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Abstract

This paper deals with the problem of stabilizing a class of struc-
tures subject to an uncertain excitation due to the temporary
coupling of the main system with another uncertain dynami-
cal subsystem. A sliding mode control scheme is proposed to
attenuate the structural vibration. In the control design, the ac-
tuator dynamics is taken into account. The control scheme is
implemented by using only feedback information of the main
system. The effectiveness of the control scheme is shown for a
bridge platform with crossing vehicle.

1 Introduction

Vibrations in dynamical flexible structures, as those encoun-
tered in civil engineering, are often caused by environmental
(seismic or wind) excitations and human made (traffic or heavy
machinery) excitations. One way for attenuating the structural
vibrations is to use the active control systems so that the safety
of the structure and comfortability of the human beings are im-
proved[1]. Different active control methods have been used to
account for uncertainties in the structural models and the lack
of knowledge of the excitations[2]−[6]. This paper considers a
class of structures whose excitation comes through the uncer-
tain coupling with another dynamical system during a certain
time. One prototype of this class of systems is illustrated by
considering a bridge platform with an unknown moving vehi-
cle as a coupled exciting subsystem. A sliding mode control
scheme is proposed to reduce the vibration of bridge induced
by the crossing vehicle. In the control design, only the feed-
back information from the controlled structure (bridge) is used.
Numerical simulation is done to show the effectiveness of the
proposed active control scheme for an elastically suspended
bridge when a truck crosses it.

2 Problem formulation

Consider the problem of active control of an elastically
suspended bridge with crossing vehicles as shown in Figure
1. The bridge section consists of a rigid platform with elastic
mounts on the left-hand and right-hand sides[7]. The main
variables to be measured are the vertical deviationz of the

center of mass of the bridge and the inclinationΘ with
respect to the horizon of the bridge platform. Vibration of
the bridge is produced when a truck crosses the bridge with
velocity v(t) within a time interval[t0, tf ]. Without the loss
of generality,t0 is set to zero andtf denotes the final time of
interaction between the structure and the truck. The truck is
modelled by a massm with an elastic suspension of damping
c and stiffnessk. Additional variablesξ, η andζ are chosen
according to Figure 1. The mass of the platform is given byM ,
and the moment of inertia with respect toC by the parameterJ .

The active control is implemented by two actuators located be-
tween the ground and the bridge at the left and the right ends
respectively. The actuatorsA1 andA2 supply vertical control
forcesMu1 andMu2 which complement the resistant passive
forcesF1 andF2 given by the elastic supports.u1 andu2 are
the control variables. The objective is to attenuate the vibration
of the bridge induced by the crossing vehicle by using active
forcesMu1 andMu2.

Equations of motion of the truck:

When the truck is not in the bridge (fort < 0 andt > tf ), the
equation of motion of the truck ismη̈ = k η0 − mg, where
η0 is the position of relaxed suspension. Whent ∈ [0, tf ], the
truck is crossing the bridge. Assume that the declination angle
Θ is small, then the dynamic motion of the truck is described
ny the following equation

mη̈ = F −mg

F : = k[η0 − (η + ζ)]− c(η̇ + ζ̇)
ζ : = z + (ξ − a)Θ

(1)

Equations of motion of the bridge:

For t < 0 the bridge is in a steady state. Fort ∈ [0, tf ], the
dynamic behavior of the bridge is described by the following
equations of motion:

M z̈ = M g + F − F1 − F2 −Mu1 −Mu2

J Θ̈ = (ξ − a)F + aF1 − bF2 + aMu1 − bMu2

F : = k[η0 − (η + ζ)]− c(η̇ + ζ̇)
F1 = k1(−z1,0 + z − aΘ) + c1(ż − aΘ̇)
F2 = k2(−z2,0 + z + bΘ) + c2(ż + bΘ̇)

(2)



wherez1,0 andz2,0 represent the vertical positions of relaxed
left-hand and right-hand suspension, respectively.

