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Abstract— The aim of this paper is to give the conditions on
the hysteretic Bouc-Wen model so that (i) it has the property
of being bounded input bounded output (BIBO), and (ii)
it dissipates energy (or is passive). This study leads to a
classification of the possible BIBO and dissipative (or passive)
Bouc-Wen models.

I. I NTRODUCTION

To describe the behavior of hysteretic processes several
mathematical models have been proposed [11]: the Duhem
model uses the property that a hysteretic system’s output
changes its character when the input changes direction; the
Ishlinskii hysteresis operator has been proposed as a model
for plasticity–elasticity and the Preisach model has been
used for the modelling of electromagnetic hysteresis . A
survey of the mathematical models for hysteresis may be
found in [6]. Most works devoted to controlling systems
with a continuous hysteresis have used the backlash model
(see for example [9], [10]). As noted as early as in [5]:
”Use of backlash to model [a magnetic] hysteresis element
misrepresent the behavior about the origin, does not prop-
erly account for saturation, and introduces a dead zone that
does not exist”.

The objective of the present paper is to introduce an
alternative simple model of a smooth hysteresis known
as the Bouc-Wen model. Proposed in 1976, this model
(a first-order nonlinear differential equation) has been
used experimentally mainly in wood joints and structural
systems (see [1] for example) and has remained largely
unknown for the wide control community due mainly to
the absence of an analytical study of this model. The aim
of this paper is to fill this gap by giving the conditions on
the Bouc-Wen model so that it holds the property of being
bounded input bounded output (BIBO) and, moreover, it
dissipates energy.
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II. BIBO B OUC-WEN MODEL PROPERTIES

A. The model

Consider a physical system with a hysteretic component
that can be represented by a mapx(t) 7→Φs(x(t), t), which is
referred to as the “true” hysteresis. The so-called Bouc-Wen
model [12] represents the true hysteresis in the following
form:

ΦBW(x, t) = αkx(t)+(1−α)Dkz(t), (1)

ż = D−1(
Aẋ−β |ẋ| |z|n−1z− γ ẋ|z|n) , (2)

whereż denotes the time derivative, andn> 1, D > 0, k> 0
and0< α < 1 are parameters. The limit casesn= 1, α = 0,
α = 1 are treated in Appendix C.

This model was originally developed in the context of
mechanical systems in whichx is a displacement andΦ is
a restoring force. It represents the hysteretic forceΦs(x, t)
as the superposition of an elastic componentαkx and a
purely hysteretic component(1−α)kDz, in which D > 0 is
the yield constant displacement andα ∈ (0,1) is the post
to pre-yielding stiffness ratio. The hysteretic part involves
a nondimensional auxiliary variablez which is the solution
of the nonlinear first order differential equation (2). In this
equation,A,β andγ are nondimensional parameters which
control the shape and the size of the hysteresis loop, while
n is a scalar that governs the smoothness of the transition
from elastic to plastic response.

B. Problem statement

This study lies in the experimentally based premise that a
true physical hysteretic element is BIBO, which means that,
for any bounded input signalx(t), the hysteretic response is
also bounded. Thus the Bouc–Wen modelΦBW should keep
the BIBO property in order to be considered an adequate
candidate to model real physical systems. Appendix A
gives an example of a set of parametersA, β , γ, n such
that, for a particular bounded inputx(t), the corresponding
output ΦBW (x(t), t) given by the Bouc-Wen model (1)–(2)
is unbounded. This means that, with this set of parameters,
the Bouc-Wen model cannot describe the true hysteresis.
This motivates the following problem:

Given the parameters0< α < 1, k> 0, D > 0, A, β , γ and
n > 1, find the set of initial conditionsz(0) for which the
Bouc-Wen model (1)-(2) is BIBO. Note that when this set
is empty, this means that the Bouc-Wen model is not BIBO.
The solution of this problem will lead to classify different



sets of parameters and initial conditions and, additionally,
to determine explicit bounds for the hysteretic variablez(t).

