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Control, Dynamics and Applications Group (CoDALab)

Universitat Politècnica de Catalunya.

3Departament d’Enginyeria Informàtica i Matemàtiques
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1. MOTIVATION

Suppose that we have a model for a realistic phenomenon

ẋ = Xµ(x) = X (x ;µ, λ), x ∈ Rn, where

• µ ∈ R is tuning parameter (experimentally controllable).
• and λ ∈ Rp are uncertain parameters that need to be estimated.

If it is possible to measure the
period T (µ) of some periodic or-
bits observed experimentally, and
its evolution as µ varies.

Then perhaps it is possible to extract information on the uncertain
parameters λ from T (µ)?
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This problem arises when studying neuron activities in the brain with the aim of
determining the synaptic conductances λ that it receives.

By injecting external currents µ, in the neurons it is possible to extract information
about the period of the oscillations of the voltage of the cell T (µ).

From measurements T (µi , λ) for i = 1, . . . , q some kind of regression is needed to
estimate λ.

The analytical knowledge of T (µ, λ) is an advantage to do this regression.
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2. STARTING POINT

From the knowledge T (µ) of a one parameter family of P.O. it is possible to identify
the type of bifurcation which has originated the P.O.?

YES ⇒ important restrictions on the uncertainties λ∈ Rp to be estimated
⇒ better knowledge of the model.

—————————————————————

Our results are restricted to the planar analytic case where the dependence of the
differential equation on µ is also analytic.{

ẋ = P(x , y ;µ),

ẏ = Q(x , y ;µ).
or equivalently X (x , y ;µ) = P(x , y ;µ)

∂

∂x
+ Q(x , y ;µ)

∂

∂y
(1)

where (x , y) ∈ R2 and µ ∈ Λ ⊂ R an open interval containing zero.
Our objective is to relate the form of T (µ) with the type of bifurcation of limit
cycles.

Gasull,Mañosa,Villadelprat (UAB-UPC-URV) Identification of Bifurcations Dynamics & Control 4 / 18



2. STARTING POINT

From the knowledge T (µ) of a one parameter family of P.O. it is possible to identify
the type of bifurcation which has originated the P.O.?

YES ⇒ important restrictions on the uncertainties λ∈ Rp to be estimated
⇒ better knowledge of the model.

—————————————————————

Our results are restricted to the planar analytic case where the dependence of the
differential equation on µ is also analytic.{
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2. “MOST ELEMENTARY” BIFURCATIONS
The most elementary bifurcations of planar vector fields of the above
form occur when the the vector field

X (x , y ;µ) = P(x , y ;µ)
∂

∂x
+ Q(x , y ;µ)

∂

∂y
has a first degree of structural instability.

Intuitively
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All the possible bifurcations that can occur for a vector field with a 1st
degree of structural instability are known (Andronov et al. 1973 and
Sotomayor 1974)

Among them we only study the isolated ones that give rise to isolated
periodic orbits (P.O.).

Elementary bifurcations giving rise to P.O.
(a) Hopf bifurcation.
(b) Bifurcation from semi–stable periodic orbit.
(c) Saddle-node bifurcation
(d) Saddle loop bifurcation.

We will characterize the asymptotic expansion of the period of the
emerging P.O.
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3. SUMMARY OF OUR RESULTS

“Theorem”:

Generically the form of T (µ) characterizes the
type of bifurcation
Under the conditions that give rise to a bifurcation of P.O. we have

• Hopf bifurcation: T (µ) = T0 + T1µ+ O(|µ|3/2), with T0 > 0 but T1 can
be 0.

• Bifurcation from semi–stable periodic orbit:
T±(µ) = T0 ± T1

√
|µ|+ O(µ), with T0 > 0 but T1 can be 0.

• Saddle-node bifurcation: T (µ) ∼ T0/
√
µ(∗)

• Saddle loop bifurcation: T (µ) = c ln |µ|+ O(1), with c 6= 0.

(∗) Where T (µ) ∼ a + f (µ) means that lim
µ→0

T (µ)− a
f (µ)

= 1.
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HOPF BIFURCATION
It is originated by the change of the stability of the equilibrium

→

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

T (µ) = T0 + T1µ+ O(|µ|3/2)

with T0 > 0 but T1 can be 0.
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BIFURCATION FROM SEMI–STABLE PERIODIC ORBIT ...my preferred one.