We consider the bridge as the main system and the truck as
the attached uncertain subsystem. The space state variables
are split into the measurable ones,x := (z,Θ, ż, Θ̇)T , and the
unmeasurable onesy := (η, η̇)T . u := (u1, u2)T are control
signals. The uncertain coupling between the bridge and the
truck is due to the scalar forceF . When the truck has left the
bridge for t > tf , the two systems are obviously decoupled
with F = 0 and then the equations of motion of the bridge are{

M z̈ = M g − F1 − F2 −Mu1 −Mu2,

J Θ̈ = aF1 − bF2 + aMu1 − bMu2.
(3)

In the above models, consider that the structural parameters of
the bridge (M , J , c1, c2, k1, k2) are known, while the param-
eters related to the truck (m, c, k, η0, ξ, v) are assumed to be
uncertain but bounded; i.e.,

k

m
= ω0 + ∆ω, with |∆ω| ≤ ω̄,

c

m
= σ0 + ∆σ, with |∆σ| ≤ σ̄,

k

M
= Ω, with Ω ≤ Ω̄,

c

M
= Υ, with Υ ≤ Ῡ,

|η0| ≤ η̄0, |v(t)| ≤ v̄

(4)

whereω0 andσ0 are known nominal values and̄ω, σ̄, Ω̄, Ῡ, η̄0
and v̄ are known bounds. Finally the equations of motion (1)
and (2) can be rewritten into the following form:{

ẋ = Acx + Bcu + gc(x,y, t),
ẏ = Ary + gr(x,y, t)

(5)

where the parameters of the matricesAc, Bc and Ar are
known. The functionsgc andgr include the uncertain cou-
pling effects.

Ac =


0 0
0 0

−k1 + k2

M

ak1 − bk2

M
ak1 − bk2

J
−a

2k1 + b2k2

J
1 0
0 1

−c1 + c2
M

ac1 − bc2
M

ac1 − bc2
J

−a
2c1 + b2c2

J

 (6)

Bc =


0 0
0 0
−1 −1
aM

J
−bM

J

 , and g̃c =


0
0
gc,3

gc,4

 (7)

Here fort ∈ [0, tf ]:

gc,3(x,y, t) := − k

M
z− 1

M
[k(ξ(t)− a) + cv]Θ− c

M
ż

− c

M
(ξ(t)− a)Θ̇− k

M
η − c

M
η̇+

k

M
η0

+
k1

M
z1,0+

k2

M
z2,0 + g (8)

gc,4(x,y, t) := − k
J

(ξ(t)− a)z − 1
J

[k(ξ(t)− a)2 + cv(ξ(t)

−a)]Θ− c

J
(ξ(t)− a)ż − c

J
(ξ(t)− a)2Θ̇

− k
J

(ξ(t)− a)η − c

J
(ξ(t)− a)η̇ +

k

J
(ξ(t)

−a)η0 −
ak1

J
z1,0 +

bk2

J
z2,0 (9)

while, for t > tf ,

gc,3 :=
k1

M
z1,0 +

k2

M
z2,0 + g (10)

gc,4 := −ak1

J
z1,0 +

bk2

J
z2,0 (11)

Ar =
(

0 1
−ω0 −σ0

)
(12)

gr(x,y, t) =
(

0
gr,2

)
(13)

For t ∈ [0, tf ],

gr,2 = − k

m
z − 1

m
[k(ξ(t)− a) + cv]Θ− c

m
ż − c

m
(ξ(t)

−a)Θ̇−∆ω η −∆σ η̇ +
k

m
η0 − g (14)

and fort > tf ,

gr,2 = −∆ω η −∆σ η̇ +
k

m
η0 − g (15)

Denotee = (e1, e2)T

ei(x,y, t) = ei,1(t) z + ei,2(t) Θ + ei,3(t) ż + ei,4(t) Θ̇
+ ei,5(t) η + ei,6(t) η̇ + ei,7(t). (16)

Now, it can be verified thatAc andAr are stable matrices and
the functione(x,y, ·) is continuous for allt except a set{0, tf}
and there exist known non-negative scalarsαc

c, αr
c , δc, such

that, for allx,y andt, one has

gc = Bc e, and ‖e(x,y, t)‖ ≤ αc
c‖x‖+ αr

c‖y‖+ δc (17)

with

αc
c =

√
2

√
α2

1 + α2
2 + α2

3 + α2
4, (18)

αr
c =

√
2

√
α2

5 + α2
6, (19)

δc =
√

2α7. (20)



where
α1 = Ω̄ (21)