C. Classification of the BIBO Bouc-Wen models

Let us introduce the following set:

Ωα,k,D,A,β ,γ,n = {z(0) ∈ R such thatΦBW is BIBO

for all C1 input signalsx(t) with fixed values of

the parametersα,k,D,A,β ,γ,n}.
(3)

The rest of the analysis is devoted to determining ex-
plicitly the setΩα,k,D,A,β ,γ,n as a function of the Bouc-Wen
model parameters. Letz(0) be an element ofΩα,k,D,A,β ,γ,n.
Then, for any boundedC1 inputx(t), the outputΦBW(x(t), t)
is bounded. This implies by equation (1) that the outputz(t)
of the differential equation (2) should be bounded. This
means that the set1

ΩA,β ,γ,n = {z(0) ∈ R such thatz(t) is bounded for

anyC1 bounded input signalx(t) with fixed

values of the parametersA,β ,γ,n}
(4)

is such thatΩα ,k,D,A,β ,γ,n ⊆ ΩA,β ,γ,n. The inclusion in the
other way is immediate, which shows thatΩα,k,D,A,β ,γ,n =
ΩA,β ,γ,n. The importance of this equality stems for the fact
that it is easier to determine the setΩA,β ,γ,n. Note that an
empty setΩA,β ,γ,n means that, with the chosen parametersA,
β , γ, n, the Bouc-Wen model does not represent adequately
the behavior of a real hysteretic systemΦs (see Appendix
A). We also define the following set:

Ω∗
A,β ,γ,n = {z(0) ∈ R such thatz(t) is bounded

for anyC1 input signalx(t) with fixed

values of the parametersA,β ,γ,n}.
(5)

Note that Ω?
A,β ,γ,n ⊆ ΩA,β ,γ,n. With the notations

introduced above, the main results of this section are given
below.

Theorem 1:Let x(t), t ∈ [0,∞) be aC1 input signal and

z0 , n

√
A

β + γ
and z1 , n

√
A

γ−β
. (6)

Then, Table 1 holds.

Corollary 1: Ω?
A,β ,γ,n = ΩA,β ,γ,n.

Corollary 1 means that the boundedness of the signal
z(t) depends only on the parametersA, γ, β andn, while it
is independent of the boundedness of the input signalx(t).
This fact is important for system control theory [2]: when
x(t) is a closed loop signal, we cannot assume a priori

1The correct notation would beΩA,β ,γ ,n,D. However, we will see later
that this set does not depend on the parameterD.

TABLE I

CLASSIFICATION OF THE BIBO BOUC-WEN MODELS

Case ΩA,β ,γ ,n |z(t)| bound Class
A > 0 β + γ > 0, β − γ ≥ 0 R max(|z(0)| ,z0) I

β − γ < 0, β ≥ 0 [−z1,z1] max(|z(0)| ,z0) II
A < 0 β − γ > 0, β + γ ≥ 0 R max(|z(0)| ,z1) III

β + γ < 0, β ≥ 0 [−z0,z0] max(|z(0)| ,z1) IV
A = 0 β + γ ≥ 0, β − γ ≥ 0 R |z(0)| V

all other cases /0

that it is bounded. The fact thatΩ?
A,β ,γ,n = ΩA,β ,γ,n shows

that for every input signalx(t) (under the only assumption
that it is C1), the outputz(t) is always bounded if the set
ΩA,β ,γ,n is non-empty, and ifz(0) ∈ΩA,β ,γ,n.

Corollary 2: In all cases where a non-empty setΩA,β ,γ,n
exists, the parameterβ is non-negative.

Starting from physical considerations, a result close to
that of Corollary 2 has been drawn in [8] using the fact
that thermodynamic laws requireβ > 0 for the energy to
be dissipated through each hysteretic cycle.

Proof: First we check that the differential equation (2)
has a unique solution. Equation (2) may be seen as a non-
autonomous locally Lipschitz system (asn > 1) where the
dependence on time is continuous. Thus, by [4, Theorem
2.2] a unique solution of (2) does exist. We consider the
following three cases:A > 0, A < 0 andA = 0.

