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Bounded and dissipative solutions of the Bouc-Wen model
for hysteretic structural systems

Faycal Ikhouane, \tor Maiosa, Jos Rodellar

Abstract—The aim of this paper is to give the conditions on Il. BIBO Bouc-WEN MODEL PROPERTIES
the hysteretic Bouc-Wen model so that (i) it has the property
of being bounded input bounded output (BIBO), and (iij A- The model
it dissipates energy (or is passive). This study leads 1o a  consider a physical system with a hysteretic component
gg‘ji'_%:ﬂorggéérse. possible BIBO and dissipative (or passive) that can be represented by a m@ — ®g(x(t),t), which is
referred to as the “true” hysteresis. The so-called Bouc-Wen
model [12] represents the true hysteresis in the following

I. INTRODUCTION form:

To describe the behavior of hysteretic processes several gy (x,t)
mathematical models have been proposed [11]: the Duhem
i ! 2 = DH(A-BIXZ"z-yxZ"). ()
model uses the property that a hysteretic system’s output z yX 5
cha_nge§ its chara_cter when the input changes direction; t\f}v erez denotes the time derivative, and> 1, D > 0, k> 0
Ishlinskii hysteresis operator has been proposed as a mode

for plasticity—elasticity and the Preisach model has bee"i!]nOlo <a<lare parameters_. The limit cases-1, a =0,
=1 are treated in Appendix C.

used for the modelling of electromagnetic hysteresis . . M .
. . This model was originally developed in the context of
survey of the mathematical models for hysteresis may be . . 7 . .
. . Mmechanical systems in whichis a displacement and is
found in [6]. Most works devoted to controlling systems

with a continuous hysteresis have used the backlash mo&eresmrmg force.. .It represents thg hysteretic fofeéx,t)
as the superposition of an elastic componeaihkix and a

(see for example [9], [10]). As noted as early as in [S]; urely hysteretic componeiil — a)kDz in whichD >0 is

"Use of backlash to model [a magnetic] hysteresis elemerﬁge yield constant displacement ande (0,1) is the post

misrepresent the behavior about the origin, does not propd pre-yielding stiffness ratio. The hysteretic part involves

erly account for saturation, and introduces a dead zone that . ) . . S _
does not exist”. a nondimensional auxiliary variablewhich is the solution

T . . of the nonlinear first order differential equation (2). In this
The objective of the present paper is to introduce agq ationA B andy are nondimensional parameters which
alternative simple model of a smooth hysteresis knowpynig| the shape and the size of the hysteresis loop, while

as the Bouc-Wen .model. .Propo.sed in 19,76’ this mOd?ll is a scalar that governs the smoothness of the transition
(a first-order nonlinear differential equation) has beeR . alastic to plastic response.

used experimentally mainly in wood joints and structural
systems (see [1] for example) and has remained largely/ Problem statement
unknown for the wide cqntrol commum@y due mainly tc_: This study lies in the experimentally based premise that a
the absence of an analytical study of this model. The aim : . . .
. X N . o true physical hysteretic element is BIBO, which means that,
of this paper is to fill this gap by giving the conditions on . . . .
. - _for any bounded input signalt), the hysteretic response is
the Bouc-Wen model so that it holds the property of bein
) Iso bounded. Thus the Bouc—Wen modigly should keep
bounded input bounded output (BIBO) and, moreover, | : .
dissipates energy the BIBO property in order to be considered an adequate
‘ candidate to model real physical systems. Appendix A
gives an example of a set of paramet&s@, y, n such
that, for a particular bounded inputt), the corresponding
This work was supported by CICYT-Spain under project DPI2002gtput dgy (x(t),t) given by the Bouc-Wen model (1)—(2)
04018-C02-01. The first author acknowledges the support of the Span- b ded. Thi that. with thi t of t
ish Ministry of Science and Technology through the “Remy Cajal” IS unbounaded. IS means that, wi . IS set of parame ers’
program. The second author acknowledges the partial support of tiilbe Bouc-Wen model cannot describe the true hysteresis.
Government of Catalonia’s grant 2001SGR-00173. This motivates the foIIowing problem:
F. Ikhouane and J. Rodellar are with the Departament de Mastem .
Aplicada [lI, Universitat Policnica de Catalunya, C/ Jordi Girona G'Ve'? the paramete_&f a<l, k> 0,D>0,A B; y and
1-3, 08034 - Barcelona, Spaifaycal.ikhouane@upc.es, n> 1, find the set of initial conditiong(0) for which the
jos\/e'ﬁ\(/l)gf?tl)lsa;@isu&(i:tfsthe Departament de Mateima Aplicada IlI Bouc-Wen model (1)-(2) is BIBO. Note that when this set
' P P Spails €mpty, this means that the Bouc-Wen model is not BIBO.
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victor.manosa@upc.es The solution of this problem will lead to classify different
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TABLE |

