Identification of one-parameter bifurcations giving rise to periodic orbits, from their period function

Armengol Gasull¹, Víctor Mañosa², and Jordi Villadelprat³

¹Departament de Matemàtiques Universitat Autònoma de Barcelona

²Departament de Matemàtica Aplicada III Control, Dynamics and Applications Group (CoDALab) Universitat Politècnica de Catalunya.

³Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili.

> 15th International Workshop on Dynamics and Control. May 31–June 3, 2009, Tossa de Mar, Spain.

Suppose that we have a model for a realistic phenomenon

$$\dot{x} = X_{\mu}(x) = X(x; \mu, \lambda), \quad x \in \mathbb{R}^n$$
, where

Suppose that we have a model for a realistic phenomenon

$$\dot{x} = X_{\mu}(x) = X(x; \mu, \lambda), \quad x \in \mathbb{R}^n$$
, where

• $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).

Suppose that we have a model for a realistic phenomenon

$$\dot{x} = X_{\mu}(x) = X(x; \mu, \lambda), \quad x \in \mathbb{R}^n,$$
 where

• $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).

• and $\lambda \in \mathbb{R}^{p}$ are uncertain parameters that need to be estimated.

Suppose that we have a model for a realistic phenomenon

$$\dot{x} = X_{\mu}(x) = X(x; \mu, \lambda), \quad x \in \mathbb{R}^n,$$
 where

- $\mu \in \mathbb{R}$ is tuning parameter (experimentally controllable).
- and $\lambda \in \mathbb{R}^{p}$ are uncertain parameters that need to be estimated.

If it is possible to measure the *period* $T(\mu)$ of some *periodic orbits* observed experimentally, and its evolution as μ varies.

Then perhaps it is possible to extract information on the uncertain parameters λ from $T(\mu)$?

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)

This problem arises when studying neuron activities in the brain with the aim of determining the *synaptic conductances* λ that it receives.

By injecting external currents μ , in the neurons it is possible to extract information about the period of the oscillations of the voltage of the cell $T(\mu)$.

This problem arises when studying neuron activities in the brain with the aim of determining the *synaptic conductances* λ that it receives.

By injecting external currents μ , in the neurons it is possible to extract information about the period of the oscillations of the voltage of the cell $T(\mu)$.

From measurements $T(\mu_i, \lambda)$ for i = 1, ..., q some kind of regression is needed to estimate λ .

The analytical knowledge of $T(\mu, \lambda)$ is an advantage to do this regression.

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)

Identification of Bifurcations

2. STARTING POINT

From the knowledge $T(\mu)$ of a *one parameter* family of P.O. it is possible to identify the type of *bifurcation* which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated \Rightarrow **better knowledge** of the model.

2. STARTING POINT

From the knowledge $T(\mu)$ of a *one parameter* family of P.O. it is possible to identify the type of *bifurcation* which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated \Rightarrow **better knowledge** of the model.

Our results are restricted to the *planar analytic* case where the dependence of the differential equation on μ is also *analytic*.

$$\begin{cases} \dot{x} = P(x, y; \mu), \\ \dot{y} = Q(x, y; \mu). \end{cases} \text{ or equivalently } X(x, y; \mu) = P(x, y; \mu) \frac{\partial}{\partial x} + Q(x, y; \mu) \frac{\partial}{\partial y} \end{cases}$$
(1)

where $(x, y) \in \mathbb{R}^2$ and $\mu \in \Lambda \subset \mathbb{R}$ an open interval containing zero.

2. STARTING POINT

From the knowledge $T(\mu)$ of a *one parameter* family of P.O. it is possible to identify the type of *bifurcation* which has originated the P.O.?

YES \Rightarrow important restrictions on the uncertainties $\lambda \in \mathbb{R}^{p}$ to be estimated \Rightarrow **better knowledge** of the model.

Our results are restricted to the *planar analytic* case where the dependence of the differential equation on μ is also *analytic*.

$$\begin{cases} \dot{x} = P(x, y; \mu), \\ \dot{y} = Q(x, y; \mu). \end{cases} \text{ or equivalently } X(x, y; \mu) = P(x, y; \mu) \frac{\partial}{\partial x} + Q(x, y; \mu) \frac{\partial}{\partial y} \end{cases}$$
(1)

where $(x, y) \in \mathbb{R}^2$ and $\mu \in \Lambda \subset \mathbb{R}$ an open interval containing zero. Our objective is to relate the form of $T(\mu)$ with the type of *bifurcation* of *limit cycles*.