We focus first on the caseA > 0. Consider the following
three possibilities:

P1 : β + γ > 0 andβ − γ ≥ 0,
P2 : β + γ > 0 andβ − γ < 0,
P3 : β + γ ≤ 0.

Let us focus on the caseP1. We consider the Lyapunov
function candidateV(t) = z(t)2/2. Its derivative takes dif-
ferent forms depending on the signs ofẋ and z. Indeed,
settingQ1 = {ẋ≥ 0 andz≥ 0}, and denotingV̇|Q1

as the
expression of the derivative of the functionV over the set
Q1, we haveV̇|Q1

= zẋD−1 (A− (β + γ)zn). ThusV̇|Q1
≤ 0

for z≥ z0. Also, if we setQ2 = {ẋ≥ 0 andz≤ 0}, we have
V̇|Q2

= zẋD−1 (A+(β − γ) |z|n). In this case,V̇|Q2
≤ 0 for

all values ofz. The same conclusion is drawn in the case of
Q3 = {ẋ≤0 andz≥ 0}, sinceV̇|Q3

= zẋD−1 (A+(β − γ)zn).
Finally, taking Q4 = {ẋ ≤ 0 andz≤ 0}, we get V̇|Q4

=
zẋD−1 (A− (β + γ) |z|n). Thus, V̇|Q4

≤ 0 for |z| ≥ z0. We
then conclude that, for all the possibilities of the signs ofẋ
andz, we haveV̇ ≤ 0 for all |z| ≥ z0. By [4, Theorem 4.10]
2 we conclude thatz(t) is bounded for every continuous
function ẋ(t) and every initial conditionz(0) which means
thatΩ?

A,β ,γ,n =R. SinceΩ?
A,β ,γ,n⊆ΩA,β ,γ ,n, this implies that

Ω?
A,β ,γ,n = ΩA,β ,γ,n =R. The bounds onz(t) can be derived

from [4, Theorem 4.10] as follows:

2The functionα3 which appears in theorem 4.10 of [4] is zero in our
case. It is not classK . This means that the timet1 of equation 4.22 of
[4] may be infinite and that all what we can say aboutx(t) in [4] is that
‖x(t)‖ ≤max(‖x(t0)‖,α−1

1 (α2(µ)) which is exactly what we use.



i) If the initial condition ofz is such that|z(0)| ≤ z0 then
|z(t)| ≤ z0 for all t ≥ 0;

ii) If the initial condition ofz is such that|z(0)| ≥ z0 then
|z(t)| ≤ |z(0)| for all t ≥ 0.

We now turn to the caseP2. Again, the derivative ofV(t)
depends on the signs oḟx and z. Indeed,V̇ ≤ 0 in the
following regions:

{ẋ≥ 0 andz≥ 0 andz≥ z0}, (7)

{ẋ≥ 0 andz≤ 0 and |z| ≤ z1}, (8)

{ẋ≤ 0 andz≥ 0 andz≤ z1}, (9)

{ẋ≤ 0 andz≤ 0 and |z| ≥ z0}. (10)

Then, from (7)-(10) we conclude that: ifz1 ≥ z0 (that is,
when β ≥ 0), thenV̇ ≤ 0 for every z0 ≤ |z| ≤ z1 indepen-
dently of the sign ofẋ. By [4, theorem 4.10] we conclude
that z(t) is bounded for every continuous functionẋ(t) and
any initial statez(0) such that|z(0)| ≤ z1. This means that
[−z1,z1] ⊆ Ω?

A,β ,γ,n. Now, take z(0) /∈ [−z1,z1]; we claim
that there exists a boundedC1 signal x(t) such that the
corresponding signalz(t) is unbounded. The construction
of such a signal is done in Appendix VI, which means that
z(0) /∈ΩA,β ,γ ,n. This implies thatΩA,β ,γ,n⊆ [−z1,z1]. Since
Ω?