sets of parameters and initial conditions and, additionally, CLASSIFICATION OF THE BIBO BOUG-WEN MODELS

to determine explicit bounds for the hysteretic variatgte.

Case Qppyn | [2{t)] bound Class
C. Classification of the BIBO Bouc-Wen models A>0 | B+y>0p-y>0 | R max(|z(0)]. %) | |
B—-y<0, B3>0 [—z1,z1] | max(]z(0)],zp) | M
Let us introduce the following set: A<O | B—y>0,B+y>0 | R max(Jz(0)[,z) | M
) B+y<0,B>0 [—20,20] | max([z(0)[,z1) | IV
QqkpAByn=120) € R such thatdgy is BIBO A=0]| B+y>0,B—-y>0 | R [z(0)] Y,
all other cases 0

for all Ct input signalsx(t) with fixed values of

the parameters, k,D,A, B,y,n}.
(3) that it is bounded. The fact tha = Qap.vn Shows
. - . ) AB.y,n By, ;
_T_he rest of the analysis is devot.ed to determining eXhat for every input signak(t) (under the only assumption
plicitly the setQq p,ap.yn @s & function of the Bouc-Wen that it is CL), the outputz(t) is always bounded if the set
model parameters. Let0) be an element 00\ p a g yn- Qap.yn is non-empty, and i#(0) € Qa g.yn-
Then, for any bounde@? inputx(t), the outputdgy(X(t),t) m o

is bounded. This implies by equation (1) that the outtit Corollary 2: In all cases where a non-empty €24 5.,
means that the set Starting from physical considerations, a result close to
that of Corollary 2 has been drawn in [8] using the fact
Qapyn=120) € R such thatz(t) is bounded for that thermodynamic laws requig > 0 for the energy to

any C! bounded input signat(t) with fixed be dissipated through each hysteretic cycle.

values of the parameters 3.y, n} Proof: First we check that the differential equation (2)
: . L @ hasa unique solution. Equation (2) may be seen as a non-
is such thatQq pap.yn S Qapyn- The inclusion in the 5 10n0mous locally Lipschitz system (as> 1) where the
other way is immediate, which shows @} p,a,p,yn = dependence on time is continuous. Thus, by [4, Theorem

Qa p.yn- The importance of this equality stems for the facy, 51 5 \nique solution of (2) does exist. We consider the
that it is easier to determine the €4 . Note that an following three casesA > 0, A< 0 andA= 0

empty seQp g, means that, with the chosen parame#grs We focus first on the casé > 0. Consider the following
B, v, n, the Bouc-Wen model does not represent adequatellp{ree possibilities:

the behavior of a real hysteretic systepbg (see Appendix _
A). We also define the following set: PL:f+y>0andf—y=0,
P :B+y>0andf—-y<0,

» : P; :B+y<0.
QAvaV“ B {Z(O_) €R S_UCh thatz(t-) |s-bounded Let us focus on the cad®d. We consider the Lyapunov
for any C* input signalx(t) with fixed (5)  function candidate/(t) = z(t)?/2. Its derivative takes dif-
values of the parameters 8, y,n}. ferent forms depending on the signs »fand z. Indeed,

. i ) settingQ; = {x > 0 andz > 0}, and denoting\'/‘Q1 as the
~ Note that Qi 5, C Qapyn With the notations gypression of the derivative of the functishover the set
introduced above, the main results of this section are 9ived,  we haVe\7|Q1 =D L(A—(B+y)2). ThUS\7|Q1 <0
below. for z> 7. Also, if we setQ, = {x> 0 andz < 0}, we have
_ L , Vig, = ZXD 1 (A+(B—y)[Z"). In this caseV|q, < O for
Theorem 1:Let x(t), t € [0,) be aC" input signal and g["values ofz The same conclusion is drawn in the case of