α2 =


1

(a+ b)
(
Ω̄a2 + (aΩ̄ + Ῡv̄)a+ aῩv̄

)
, if a ≥ b

1
(a+ b)

(
Ω̄b2 + (bΩ̄ + Ῡv̄)b+ bῩv̄

)
, if a < b

α3 = Ῡ (22)

α4 =


2a2

(a+ b)
Ῡ, if a ≥ b

2b2

(a+ b)
Ῡ, if a < b

(23)

α5 = Ω̄ (24)

α6 = Ῡ (25)

α7 = max

{
1

(a+ b)

[
Ω̄(a+ b)η̄0 +

(a+ b)k1z1,0 + g

M

]
,

1
(a+ b)

[
Ω̄(a+ b)η̄0 +

(a+ b)k2z2,0 + ag

M

]}
(26)

Indeed, solving the linear systemgc = Bc e, it is easy to get
thate = (e1, e2)T , where

e1 =
−bMgc,3 + Jgc,4

(a+ b)M
; e2 = −aMgc,3 + Jgc,4

(a+ b)M
. (27)

3 Controller Design

The objective of active control is to attenuate the vibration of
the bridge induced by a crossing truck through the uncertain
coupling between the dynamics of the bridge and the truck.
The controller design will be based on the principle of sliding
mode controller[8]−[9], in which only the feedback information
of the bridge (not the truck) is used. Define a sliding function
as follows

σσσ(t) = DxDxDx(t) with σi(t) = dddT
i xxx(t) (i = 1, 2) (28)

whereDDD = [ddd1, ddd2]T ∈ IR 2×4 is a matrix to be chosen by the
designer in order to guarantee the asymptotic stability of the
closed-loop system in sliding mode

ẋxx(t) =
[
III4 −BBBc(DBDBDBc)−1DDD

]
AAAcxxx(t) (29)

For the system (5), a simple choice forDDD is

DDD =
(

1 0 1 0
0 1 0 1

)
(30)

Consequently, the following two sliding functions are defined

σ1(t) = ż(t) + z(t) ; σ2(t) = Θ̇(t) + Θ(t) (31)

When the system (5) is in sliding mode,σi(t) = 0, (i = 1, 2),
one has

z(t) = z(ts)e−(t−ts) ; Θ(t) = Θ(ts)e−(t−ts) (32)

wherets is the time instant when sliding motion is generated
in the system. Thus, the closed-loop control system in sliding
mode is exponentially stable.

In order to design the sliding mode controller, define a Lya-
punov function candidate:

V (σσσ) =
1
2
σσσT (t)σσσ(t) (33)

The derivative of the Lyapunov function is obtained as follows:

V̇ (σσσ) = σσσT σ̇σσ = σσσT [DADADAcxxx+DBDBDBcuuu+DBDBDBceee(xxx, yyy, t)]
≤ H(xxx, uuu) +H(yyy) (34)

where

H(xxx, uuu) =: σσσT {DADADAcxxx+DBDBDBcuuu}+ ||σσσT || · ||DBDBDBc|| ·
·{δc + αc

c||xxx||} (35)

H(yyy) =: αr
c ||σσσT || · ||DBDBDBc|| · ||yyy|| (36)

Since the state variableyyy(t) of the coupled uncertain subsys-
tem (the truck) is usually not measurable, the objective of the
sliding mode control is to minimize thėV (σσσ) by making the
H(xxx, uuu) < 0. If we denoteuuud(t) as the “desired” control sig-
nal (without taking into account the actuator dynamics), then
the following “desired ” sliding mode control law will be used
for the generation of sliding motion:

uuud = −kkkcxxx− (DBDBDBc)−1{ψ0 + ψ1|z|+ ψ2|Θ|+ ψ3|ż|
+ψ4|Θ̇|} [sgn (σ1) , sgn (σ2)]

T (37)

where

kkkc =
1
4
DBDBDBcDDD + (DBDBDBc)−1DADADAc (38)


ψ0 >

√
2α7||DBDBDBc||

ψ1 ≥
√

2α1||DBDBDBc||
ψ2 ≥

√
2α2||DBDBDBc||

ψ3 ≥
√

2α3||DBDBDBc||
ψ4 ≥

√
2α4||DBDBDBc||

(39)