A,β ,γ,n ⊆ ΩA,β ,γ,n, we get Ω?
A,β ,γ,n = ΩA,β ,γ,n = [−z1,z1].

Using [4, Theorem 4.10] we can obtain the following
bound:|z(t)| ≤max(|z(0)|,z0). If β < 0, then for each initial
condition z(0) it is possible to construct a boundedC1

signalx(t) as in Appendix VI, such that the corresponding
signalz(t) is unbounded. This means thatΩA,β ,γ,n = /0. Since
Ω?

A,β ,γ,n⊆ΩA,β ,γ,n, this implies thatΩ?
A,β ,γ,n = ΩA,β ,γ,n = /0.

We now move to the caseP3. An analysis similar to that
of Appendix VI shows thatΩA,β ,γ,n = /0, which implies that
Ω?

A,β ,γ,n = ΩA,β ,γ,n = /0.
The casesA < 0 and A = 0 can be treated in a similar

way, which ends the proof of Theorem 1.
Note that the caseβ + γ > 0, β − γ < 0 and β ≥ 0

simplifies toβ−γ < 0 andβ ≥ 0 since the former inequality
is implied by the latter two. Corollary 1 follows immediately
from the proof of Theorem 1, while Corollary 2 follows
from Table 1.

III. U NCERTAINTY ISSUES

In Section II-C we have seen that the Bouc-Wen model
does not represent adequately a physical hysteretic system if
the setΩA,β ,γ,n is empty. When the setΩA,β ,γ,n is not empty,
we have determined it as an explicit function of the model
parameters and we have also determined explicitly an upper
bound on the solutionz(t). In practice, the model parameters
are not known exactly: tuning or identification procedures
allow reasonably the determination of approximate values
of these parameters [7]. Let us consider a generic parameter
p∈ {A,β ,γ,n} and consider that the identification leads to
the knowledge of minimum and maximum values such that
pmin ≤ p ≤ pmax. Since n > 1 and β ≥ 0 (see Corollary
2 of Section II-C), we should havenmin ≥ 1 and βmin ≥
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0. Our task in this section is to determine a computable
interval contained in the setΩA,β ,γ,n and a computable upper
bound on the solutionz(t) of the differential equation (2) for
different cases in which the Bouc-Wen model parameters
are defined as intervals. For reasons that will be clear in
Section V, we consider only the case whereA > 0, that is
we consider in this part the Bouc-Wen models that belong
to the classes I and II of Table 1.

We define the following constants:

z1 = min

(
nmax

√∣∣∣∣
Amin

γmax−βmin

∣∣∣∣, nmin

√∣∣∣∣
Amin

γmax−βmin

∣∣∣∣
)

,

z̄0 = max

(
nmax

√∣∣∣∣
Amax

γmin +βmin

∣∣∣∣, nmin

√∣∣∣∣
Amax

γmin +βmin

∣∣∣∣
)

.

The analysis involve lengthy but straightforward cal-
culations. The results are summarized in Table II. Some
interpretations are made below. For example, ifAmin > 0,
βmin + γmin > 0 and βmin− γmax < 0, then a computable
subset ofΩA,β ,γ,n is [−z1,z1]. The solutionz(t) is bounded
and a computable upper bound onz(t) is max(|z(0)| , z̄0).
Consider now the caseAmin > 0 and βmax+ γmax ≤ 0 .
The setΩA,β ,γ,n is empty, which means that the parameters
do not correspond to a BIBO Bouc-Wen model. When
Amin > 0 and βmin + γmin ≤ 0 < βmax+ γmax, we cannot
know from the available information if the setΩA,β ,γ,n is
empty or not. Thus, it is not possible to determine neither
a computable subset ofΩA,β ,γ,n nor a computable upper
bound on|z(t)|. This means that we should perform a more
accurate identification of the parameters.