A A Qs = {x< 0andz> 0}, sinceVq, =D~ (A+ (B—)Z").
02— andzn & | —. (6) Finally, taking Q4 = {x < 0andz < 0}, we getV,g, =
B+y y—B : . Qs
D1 (A—(B+Yy)|Z"). Thus,Vq, <0 for |z > 2. We
Then, Table 1 holds. then conclude that, for all the possibilities of the signscof
andz, we haveV <0 for all |z] > z. By [4, Theorem 4.10]
Corollary 1: Q*Aﬁ yn=CQAByn- 2 we conclude that(t) is bounded for every continuous

I hat the bounded f the si féinction X(t) and every initial conditiorg(0) which means
Corollary 1 means that the boundedness of the sign atQy ;= R. Sinceq; ;. C Qag.yn this implies that

z(t) depends only on the parametdéysy, 8 andn, while it N P, - PY .
is independent of the boundedness of the input sig(tal Agyn— agyn=R. The bounds om(t) can be derived

) e from [4, Theorem 4.10] as follows:
This fact is important for system control theory [2]: when rom [ eorem | as follows

X(t) is a closed loop signal, we cannot assume a priori 2The functionaz which appears in theorem 4.10 of [4] is zero in our

case. It is not class?’. This means that the timg of equation 4.22 of
1The correct notation would bQa g ynp. However, we will see later [4] may be infinite and that all what we can say abg(ty in [4] is that
that this set does not depend on the paramiter x| < ma)(|\x(to)\|,a{1(az(u)) which is exactly what we use.
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i) If the initial condition ofzis such thatz(0)| < zy then
|z(t)| <z for all t > 0;
ii) If the initial condition ofz is such thatz(0)| > z then
|z(t)| < |z(0)| for all t > 0.
We now turn to the casE>. Again, the derivative oW (t)
depends on the signs of and z Indeed,V < 0 in the
following regions:

{x>0andz>0andz> 7}, @)
{x>0andz<0and|z <z}, (8)
{x<0andz>0andz<z}, 9)
{x<0andz<0and|z > z}. (10)

Then, from (7)-(10) we conclude that: # > z (that is,
when 8 > 0), thenV < 0 for everyz, < |z < z; indepen-
dently of the sign ofk. By [4, theorem 4.10] we conclude
thatz(t) is bounded for every continuous functiaft) and
any initial statez(0) such that|z(0)| < z;. This means that
[~z1,.21] € Qp - NOw, takez(0) ¢ [~z,21]; we claim
that there exists a bounde@! signal x(t) such that the
corresponding signat(t) is unbounded. The construction
of such a signal is done in Appendix VI, which means that
z(0) ¢ QAB yn- This implies thatQa g n € [~21,21]. Since
Q*;B, C Qap,yn We getQy AB.yn = Qapyn = 2,z
Usmg [4 Theorem 4.10] we can obtain the following
bound:|z(t)| < max(|z(0)],20). If B <0, then for each initial
condition z(0) it is possible to construct a boundez!
signalx(t) as in Appendix VI, such that the corresponding
signalz(t) is unbounded. This means tHj 3 ,., = 0. Since
QAB e Qa .y this implies thatQy yn= =Qapyn=0.

We now move to the case;. An anaIyS|s similar to that
of Appendlx VI shows thaQa g ,.n = 0, which implies that

Arp =Qagyn=0.
he caseA < 0 and A= 0 can be treated in a similar
way, which ends the proof of Theorem 1.

Note that the cas8 +y >0, B—y<OandB >0
simplifies to — y < 0 andf > 0 since the former inequality
is implied by the latter two. Corollary 1 follows immediately
from the proof of Theorem 1, while Corollary 2 follows
from Table 1.

