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1 Introduction and scope of this document
The Magnetic Diagnostics Subsystem of the LTP includes a set of four tri-axial fluxgate

magnetometers, intended to sense with high precision the magnetic field at the positions they
occupy in the LCA. Their readouts do not however provide a direct measurement of the magnetic
field at the TMs, and an interpolation method must be implemented to obtain that information.
However, such interpolation process faces serious difficulties: indeed, the size of the interpolation
region, i.e., the LCA interior, is excessive for a linear interpolation to be reliable, but the
number of magnetometer channels does not provide sufficient data to go beyond that (poor)
approximation.

This document sketches what could be a possible alternative to address the magnetic in-
terpolation problem by means of neural network algorithms, and gives a few examples. At
present, results look promising, hence the method is under exploration for improvement. The
key point in this proposal is the ability neural networks have to learn from suitable training
feedback. It appears that learning efficiency can be best improved by making use of data ob-
tained in on-ground measurements prior to mission launch in all relevant satellite locations and
real operation conditions.

2 Detailed description of the problem
Magnetic noise in the LTP is budgetted to be a significant fraction of the total readout noise:

1.2×10−14 m s−2 Hz−1/2 out of 3×10−14 m s−2 Hz−1/2 —see Table 8.1 in [AD1]. This noise occurs
because residual magnetisation and susceptibility in the proof masses couple to the surrounding
magnetic field, giving rise to a force

F =

〈[(
M +

χ

µ0

B

)
·∇
]
B

〉
V (2.1)

in each of the TMs, where

B Magnetic field in the TM
M Density of magnetic moment (magnetisation) of the TM
V Volume of the TM
χ Magnetic susceptibility of the TM
µ0 Vacuum magnetic constant (4π×10−7 m kg s−2 A−2)
〈· · ·〉 TM volume avergage of enclosed quantity

Magnetic noise is generated because the magnetic field and its gradient randomly fluctuate
in the regions occupied by the TMs1. Quantitative assessment of magnetic noise in the LTP
therefore requires real-time monitoring of the magnetic field, which in LPF is done by means of
a set of four tri-axial fluxgate magnetometers. These devices have a high permeability magnetic
core, which drives a design constraint to keep them somewhat far from the TMs. The price of

1 Additional noise comes from TM susceptibility and magnetic remanence fluctuations, normally expected to
be much less important.
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Figure 2.1: Schematic of the LPF Science-craft: The LCA is in the centre, surrounded by a
double cylindrical shield, and outside it a number of electronic boxes are represented;
most of them are sources of magnetic field. The four magnetometers are the white
little boxes indicated by the arrows, and are mounted across the two cylindrical
shells.

that is of course that an interpolation problem needs to be solved before the field in the TMs
can be inferred.

The sources of magnetic field are essentially due to components inside the spacecraft (S/C),
as the interplanetary magnetic field is orders of magnitude weaker. There are no sources of
magnetic field inside the LTP Core Assembly (LCA), all being placed within the S/C, outside
the LCA walls —see figure 2.1. The number of identified sources is in the order of 50, and they
can be modelled as magnetic dipoles in first approximation. Refinements may be useful, but
this is not an issue for this document.

What matters instead is that, the sources being outside the LCA, the magnetic field is
smaller towards the centre of the LCA than it is in its periphery, where the magnetometers take
measurements. Figure 2.2 shows a qualitative diagram of the situation.

As we shall now see, there is no interpolation method which can give account of this circum-
stance on the basis of the information produced by the three vector magnetometers.
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Figure 2.2: Qualitative behaviour of the magnetic field and gradient inside the LCA. Scales are
not real.