2. "MOST ELEMENTARY" BIFURCATIONS

The most elementary bifurcations of planar vector fields of the above form occur when the the vector field

$$X(x, y; \mu) = P(x, y; \mu) \frac{\partial}{\partial x} + Q(x, y; \mu) \frac{\partial}{\partial y}$$

has a first degree of structural instability.

2. "MOST ELEMENTARY" BIFURCATIONS

The most elementary bifurcations of planar vector fields of the above form occur when the the vector field

$$X(x, y; \mu) = P(x, y; \mu) \frac{\partial}{\partial x} + Q(x, y; \mu) \frac{\partial}{\partial y}$$

has a first degree of structural instability.

Intuitively

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)

Identification of Bifurcations

All the possible bifurcations that can occur for a vector field with a 1st degree of structural instability are known (Andronov et al. 1973 and Sotomayor 1974)

Among them we only study the *isolated* ones that give rise to *isolated periodic orbits* (P.O.).

Elementary bifurcations giving rise to P.O.

- (a) Hopf bifurcation.
- (b) Bifurcation from semi-stable periodic orbit.
- (c) Saddle-node bifurcation
- (d) Saddle loop bifurcation.

We will characterize the asymptotic expansion of the period of the emerging P.O.

"Theorem":

"Theorem": *Generically* the form of $T(\mu)$ characterizes the type of bifurcation

"Theorem": *Generically* the form of $T(\mu)$ characterizes the type of bifurcation

Under the conditions that give rise to a bifurcation of P.O. we have

"Theorem": *Generically* the form of $T(\mu)$ characterizes the type of bifurcation

Under the conditions that give rise to a bifurcation of P.O. we have

• Hopf bifurcation: $T(\mu) = T_0 + T_1 \mu + O(|\mu|^{3/2})$, with $T_0 > 0$ but T_1 can be 0.

• Bifurcation from semi–stable periodic orbit: $T^{\pm}(\mu) = T_0 \pm T_1 \sqrt{|\mu|} + O(\mu)$, with $T_0 > 0$ but T_1 can be 0.

- Saddle-node bifurcation: $T(\mu) \sim T_0/\sqrt{\mu}^{(*)}$
- Saddle loop bifurcation: $T(\mu) = c \ln |\mu| + O(1)$, with $c \neq 0$.

(*) Where $T(\mu) \sim a + f(\mu)$ means that $\lim_{\mu \to 0} \frac{T(\mu) - a}{f(\mu)} = 1$.

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

HOPF BIFURCATION

It is originated by the change of the stability of the equilibrium

Theorem.

Under the conditions that give rise to a bifurcation of P.O. we have

$$T(\mu) = T_0 + T_1 \mu + O(|\mu|^{3/2})$$

with $T_0 > 0$ but T_1 can be 0.

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

Gasull,Mañosa,Villadelprat (UAB-UPC-URV)

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

BIFURCATION FROM SEMI-STABLE PERIODIC ORBIT ...my preferred one.

Theorem.

Under the conditions that give rise to a bifurcation of P.O. we have

 $T^{\pm}(\mu) = T_0 \pm T_1 \sqrt{|\mu|} + O(\mu)$

with $T_0 > 0$ but T_1 can be 0.

SADDLE–NODE BIFURCATION

The bifurcation takes place when a connected saddle and a node collapse.

Theorem.

Under the conditions that give rise to a bifurcation of P.O. we have

 $T(\mu) \sim T_0/\sqrt{\mu}$

SADDLE LOOP BIFURCATION

Occurs when a saddle loop breaks and the *separatrices* change their relative position

Theorem.

Under the conditions that give rise to a bifurcation of P.O. we have

 $T(\mu) = c \ln |\mu| + O(1)$

with $c \neq 0$.