[ |

I11. UNCERTAINTY ISSUES

In Section II-C we have seen that the Bouc-Wen model
does not represent adequately a physical hysteretic system if
the setQa g . is empty. When the sé2p g |, is not empty,
we have determined it as an explicit function of the model
parameters and we have also determined explicitly an upper
bound on the solutior(t). In practice, the model parameters
are not known exactly: tuning or identification procedures
allow reasonably the determination of approximate values
of these parameters [7]. Let us consider a generic parameter
p € {A B,y,n} and consider that the identification leads to
the knowledge of minimum and maximum values such that
Pmin < P < Pmax Sincen> 1 and B > 0 (see Corollary
2 of Section II-C), we should haveyi, > 1 and Bmin >

TABLE I
INTERVAL PARAMETERS

Computable upper bound da(t)|
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Active controller

0. Our task in this section is to determine a computable

interval contained in the s€, g ., and a computable upper p ¢ £(t) =-ma ()
bound on the solutior(t) of the differential equation (2) for 0 —
different cases in which the Bouc-Wen model parametersEarthquake v
are defined as intervals. For reasons that will be clear in °

Section V, we consider only the case whére- 0, that is Isolator Foundation

we consider in this part the Bouc-Wen models that belong (@) (b)

to the classes | and Il of Table 1.

We define the foIIowing constants: Fig. 1. Hysteretic isolation scheme (a) and its physical model (b).

— min [ mmax/ | Amin | a [l Amin
h = Ymax— Bmin | Ymax— Bmin ’ This system is described by the second order differential
equation
n - max< \/  Ane (/  Ana ) i+ -+ B(xt) = (1), a1
Vein -+ Pmin Vein - Pmin with initial conditionsx(0) andx(0) and excited by a force

The analysis involve lengthy but straightforward cal-f (1), like the one of the form-ma(t) in the case of an

culations. The results are summarized in Table IIl. Som@arthquake with ground acceleratiaft). The restoring
interpretations are made below. For exampleAdf, > 0 force is assumed to be described by the Bouc-Wen model:

Brmin + Ymin > 0 and Bmin — Ymax < 0, then a computable O(xt) = akx(t)+(1—a)Dkat) (12)
subset 0fQa g 1 is [~2;,2]. The solutionz(t) is bounded " L T

and a computable upper bound gft) is max(|z(0)|,Z). z = D[A-BX[Z"z-yKd" . (13)
Consider now the casémin > 0 and Bmax+ ¥max <0 . wheren>1, D >0, k>0 and0< a < 1. The purpose
The setQa gy is empty, which means that the parametergy thjs section is the study of the free motion of system
do not correspond to a BIBO Bouc-Wen model. Wher(ll)—(ls), that is withf () = 0, to analyze its asymptotic
Amin > 0 and Biin + Ymin < 0 < Bmax + Ymax, W€ €annot yraiectories. This analytical characterization will be used to

know from the available information if the S€la g yn IS reveal the energy dissipation properties of system (11)—(13)
empty or not. Thus, it is not possible to determine neithe, section V.

a computable subset &2, ,, Nor a computable upper
bound on|z(t)|. This means that we should perform a moreB. Asymptotic trajectories

accurate identification of the paramgters. . e The main result in this section is given in the following

Note that the process of refining the |dent|f|cat|or}heorem.

procedure is always finite whenever the €fz,, is
non-empty. Indeed, take series of valufSmink, Pmaxk}
such that Pmin,k < Pmin k+1 <p< Pmaxk+1 < Pmaxk and
liMk_co Prmink = liMk_.0 Pmaxk = P, Where p is any of the
parametersA, B, y or n. Then there exists some integer
N such thatA > Aminn > 0. If the process of refining the

identification were infinite, we would have from Table II: only on the Bouc-Wen model parametess D, k, A, 8, y, 1),

Bminic + Ymink < 0 < Bmaxk + Vmaxk for all k > N. Thus, system parametersn(c) and the initial conditions
taking the limit fork — o, we get +y=0. It can be x(0),%(0),2(0)), such that
checked from Table 1 that this case corresponds to an emét)g T '

Theorem 2:For every initial condition(0) € R, x(0) €
R andz(0) € Qa g yn # 0, the following holds:
(a) For all the classes I-V of Table 1, the signa(s), x(t)
andz(t) are bounded an@?.
(b) Assume that the Bouc-Wen model belongs to the classes
| or Il. Then, there exist constants, andz., which depend

setQa g yn- This means that, once the Bouc-Wen model is [imx(t) = X, (14)

BIBO, the process of refining the identification procedure t|?°° N — 15

leads in a finite number of steps to a computable subset of tﬂlz< ) = 2 (15)

the setQa g ,n and a computable upper bound (=(t)|. 0%+ (1—0a)Dz, = O. (16)
IV. FREE MOTION OF AN HYSTERETIC STRUCTURAL Furthermore, we have