It is easy to verify that if the controller gains are chosen to
accomplish the relationships eqns.(38)-(39) thenH(xxx, uuu) <
0. In practice, the continuous approximation is used for the
control law (37) to attenuate the high-frequency chattering

sgn(·) =⇒ (·)
|(·)|+ γ

(40)

whereγ is a positive small constant. Thus, the corresponding
continuous “desired” sliding mode control law is

uuud = −kkkcxxx− (DBDBDBc)−1{ψ0 + ψ1|z|+ ψ2|Θ|+ ψ3|ż|

+ψ4|Θ̇|}
[

σ1

|σ1|+ γ1
,

σ2

|σ2|+ γ2

]T

(41)

Now, assume that a hydraulic actuator is used for the imple-
mentation the control action generated by the “desired” sliding



mode controllers (37) or (41). The dynamic behavior of the
hydraulic actuator is described by the following equation[10]:

vi(t) = Pvu̇i(t) + Plui(t) + Paż(t), i = 1, 2 (42)

where

Pv =
Cv

4βPa
, Pl =

Cl

Pa
, Pa > 0 (43)

The equation (42) represents the internal dynamics of a hy-
draulic actuator’s chamber, withui(t) being the average output
actuator force,vi(t) the total fluid flow rate of the actuator’s
chamber,Pa the actuator effective piston’s area,Cv the cham-
ber’s volume,β the bulk modulus of the hydraulic fluid,Cl the
coefficient of leakage anḋxi(t) the velocity of the piston. De-
noteũuu(t) as the tracking error between the “real” control action
uuu(t) and the “desired” control actionuuud(t); i.e.,

ũuu(t) = uuu(t)− uuud(t) (44)

Apply the control forcevvv(t) = [v1(t), v2(t)]T in (42) to the
bridge platform and define a new Lyapunov function candidate
V (σσσ, ũuu)

V (σσσ, ũuu) = V1(σσσ) + V2(ũuu) (45)

V1 = 1
2σσσ

Tσσσ V2(ũuu) = 1
2P

−1
l Pvũuu

T ũuu (46)

The controller design is made through the minimization of the
derivative of a Lyapunov function candidate. From eqn.(44)

uuu(t) = uuud(t) + ũuu(t) (47)

Then, the derivative ofV (σσσ, ũuu) is obtained as follows by using
eqns. (37), (42) and (44):

V̇ (σσσ, ũuu) ≤ H(xxx, uuu, ũuu) +H(yyy) (48)

where

H(xxx, uuu, ũuu) =: H(xxx, uuu)− 1
4
σσσTBBBT

c DDD
TDBDBDBcσσσ + σσσTDBDBDBcũuu

−ũuuT ũuu

= H(xxx, uuu)− (ũuu− 1
2
DBDBDBcσσσ)T (ũuu− 1

2
DBDBDBcσσσ)

≤ H(xxx, uuu) < 0 (49)

Therefore, the “real” control actionuuu(t) (taking into account
the actuator dynamics) can minimize the derivative of Lya-
punov functionV̇ (σσσ, ũuu) by makingH(xxx, uuu, ũuu) < 0, which is
similar to the case when a “desired” control actionuuud(t) (with-
out taking into account the actuator dynamics) is applied to the
bridge platform.

4 Numerical Simulation Results

In the numerical simulation, an actively suspended bridge
platform is considered as the main system and the excitation is
induced by a truck when it crosses the bridge. The following

parameters are used for the controller design and numerical
simulation:

Nominal parameters and bounds for uncertainties: η̄0 = 1 [m],
ω0 = 40 [N/(m kg)], ω̄ = 20 [N/(m kg)], σ0 = 1 [Ns/(m Kg)],
σ̄ = 5 [Ns/(m Kg)], Ω̄ = 5 [N/(m kg)], Ῡ = 0.5 [Ns/(m Kg)],
v̄ = 8.33 [m/s] (v̄ = 30 [km/h]), k0 = 4 · 105 [N/m], c0 = 104

[Ns/m].

Bridge: M = 105 Kg, J = 2 · 107 Kg m2, a = b = 25 m,
ki = 4 · 106 N/m andci = 4 · 104 N s/m for eachi = 1, 2.
z1,0 = z2,0 = −0.125 m, which correspond to the equilibrium
position for the platform without truck and no control.