4. WHAT ABOUT THE PROOFS?

- (a) Hopf bifurcation. Usual arguments using polar coordinates, Taylor developments, and variational equations.
- (b) Bifurcation from semi-stable periodic orbit. Try to reduce the problem to the Hopf bifurcation framework, but instead of using polar coordinates using specific local coordinates (Ye et al. 1983)
- (c) Saddle-node bifurcation. Work with normal form theory (Il'yashenko, Li. 1999)

4. WHAT ABOUT THE PROOFS?

- (a) Hopf bifurcation. Usual arguments using polar coordinates, Taylor developments, and variational equations.
- (b) Bifurcation from semi-stable periodic orbit. Try to reduce the problem to the Hopf bifurcation framework, but instead of using polar coordinates using specific local coordinates (Ye et al. 1983)
- (c) Saddle-node bifurcation. Work with normal form theory (Il'yashenko, Li. 1999)
- (d) Saddle loop bifurcation. Usual arguments+Normal forms but the framework is very different because the structure of the transition maps of the flow, and the transit time functions are NON-DIFFERENTIABLE!

SKETCH OF THE PROOF IN THE SADDLE LOOP CASE

(A) LOCATION. A periodic orbit can be seen as a zero of the *displacement function*

$$D(\boldsymbol{s};\boldsymbol{\mu}) = \boldsymbol{P}_{1}(\boldsymbol{s};\boldsymbol{\mu}) - \boldsymbol{P}_{2}(\boldsymbol{s};\boldsymbol{\mu})$$

So the P.O. are located by curve $s_l(\mu)$ such that

$$D(\boldsymbol{s}_l(\boldsymbol{\mu});\boldsymbol{\mu}) = \mathbf{0}.$$

We would like to apply the implicit function theorem, but... $P_1(s)$ is not differentiable. (Roussarie, 1998)

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$T(\boldsymbol{s};\boldsymbol{\mu}) = T_1(\boldsymbol{s};\boldsymbol{\mu}) + T_2(\boldsymbol{s};\boldsymbol{\mu})$$

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$T(\boldsymbol{s};\boldsymbol{\mu}) = T_1(\boldsymbol{s};\boldsymbol{\mu}) + T_2(\boldsymbol{s};\boldsymbol{\mu})$$

So the period of each limit cycle is given by

$$T(\mu) = T(s_l(\mu); \mu) = T_1(s_l(\mu); \mu) + T_2(s_l(\mu); \mu)$$

(B) TRANSIT TIME ANALYSIS.

The flying time for any orbit can be decomposed as

$$T(\boldsymbol{s};\boldsymbol{\mu}) = T_1(\boldsymbol{s};\boldsymbol{\mu}) + T_2(\boldsymbol{s};\boldsymbol{\mu})$$

So the period of each limit cycle is given by

$$T(\mu) = T(s_l(\mu); \mu) = T_1(s_l(\mu); \mu) + T_2(s_l(\mu); \mu)$$

But... $T_1(s)$ is also non–differentiable. (Broer, Roussarie, Simó, 1996)

To study $P_1(s)$ and $T_1(s)$ we need Normal forms

To study $P_1(s)$ and $T_1(s)$ we need Normal forms

Lemma.

Consider the family $\{X_{\mu}\}_{\mu \in \Lambda}$, such that for $\mu_0 \in \Lambda$, X_{μ_0} has a saddle connection at p_{μ_0} .

Set $r(\mu) = \lambda_1(\mu)/\lambda_2(\mu)$, the ratio of the eigenvalues of the saddle.

For any $k \in \mathbb{N}$ there exists a \mathcal{C}^k diffeomorphism Φ (also depending \mathcal{C}^k on μ) such that, in some neighbourhood of $(p_{\mu_0}, \mu_0) \in \mathbb{R}^2 \times \Lambda$:

(a) If $r(\mu_0) \notin \mathbb{Q}$, $X_{\mu} = \Phi_* \left(\lambda_1(\mu) X \frac{\partial}{\partial_X} + \lambda_2(\mu) Y \frac{\partial}{\partial_Y} \right)$

To study $P_1(s)$ and $T_1(s)$ we need Normal forms

Lemma.

Consider the family $\{X_{\mu}\}_{\mu \in \Lambda}$, such that for $\mu_0 \in \Lambda$, X_{μ_0} has a saddle connection at p_{μ_0} .

Set $r(\mu) = \lambda_1(\mu)/\lambda_2(\mu)$, the ratio of the eigenvalues of the saddle.