Note that the process of refining the identification
procedure is always finite whenever the setΩA,β ,γ,n is
non-empty. Indeed, take series of values{pmin,k, pmax,k}
such that pmin,k ≤ pmin,k+1 ≤ p ≤ pmax,k+1 ≤ pmax,k and
limk→∞ pmin,k = limk→∞ pmax,k = p, where p is any of the
parametersA, β , γ or n. Then there exists some integer
N such thatA≥ Amin,N > 0. If the process of refining the
identification were infinite, we would have from Table II:
βmin,k + γmin,k ≤ 0 < βmax,k + γmax,k for all k ≥ N. Thus,
taking the limit for k → ∞, we get β + γ = 0. It can be
checked from Table 1 that this case corresponds to an empty
setΩA,β ,γ,n. This means that, once the Bouc-Wen model is
BIBO, the process of refining the identification procedure
leads in a finite number of steps to a computable subset of
the setΩA,β ,γ,n and a computable upper bound on|z(t)|.

IV. FREE MOTION OF AN HYSTERETIC STRUCTURAL

SYSTEM

A. Problem statement

We consider a structural isolation scheme, as illustrated in
Figure 1, which is modelled as 1 degree-of-freedom system
with massm> 0 and viscous dampingc> 0 plus a restoring
force Φ characterizing a hysteretic behavior of the isolator
material.

Fig. 1. Hysteretic isolation scheme (a) and its physical model (b).

This system is described by the second order differential
equation

mẍ+cẋ+Φ(x, t) = f (t), (11)

with initial conditionsx(0) and ẋ(0) and excited by a force
f (t), like the one of the form−ma(t) in the case of an
earthquake with ground accelerationa(t). The restoring
force is assumed to be described by the Bouc-Wen model:

Φ(x, t) = αkx(t)+(1−α)Dkz(t), (12)

ż = D−1[
Aẋ−β |ẋ| |z|n−1z− γ ẋ|z|n] , (13)

where n > 1, D > 0, k > 0 and 0 < α < 1. The purpose
of this section is the study of the free motion of system
(11)–(13), that is withf (t) = 0, to analyze its asymptotic
trajectories. This analytical characterization will be used to
reveal the energy dissipation properties of system (11)–(13)
in Section V.

B. Asymptotic trajectories

The main result in this section is given in the following
theorem.

Theorem 2:For every initial conditionsx(0) ∈R, ẋ(0) ∈
R andz(0) ∈ΩA,β ,γ,n 6= /0, the following holds:
(a) For all the classes I-V of Table 1, the signalsx(t), ẋ(t)
andz(t) are bounded andC1.
(b) Assume that the Bouc-Wen model belongs to the classes
I or II. Then, there exist constantsx∞ andz∞, which depend
only on the Bouc-Wen model parameters (α,D,k,A,β ,γ,n),
the system parameters (m,c) and the initial conditions
(x(0), ẋ(0),z(0)), such that

lim
t→∞

x(t) = x∞, (14)

lim
t→∞

z(t) = z∞, (15)

αx∞ +(1−α)Dz∞ = 0. (16)

Furthermore, we have

ẋ∈ L1 ([0,∞)) and lim
t→∞

ẋ(t) = 0. (17)

Proof: see [3].

V. ENERGY DISSIPATION ANALYSIS

The objective of this section is the analytical study of
the energy dissipation mechanism in the system (11)-(13).
As in Section IV-B, it is assumed that the Bouc-Wen model



parameters are such that a non-empty setΩA,β ,γ,n exists and
that z(0) ∈ΩA,β ,γ,n. Write the system (11)-(13) as

mẍ+cẋ+αkx+(1−α)Dkz= 0 (18)

wherez is the solution of the differential equation (2). At
each instantt, the total energyE(t) of (18) is the sum of

its kinetic energy
1
2

mẋ(t)2 and its potential elastic energy
1
2

αkx(t)2. That is

E(t) =
1
2

mẋ(t)2 +
1
2

αkx(t)2. (19)