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

T±(µ) = T0 ± T1
√
|µ|+ O(µ)

with T0 > 0 but T1 can be 0.
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Gasull,Mañosa,Villadelprat (UAB-UPC-URV) Identification of Bifurcations Dynamics & Control 9 / 18



BIFURCATION FROM SEMI–STABLE PERIODIC ORBIT ...my preferred one.

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

T±(µ) = T0 ± T1
√
|µ|+ O(µ)

with T0 > 0 but T1 can be 0.
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SADDLE–NODE BIFURCATION
The bifurcation takes place when a connected saddle and a node
collapse.

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

T (µ) ∼ T0/
√
µ
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SADDLE LOOP BIFURCATION

Occurs when a saddle loop breaks and the separatrices change their
relative position

Theorem.
Under the conditions that give rise to a bifurcation of P.O. we have

T (µ) = c ln |µ|+ O(1)

with c 6= 0.
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4. WHAT ABOUT THE PROOFS?

(a) Hopf bifurcation. Usual arguments using polar coordinates, Taylor
developments, and variational equations.

(b) Bifurcation from semi–stable periodic orbit. Try to reduce the
problem to the Hopf bifurcation framework, but instead of using
polar coordinates using specific local coordinates (Ye et al. 1983)

(c) Saddle-node bifurcation. Work with normal form theory
(Il’yashenko, Li. 1999)

(d) Saddle loop bifurcation. Usual arguments+Normal forms but the
framework is very different because the structure of the transition
maps of the flow, and the transit time functions are
NON–DIFFERENTIABLE!
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SKETCH OF THE PROOF IN THE SADDLE LOOP CASE

(A) LOCATION. A periodic orbit can be seen as a zero of the
displacement function

D(s;µ) = P1(s;µ)− P2(s;µ)

So the P.O. are located by curve sl(µ) such that

D(sl(µ);µ) = 0.

We would like to apply the implicit function theorem, but... P1(s) is not
differentiable. (Roussarie, 1998)
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(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

T (s;µ) = T1(s;µ) + T2(s;µ)

So the period of each limit cycle is given by

T (µ) = T (sl(µ);µ) = T1(sl(µ);µ) + T2(sl(µ);µ)

But... T1(s) is also non–differentiable. (Broer, Roussarie, Simó, 1996)
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To study P1(s) and T1(s) we need Normal forms

Lemma.

Consider the family {Xµ}µ∈Λ, such that for µ0 ∈ Λ, Xµ0 has a saddle connection at pµ0 .

Set r(µ) = λ1(µ)/λ2(µ), the ratio of the eigenvalues of the saddle.

For any k ∈ N there exists a Ck diffeomorphism Φ (also depending Ck on µ) such that,
in some neighbourhood of (pµ0 , µ0) ∈ R2×Λ:

(a) If r(µ0) /∈ Q,

Xµ = Φ∗

(
λ1(µ) x

∂

∂x
+ λ2(µ) y

∂

∂y

)

(b) If r(µ0) = p/q

Xµ = Φ∗

(
1

f (u;µ)

(
x
∂

∂x
+ yg(u;µ)

∂

∂y

))
,

where f (u;µ) and g(u;µ) are polynomials in u := xpyq with coefficients C∞

functions in µ.
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Proposition.
(a) If r(0) > 1 then

P1(s;µ) =sr(µ)
(
1 + ψ1(s;µ)

)
and

T1(s;µ) = −1
λ1(µ) ln s+ψ2(s;µ)

(b) If r(0) = 1 then,

P1(s;µ) =sr(µ)

(
1 + α2(µ)s ω

(
s;α1(µ)

)
+ψ1(s;µ)

)
, and

T1(s;µ) = −1
λ1(µ) ln s+β1(µ)s ω

(
s;α1(µ)

)
+ψ2(s;µ).

Where α1(µ) = 1− r(µ), and α2 and β1 are C∞.

Where ψi belong to a class of functions B “with good behaviour ” at
(0, µ0), and ω is the Roussarie–Ecalle compensator.
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The Roussarie–Ecalle compensator.

It is a function which captures the non–regular behaviour of the so
called Dulac maps.

Definition.
The function defined for s > 0 and α ∈ R by means of

ω(s;α) =

{
s−α−1
α if α 6= 0,

− ln s if α = 0,

is called the Roussarie-Ecalle compensator.

See (Roussarie, 1998).
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