2.1 Interpolation theory

We will treat the LCA region as a vacuum. This is a quite reasonably accurate hypothesis,
as the materials inside it are essentially non-magnetic. Accordingly, the magnetic field has zero
divergence and rotational2:

∇·B(x, t) = 0 and ∇×B(x, t) = 0 (2.2)

We thus have
∇×B(x, t) = 0 ⇒ B(x, t) =∇Ψ(x, t) (2.3)

where Ψ(x, t) is a scalar function. Because ∇·B(x, t) = 0, too, it immediately follows that
Ψ(x, t) is a harmonic function, or

∇2Ψ(x, t) = 0 (2.4)

The solution to this equation can be expressed as an orthogonal series of the form

Ψ(x, t) =
∞∑
l=0

l∑
m=−l

Mlm(t) rl Ylm(n) (2.5)

where
r ≡ |x| , n ≡ x/r (2.6)

2 Given the distances in the spacecraft, in the order of one metre, propagation effects will be neglected. Time
dependence will therefore be purely parametric, i.e., the time variable will just label the value the field takes
on at that time.
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are the spherical coordinates of the field point x, whose origin is by (arbitrary) convention
assumed in the geometric centre of the LCA. In equation (2.5), the terms in r−l−1 have been
dropped out of the series, since the field cannot diverge at the centre of the LCA. Actually,
the expansion (2.5) is only valid in a region interior to the closest field source. Finally, the
coefficients Mlm(t), which will be called multipole coefficients in the sequel, depend on the
sources of magnetic field, and boundary conditions.

To obtain the field components we go back to equation (2.3):

B(x, t) =∇Ψ(x, t) =
∞∑
l=0

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (2.7)

In terms of the above development, the question we need to address is: how many terms
of the series can we possibly determine on the basis of the information available, i.e., that
provided by the magnetometers? Or, in other words, how many multipole coefficients can be
calculated on the basis of the magnetometers readout data? Then, finally, to which accuracy
can we estimate the actual magnetic field after the maximum number of multipole coefficients
have been calculated?

The answer to the first two questions above is actually quite simple. The number of magne-
tometer data channels is 12: three channels per magnetometer, as the devices are tri-axial. The
approximate magnetic field is given by cutting off the series in equation (2.7) to include terms
up to a maximum value of l= lmax≡L, or

Bestim(x, t) =
L∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (2.8)

The number of terms in this sum is

N(L) =
L∑
l=1

(2l + 1) = L(L+ 2) (2.9)

since the monopole (l= 0) does not contribute. We thus have N(2) = 8, while N(3) = 15. This
means that that we cannot pursue the series beyond the quadrupole(l= 2) terms: indeed, we
only have 12 data channels, so have some redundancy to determine Mlm(t) up to l= 2, but lack
information to evaluate the next seven octupole terms3.

In order to make a best estimate of the Mlm(t), a least square criterion is set up as follows:
we define the quadratic error as

ε2(Mlm) =
4∑
s=1

|Bmeasured(xs, t)−Bestim(xs, t)|2 (2.10)

where the sum extends over the number of magnetometers, situated at positions xs (s= 1,. . . ,4),
and then find those values of Mlm which minimise that error, i.e.,

∂ε2

∂Mlm

= 0 (2.11)

3 A clarification is in order here. The multipole coefficients Mlm(t) are actually complex numbers, which may
mislead one into inferring that actually fewer can be calculated. This is however not so beacuse of the
symmetry Mlm(t) = (−1)mM∗

l,−m(t), which ensures B(x, t) is actually a real number.
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Once this system of equations is solved, the estimated coefficients Mlm are replaced into
equation (2.8) and then the spatial arguments x are substituted by the positions xs of each
test mass, respectively, to finally obtain the sought field interpolations. This process needs to
be repeated for each instant t of time at which measurements are taken, thereby generating
the magnetic field time series. The gradient is also recovered by taking the derivatives of
equation (2.8):

∂Bi

∂xj

∣∣∣∣
estim

(x, t) =
∑
lm

Mlm(t)
∂ 2

∂xi ∂xj

[
rl Ylm(n)

]
(2.12)

which obviously verify the constraints (2.2).