SYSTEM x€L1((0,0)) and JimX(t) =0. 17)

A. Problem statement Proof: see [3]. - =

We consider a structural isolation scheme, as illustrated in
Figure 1, which is modelled as 1 degree-of-freedom system
with massm > 0 and viscous damping> 0 plus a restoring The objective of this section is the analytical study of
force @ characterizing a hysteretic behavior of the isolatothe energy dissipation mechanism in the system (11)-(13).
material. As in Section IV-B, it is assumed that the Bouc-Wen model
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parameters are such that a non-empty(seg |, exists and Theorem 3:Consider the classes |-V of Table 1. Then,
that z(0) € Qa g yn- Write the system (11)-(13) as we have the following:

(i) The classes | and Il are asymptotically dissipative.
(i) The classes Il and IV contain an infinite number of

wherez is the solution of the differential equation (2). At __ €leéments that generate energy.

each instant, the total energyE(t) of (18) is the sum of (i) For the class V, the hysteretic part of the model is
always zero.
its kinetic energyérni((t)2 and its potential elastic energy Proo?: see [3]. n

The results of Theorem 3 are illustrated in Figure 2.

MK+ cX+ akx+ (1— a)Dkz= 0 (18)

1 .
éorkx(t)z. That is

v y=5
E(t) = %mi((t)er %akx(t)z. (19) Class i

BIBO and
Consider the system (11)-(13) wi#{0) =0, x(0) =0 and dissipative
assume thag(0) # 0. By continuity of the solutions of
(11)-(13), the signak(t) will be nonzero at least during Class I
some time interval0,t;). This implies by equation (18) .
that in the time interval(O,t;) the signalsx(t) and x(t) BIBO and Y
are not identically zero. In this case, the Bouc-Wen model dissipative
has delivered non-identically zero signalsand x starting
from zero initial condition(0) = 0 andx(0) = 0. This will
unlikely be the case for the real hysteresis as, in general,
the coordinates are chosen in such a way that the point y=-p

with x(0) = 0 and x(0) = 0 is an equilibrium position for
the real hysteretic system under free motion. This means
that the Bouc-Wen model cannot describe adequately ti¥@. 2. Classification of the possible BIBO and dissipative Bouc-Wen
true hysteresis i#(0) is not set to zero. models.

With z(0) set to zero, a Bouc-Wen model is uniquely
defined by its parametels, B3, y, n, D, a, k. Thus, each VI]. CONCLUSION
class of Table 1 can be seen as a set of allowable parameter

for example : S'This paper has presented a classification of the possible

Bouc-Wen models in terms of their BIBO and energy
Class | = {(A,B,y,n,D,a,k) € R’ such that dlissipation pfroperties. It hads Ibeen shown :]hat only five
classes I-V of Bouc-Wen models are BIBO. The asymptotic

A>0,p+y>0,p-y=0n>1, behavior of a second order mechanical/structural hysteretic
D>00<a<1k>0}. (20)  system represented by the Bouc-Wen model has been an-
alyzed. It has been shown that, for all the five classes,
the displacement of the mass and its velocity are bounded.
Furthermore, for the classes | and Il, the displacement of
the mass goes asymptotically to a constant, the restoring
force goes to zero, the velocity of the mass isLinand
goes to zero asymptotically.

We introduce some definitions.

Definition 1: The Bouc-Wen model defined by its pa-
rameters (A, B,y,n,D,a,k) is said to be asymptotically
dissipative if for everym > 0, ¢ > 0 and every initial

conditions (x(0),(0)) we have E(e) < E(0) whenever This study led to the analysis of the energy dissipation

E(0) 7& O i . . properties of the five BIBO classes of Bouc-Wen models. It
Definition 2: A class of the Table 1 is said to be asymp-, )
: S ; ; has been shown that the classes | and Il are indeed asymp-
totically dissipative if all its elements are asymptotically

dissipative., totically dissipative and thus may represent the physical

Definition 3- The B Wi del defined by it behavior of a true hysteresis. The classes Ill and IV have
efinition . The Bouc-Wen modet detined by 11s param-, . o, shown to contain an infinite number of elements which
eters(A,B,y,n,D,a,k) is said to generate energy if there

st 0 0 initial diti ) %(0 generates energy. This means that both classes are of little
exg somerfr)}t ’t'c> ’ Sorr?tehmulzléi conE|(|)or(x( ).X(0)) practical interest. The remaining class V has been shown
and some finite timéy such that=(t) > E(0). to be irrelevant in practice since the hysteretic part of the