The parameters of the truck, which are unknown for the
controller design, are the following:

Truck: m = 104 Kg, v = 8.33 m/s (= 30 Km/h), k = 4 · 105

N/m, c = 104 N s/m,η0 = 0.75m.
The parameters of the hydraulic actuator are the following:
Pa = 2.4× 10−2, Pv = 3.57× 103 andPl = 1.99× 10−5

With the above parameters, we obtainααα =
(5, 129.165, 0.5, 12.5, 5, 0.5, 500.0025)T . In the controller
design The matrixDDD is chosen as

DDD =
(

1 0 1 0
0 1 0 1

)
,

in order to make a reasonable trade-off between performance
and control effort and the controller gains are chosen as follows
according to eqns.(38) and (39):

Ψ = (ψ0, ψ1, ψ2, ψ3, ψ4)T = (1× 10−3, 10, 258.33, 1, 25)T

The platform is excited by the crossing of the truck for time
t ∈ [0, 6] seconds, and aftert = 6 seconds no excitation is
evolved with between the platform and the truck. The time his-
tory of structural vibration of the bridge platform for the uncon-
trolled case (dash line) and the controlled case (solid line) are
shown in Figures 2 and 3. Concretely, Figure 2 shows the main
effect of the control, which is to add damping to the bridge
platform. Without control, the platform has very low damping,
thus exhibiting a highly oscillatory response. The damping co-
efficients of the two end supports arec1 = c2 = 4×104 N s/m,
which corresponds to a damping factor of4.5% approximately.
The control modifies this behavior, forcing a practically over-
damped response. It is seen how the vertical deflectionz of
the center of mass of the platform evolves slowly but smoothly
towards its equilibrium position with the truck (z = 0.125m).
After t = 6 seconds the excitation disappears and the platform
deflection evolves to recover the initial equilibrium position.
Figure 3 shows that the inclinationΘ of the bridge has been
significantly improved. Figures 4 and 5 display the control sig-
nalsu1 andu2, which are feasible for practical actuators.



5 Conclusions

An active sliding mode control scheme has been proposed in
this paper to attenuate the vibrations of a main system excited
by an temporarily coupled uncertain subsystem. Only the feed-
back information of the main system has been used in the con-
trol design, without measuring the response of the coupled un-
certain subsystem. It has been shown that the active controller
also works well when the actuator dynamics is taken into ac-
count. The results of numerical simulation have illustrated the
effectiveness of the proposed control scheme for an active con-
trolled suspended bridge platform with crossing vehicles.

6 Acknowledgements

This work has been funded by the Commission of Science
and Technology of Spain (CICYT) under the Project DPI2002-
04018.

References

[1] Housner, et al., “ Structural control: past, present and fu-
ture ”, J. Eng. Mech., 897–971, 1997.

[2] Kelly, J.M., Leitmann, G. and Soldatos, A., “ Robust con-
trol of base isolated structures under earthquake excitation
”, J. Optim. Theory Appl., 53, 159–180, 1987.

[3] Rodellar, J., Leitmann, G. and Ryan, E.P., “ Output feed-
back control of uncertain coupled systems ”,International
Journal of Control, Vol.58,pp.445–457, 1993.

[4] Barbat, A.H., Rodellar, J., Ryan, E.P. and Molinares, N., “
Active control of non-linear base-isolated buildings ”,Jour-
nal of Engineering Mechanics ASCE, Vol.121, 676–684,
1995.

[5] Luo, N., Rodellar, J., and De la Sen, M., “ Composite ro-
bust active control of seismically excited structures with ac-
tuator dynamics ”,Earthquake Engineering and Structural
Dynamics, Vol. 27, pp. 301–311, 1998.

[6] Reithmeier, E. and Leitmann, G., “ Structural vibration
control ”, Journal of the Franklin Institute, Vol. 338, pp.
203–223, 2000.
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Figure 1:Actively controlled bridge platform with crossing vehicle

Figure 2:Vertical vibration of the bridge



Figure 3:Inclination of the bridge

Figure 4:Control force of the 1st actuator

Figure 5:Control force of the 2nd actuator
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