Consider the system (11)-(13) withx(0) = 0, ẋ(0) = 0 and
assume thatz(0) 6= 0. By continuity of the solutions of
(11)-(13), the signalz(t) will be nonzero at least during
some time interval[0, t1). This implies by equation (18)
that in the time interval(0, t1) the signalsx(t) and ẋ(t)
are not identically zero. In this case, the Bouc-Wen model
has delivered non-identically zero signalsx and ẋ starting
from zero initial conditionsx(0) = 0 andẋ(0) = 0. This will
unlikely be the case for the real hysteresis as, in general,
the coordinates are chosen in such a way that the point
with x(0) = 0 and ẋ(0) = 0 is an equilibrium position for
the real hysteretic system under free motion. This means
that the Bouc-Wen model cannot describe adequately the
true hysteresis ifz(0) is not set to zero.

With z(0) set to zero, a Bouc-Wen model is uniquely
defined by its parametersA, β , γ, n, D, α, k. Thus, each
class of Table 1 can be seen as a set of allowable parameters,
for example :

Class I = {(A,β ,γ,n,D,α,k) ∈ R7 such that

A > 0, β + γ > 0, β − γ ≥ 0, n > 1,

D > 0, 0 < α < 1, k > 0}. (20)

We introduce some definitions.

Definition 1: The Bouc-Wen model defined by its pa-
rameters(A,β ,γ,n,D,α,k) is said to be asymptotically
dissipative if for everym > 0, c > 0 and every initial
conditions (x(0), ẋ(0)) we have E(∞) < E(0) whenever
E(0) 6= 0.

Definition 2: A class of the Table 1 is said to be asymp-
totically dissipative if all its elements are asymptotically
dissipative.

Definition 3: The Bouc-Wen model defined by its param-
eters(A,β ,γ ,n,D,α,k) is said to generate energy if there
exist somem> 0, c > 0, some initial condition(x(0), ẋ(0))
and some finite timet0 such thatE(t0) > E(0).

A Bouc-Wen model that generates energy is highly
undesirable as it cannot represent the real passive hysteretic
systems.

With the definitions above we now state the main result
of this section.

Theorem 3:Consider the classes I-V of Table 1. Then,
we have the following:
(i) The classes I and II are asymptotically dissipative.

(ii) The classes III and IV contain an infinite number of
elements that generate energy.

(iii) For the class V, the hysteretic part of the model is
always zero.
Proof: see [3].

The results of Theorem 3 are illustrated in Figure 2.

Class I:

BIBO and
dissipative

Class II:

BIBO and
dissipative

β

γ βγ =

βγ −=

Fig. 2. Classification of the possible BIBO and dissipative Bouc-Wen
models.

VI. CONCLUSION

This paper has presented a classification of the possible
Bouc-Wen models in terms of their BIBO and energy
dissipation properties. It has been shown that only five
classes I-V of Bouc-Wen models are BIBO. The asymptotic
behavior of a second order mechanical/structural hysteretic
system represented by the Bouc-Wen model has been an-
alyzed. It has been shown that, for all the five classes,
the displacement of the mass and its velocity are bounded.
Furthermore, for the classes I and II, the displacement of
the mass goes asymptotically to a constant, the restoring
force goes to zero, the velocity of the mass is inL1 and
goes to zero asymptotically.

This study led to the analysis of the energy dissipation
properties of the five BIBO classes of Bouc-Wen models. It
has been shown that the classes I and II are indeed asymp-
totically dissipative and thus may represent the physical
behavior of a true hysteresis. The classes III and IV have
been shown to contain an infinite number of elements which
generates energy. This means that both classes are of little
practical interest. The remaining class V has been shown
to be irrelevant in practice since the hysteretic part of the
model remains equal to zero and thus cannot describe an
hysteretic behavior.

