)\right)+\psi_{1}(s ; \mu)\right), \quad \text { and } \\
& T_{1}(s ; \mu)=\frac{-1}{\lambda_{1}(\mu)} \ln s+\beta_{1}(\mu) s \omega\left(s ; \alpha_{1}(\mu)\right)+\psi_{2}(s ; \mu) .
\end{aligned}
$$

Where $\alpha_{1}(\mu)=1-r(\mu)$, and α_{2} and β_{1} are \mathcal{C}^{∞}.
Where ψ_{i} belong to a class of functions \mathcal{B} "with good behaviour" at $\left(0, \mu_{0}\right)$, and ω is the Roussarie-Ecalle compensator.

The Roussarie-Ecalle compensator.

It is a function which captures the non-regular behaviour of the so called Dulac maps.

Definition.

The function defined for $s>0$ and $\alpha \in \mathbb{R}$ by means of

$$
\omega(s ; \alpha)= \begin{cases}\frac{s^{-\alpha}-1}{\alpha} & \text { if } \alpha \neq 0, \\ -\ln s & \text { if } \alpha=0,\end{cases}
$$

is called the Roussarie-Ecalle compensator.

See (Roussarie, 1998).

References

- Andronov, Leontovich, Gordon, Maier, Theory of bifurcation of dynamic systems on a plane, John Wiley \& Sons, New York, 1973.
- Broer, Roussarie, Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms, Ergodic Th. Dynam. Sys. 16 (1996), 1147-1172.
- Il'yashenko, Li, Nonlocal bifurcations, Mathematical Surveys and Monographs 66, American Mathematical Society, Providence, RI, 1999.
- Roussarie, Bifurcations of planar vector fields and Hilbert's sixteenth problem, Progr. Math. 164, Birkhäuser. Basel, 1998.
- Sotomayor, Generic one parameter families of vector fields on two dimensional manifolds. Publ. Math. IHES, 43 (1974), 5-46.
- Ye et al. Theory of limit cycles, Translations of Math. Monographs 66, American Mathematical Society, Providence, RI, 1986.
- The picture in Slide 4 comes from Edgerton Simulating in vivo-like Synaptic Input Patterns in Multicompartmental Models.
http://www.brains-minds-media.org/archive/225

THANK YOU!