A ETOUC'Wen. model that generates energy 1s hlghl¥nodel remains equal to zero and thus cannot describe an
undesirable as it cannot represent the real passive hySter‘?ﬂfSteretic behavior

systems.
With the definitions above we now state the main result APPENDIXA
of this section. In this section, we present an example of a Bouc-Wen

model which is not BIBO. Consider the Bouc—\Wen model
3524



given by the following parameter® =1, A=1, 8 =0.5, VII. APPENDIXC

y=—15andn=2.Takez(0) =0 and define the bounded | this appendix we analyze the following limit cases for

input signalx(t) = Esm(t). The corresponding derivative is the Bouc-Wen model parameters=1, a =0, a = 1.

X(t) = Ecos(t), which is also bounded. F@ <t < T e C1. The limit casen =1
havex(t) > 0. This implies that the Bouc-Wen model (2) The differential equation (2) remains locally Lipschitz for

can take only one of the two forms: n=1, however the signak constructed in Appendix B is
7 = )-((1+22) for z>0 (21) ho longer inL; so that the result of that appendix does not
. . 7 hold. This means that in Table 1 the expressions given for
z = x(1+22) for z<O. (22)

Qap,y.n are only subsets of the whole €f g ,, . With this
In both cases (21) and (22) it 5> 0 for 0<t< E, simple observation, Table 1 holds also for the casel.
For example, for the class II, a subset®@fg , is given
by [—z1,z]; and for z(0) € [—z1,21], an upper bound on
|z(t)| is given bymax(|z(0)|,z) as indicated in Table 1.
Theorem 2 holds fon = 1 with the only modification that
dz _ /d (23) z(0) should belong to the subset Of, 5 ,» given by Table
1+2 1 (and not to the whole s&,g ). Theorem 3 holds as
which givesarctar{z) = x, sincez(0) = 0 andx(0) =0. This  z(0) = 0.
implies thatz(t) = tan(x(t)). Observe thattlim/zz(t) = +o00,
—TT,

which implies thatz(t) is a non-decreasing function. Since
z(0) =0, this means that(t) > 0, so thatzis given by (21).
Integrating (21) we obtain

C2. The limit casen =1

. 1 . .
Thus, by equation (1), th€" bounded input signak(t) For a = 1 the hysteretic part in equation (1) is zero so
will give rise to an unbounded outpllaw(xt). A similar  yh4¢ the system (18) is linear and thus does not represent a
construction can be done for any initial conditip(®) # 0. hysteretic nonlinearity.

APPENDIXB

Assume tha{3 —y < 0, 8 > 0. The goal of this section
is to construct aC' bounded input signak(t) such that
the corresponding signa(t) is unbounded for any initial
condition z(0) such that|z(0)| > z;. Take z(0) > z; (the

C3. The limit casex =0

Table 1 holds for the case = 0. However, Theorems 2
and 3 do not hold necessarily (see [3] for a proof).

construction is similar in the casg0) < —z;). Define the REFERENCES
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A+ (B—y) 1022, 1995.
. . [2] F. Ikhouane, V. Maosa and J. Rodellar. Adaptive control of an
Sincez(0) >z > 0, we haveA+ (B —y)z(0)" < 0, which hysteretic structural system. SubmittedAatomatica 2003.

means that the solutior(t) of the differential equation (2) [3] F. lkhouane, V. Méiosa and J. Rodellar. Input-output and energy

; : ; ; ; ; dissipation properties of the hysteretic Bouc-Wen Model. Submitted
is well defined at least during some time interf@lt;) in o SIAM. J. of Control and Optimizatior2003.

which we havez(t) > 2z. ForO<t <t; we havez>0and (4] H. Khalil. Nonlinear SystemsviacMillan, USA, 1992.
X < 0. Thus equation (2) reduces to [5] L. P. Lecog and A. M. Hopkin. A functional analysis approach to
L. stability and its applications to systems with hystereftEE-
7=D XA+ (B—y)2"). (25) Transaction on Automatic Contiobol. AC-17, no. 3, pp. 328-338,
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