APPENDIX A

In this section, we present an example of a Bouc-Wen
model which is not BIBO. Consider the Bouc–Wen model



given by the following parameters:D = 1, A = 1, β = 0.5,
γ =−1.5 andn = 2. Takez(0) = 0 and define the bounded

input signalx(t) =
π
2

sin(t). The corresponding derivative is

ẋ(t) =
π
2

cos(t), which is also bounded. For0≤ t ≤ π
2

we

have ẋ(t) ≥ 0. This implies that the Bouc–Wen model (2)
can take only one of the two forms:

ż = ẋ
(
1+z2) for z≥ 0, (21)

ż = ẋ
(
1+2z2) for z≤ 0. (22)

In both cases (21) and (22) it iṡz≥ 0 for 0≤ t ≤ π
2

,

which implies thatz(t) is a non-decreasing function. Since
z(0) = 0, this means thatz(t)≥ 0, so thatż is given by (21).
Integrating (21) we obtain

∫
dz

1+z2 =
∫

dx, (23)

which givesarctan(z) = x, sincez(0) = 0 andx(0) = 0. This
implies thatz(t) = tan(x(t)). Observe that lim

t→π/2
z(t) = +∞.

Thus, by equation (1), theC1 bounded input signalx(t)
will give rise to an unbounded outputΦBW(x, t). A similar
construction can be done for any initial conditionz(0) 6= 0.

APPENDIX B

Assume thatβ − γ < 0, β ≥ 0. The goal of this section
is to construct aC1 bounded input signalx(t) such that
the corresponding signalz(t) is unbounded for any initial
condition z(0) such that|z(0)| > z1. Take z(0) > z1 (the
construction is similar in the casez(0) < −z1). Define the
signal

ẋ =
D

A+(β − γ)zn . (24)

Sincez(0) > z1 > 0, we haveA+(β − γ)z(0)n < 0, which
means that the solutionz(t) of the differential equation (2)
is well defined at least during some time interval[0, t1) in
which we havez(t) > z1. For 0≤ t < t1 we havez> 0 and
ẋ < 0. Thus equation (2) reduces to

ż= D−1ẋ(A+(β − γ)zn) . (25)

Combining equations (24) and (25), it follows that

ż= 1 (26)

Integrating (26) gives for0≤ t < t1 :

z(t) = t +z(0), (27)

ẋ(t) =
D

A+(β − γ)(t +z(0))n . (28)

The functionz(t) is increasing, so that the conditions of
existence ofẋ in (24) and (28) are satisfied for anyt ≥ 0.
This means thatt1 = ∞, that is ẋ is well defined for all
t ≥ 0 and a solution of the differential equation (2) (given
by (27)) exists overt ∈R+. From equation (28), it follows
that ẋ∈ L1 asn > 1. This implies thatx(t) goes to a finite
limit as t goes to infinity, which means thatx(t) is bounded.
Thus we have constructed a boundedC1 signalx(t) with an
unbounded corresponding signalz(t).

VII. A PPENDIX C

In this appendix we analyze the following limit cases for
the Bouc-Wen model parameters:n = 1, α = 0, α = 1.

C1. The limit casen = 1

The differential equation (2) remains locally Lipschitz for
n = 1, however the signal̇x constructed in Appendix B is
no longer inL1 so that the result of that appendix does not
hold. This means that in Table 1 the expressions given for
ΩA,β ,γ,n are only subsets of the whole setΩA,β ,γ,n. With this
simple observation, Table 1 holds also for the casen = 1.
For example, for the class II, a subset ofΩA,β ,γ,n is given
by [−z1,z1]; and for z(0) ∈ [−z1,z1], an upper bound on
|z(t)| is given by max(|z(0)| ,z0) as indicated in Table 1.
Theorem 2 holds forn = 1 with the only modification that
z(0) should belong to the subset ofΩA,β ,γ,n given by Table
1 (and not to the whole setΩA,β ,γ,n). Theorem 3 holds as
z(0) = 0.

C2. The limit caseα = 1

For α = 1 the hysteretic part in equation (1) is zero so
that the system (18) is linear and thus does not represent a
hysteretic nonlinearity.

C3. The limit caseα = 0

Table 1 holds for the caseα = 0. However, Theorems 2
and 3 do not hold necessarily (see [3] for a proof).
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