For any $k \in \mathbb{N}$ there exists a \mathcal{C}^k diffeomorphism Φ (also depending \mathcal{C}^k on μ) such that, in some neighbourhood of $(p_{\mu_0}, \mu_0) \in \mathbb{R}^2 \times \Lambda$:

(a) If $r(\mu_0) \notin \mathbb{Q}$, $X_{\mu} = \Phi_* \left(\lambda_1(\mu) X \frac{\partial}{\partial_X} + \lambda_2(\mu) Y \frac{\partial}{\partial_Y} \right)$ (b) If $r(\mu_0) = p/q$

$$X_{\mu} = \Phi_*\left(\frac{1}{f(u;\mu)}\left(x\frac{\partial}{\partial_x} + yg(u;\mu)\frac{\partial}{\partial_y}\right)\right),$$

where $f(u; \mu)$ and $g(u; \mu)$ are polynomials in $u := x^{p}y^{q}$ with coefficients C^{∞} functions in μ .

Proposition.

(a) If r(0) > 1 then

$$\mathcal{P}_1(oldsymbol{s};\mu)=oldsymbol{s'}^{oldsymbol{r}(\mu)}ig(1+\psi_1(oldsymbol{s};\mu)ig)$$
 and

 $T_1(\boldsymbol{s};\mu) = \frac{-1}{\lambda_1(\mu)} \ln \boldsymbol{s} + \psi_2(\boldsymbol{s};\mu)$

Proposition.

(a) If r(0) > 1 then

$$P_1(s;\mu) = s^{r(\mu)} (1 + \psi_1(s;\mu))$$
 and
 $T_1(s;\mu) = \frac{-1}{\lambda_1(\mu)} \ln s + \psi_2(s;\mu)$

(b) If r(0) = 1 then,

$$P_1(\boldsymbol{s};\boldsymbol{\mu}) = \boldsymbol{s}^{\boldsymbol{r}(\boldsymbol{\mu})} \left(1 + \alpha_2(\boldsymbol{\mu}) \boldsymbol{s} \, \boldsymbol{\omega}(\boldsymbol{s}; \alpha_1(\boldsymbol{\mu})) + \psi_1(\boldsymbol{s}; \boldsymbol{\mu}) \right), \text{ and }$$

 $T_1(\boldsymbol{s};\boldsymbol{\mu}) = \frac{-1}{\lambda_1(\boldsymbol{\mu})} \ln \boldsymbol{s} + \beta_1(\boldsymbol{\mu}) \boldsymbol{s} \, \boldsymbol{\omega} \big(\boldsymbol{s}; \, \alpha_1(\boldsymbol{\mu}) \big) + \psi_2(\boldsymbol{s}; \boldsymbol{\mu}).$

Where $\alpha_1(\mu) = 1 - r(\mu)$, and α_2 and β_1 are \mathcal{C}^{∞} .

Where ψ_i belong to a class of functions \mathcal{B} "with good behaviour" at $(0, \mu_0)$, and ω is the Roussarie–Ecalle compensator.

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)

Identification of Bifurcations

The Roussarie–Ecalle compensator.

It is a function which captures the non–regular behaviour of the so called *Dulac maps*.

Definition.

The function defined for s > 0 and $\alpha \in \mathbb{R}$ by means of

$$\omega(\boldsymbol{s};\alpha) = \begin{cases} \frac{\boldsymbol{s}^{-\alpha} - 1}{\alpha} & \text{if } \alpha \neq \boldsymbol{0}, \\ -\ln \boldsymbol{s} & \text{if } \alpha = \boldsymbol{0}, \end{cases}$$

is called the Roussarie-Ecalle compensator.

See (Roussarie, 1998).

References

• Andronov, Leontovich, Gordon, Maier, Theory of bifurcation of dynamic systems on a plane, John Wiley & Sons, New York, 1973.

• Broer, Roussarie, Simó, *Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms*, Ergodic Th. Dynam. Sys. **16** (1996), 1147–1172.

• Il'yashenko, Li, Nonlocal bifurcations, Mathematical Surveys and Monographs **66**, American Mathematical Society, Providence, RI, 1999.

• Roussarie, Bifurcations of planar vector fields and Hilbert's sixteenth problem, Progr. Math. **164**, Birkhäuser. Basel, 1998.

• Sotomayor, *Generic one parameter families of vector fields on two dimensional manifolds*. Publ. Math. IHES, **43** (1974), 5–46.

• Ye et al. Theory of limit cycles, Translations of Math. Monographs **66**, American Mathematical Society, Providence, RI, 1986.

• The picture in Slide 4 comes from Edgerton *Simulating in vivo-like Synaptic Input Patterns in Multicompartmental Models.* http://www.brains-minds-media.org/archive/225

THANK YOU!

Gasull, Mañosa, Villadelprat (UAB-UPC-URV)