2.2 Discussion so far

As just seen, our multipole expansion must end in L=2. Explicitly,

Bestim(x, t) =
2∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (2.13a)

∂Bi

∂xj

∣∣∣∣
estim

(x, t) =
2∑
l=1

l∑
m=−l

Mlm(t)
∂ 2

∂xi ∂xj

[
rl Ylm(n)

]
(2.13b)

We now recall that rl Ylm(n) is a polynomial of degree l in x, e.g.,

r2 Y20(n) =

√
5

16π

(
2z2 − x2 − y2

)
, etc. (2.14)

so that in pratice equation (2.13a) is only a linear interpolation of the field between the values
it has in four peripheral points, where the magnetometers are, and the interior region, where
the proof masses are4. There is therefore little hope that a trend in the field values, such
as qualitatively represented in figure 2.2, be reproduced with this approximation. At least a
quadratic term would be required, but that would need a multipole expansion up to L= 3,
which in turn would only be possible if a fifth magnetometer readout were available: in this
case we would have 15 sensor channels, just enough to determine the Mlm up to octupole order.

Likewise, the gradient fo the field, equation (2.13b) is just constant, again a very poor ap-
proximation to the reality of facts.

The bottomline of this failure is that the the magnetometers are significantly closer to the
magnetic sources than they are to the proof masses for the linear approximation to be efficient.
In fact, numerical experiment shows that were the sources farther away the results would cor-
respondingly improve.

2.3 Numerical simulations

In order to have a more quantitative idea of the actual performance of the above interpolation
scheme, a somewhat simplified model of the physical situation was implemented and analysed.
The model has the following ingredients and assumptions:

4 Note that the field is proportional to ∇[rl Ylm(n)], which is a first degree polynomial in this case.
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1. The sources of magnetic field in the LCA are point dipoles outside the LCA.

2. According to that, the magnetic field created by the dipole distribution at a generic point
x and time t is given by

B(x, t) =
µ0

4π

n∑
a=1

3 [ma(t)·na] na −ma(t)

|x− xa|3
(2.15)

where na = (x− xa)/|x− xa| are unit vectors connecting the the a-th dipole ma with the
field point x, and n is the number of dipoles.

3. The sources correspond to a set identified by ASU. Their positions in the S/C are known,
and so are the moduli of their dipole moments. The set itself as well as the source
parameters needs to be updated, but the sample used (which dates back to November
2006) is good enough for the pursued objectives.

4. Fluctuations of the dipoles, both in modulus and direction, are unknown, but DC values
suffice to check the numerical performance of the algorithms described in section 2.2.

As already mentioned, this model can be refined, but is sufficient at this stage. The idea
behind it is to compare interpolated magnetic field results with exact ones in a number of
realistic mission circumstances. By this the following is meant:

• A fixed number of magnetic dipoles, 37 in this case, is assumed. Each dipole has its own
fixed position in space, and a fixed modulus.

• The orientations of the dipoles are unknown, instead. An interpolation example is thus
characterised by a specific selection of the 37 source dipole orientations.

• In order to explore the algorithm behaviour, a batch of examples are examined, each one
corresponding to a randomly generated set of dipole orientations.

The most salient features of the anlysis can be briefly summarised:

1. Magnetic field estimation errors are very variable, ranging from exultant ∼2% to apalling
∼2000%.

2. These enormous variances happen in an utterly random and fully unpredictable way.

Figure 2.3 shows the statisitics of a batch of 1000 algorithm runs. Variances are not reflected
in the plots, but the average errors incurred are already indicative of the clear inadequacy of
the interpolation method.

The conclusion is thus quite simple: the intrinsic linear character of the interpolation scheme
is not capable of reproducing the field map structure inside te LCA —hence in the TMs—, and
therefore can produce very good or very bad results by accident. Neither is predictable, the
average error being too high anyway.
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Figure 2.3: Averaged estimation errors in the components of the magnetic and of its modulus.
They are reported in relative percent, i.e., 100(real− estimated value)/(real value).
Colors correspond to each of the LTP TMs, respectively.

2.4 A more contrived interpolation scheme

An attempt to improve the situation was also implemented by means of a different approach:
this consists in estimating the magnetic field inside the LCA by means of a weighted average of
the magnetometers readouts:

Bweighted (x) =
4∑
s=1

as(x) B(xs) (2.16)

where the weights as(x) are of the form

as(x) =
|x− xs|α∑4
p=1 |x− xp|α

(2.17)

i.e., proportional to the α-th power of the distance between the field point and the specified
magnetometer. Some numerical experiments have shown that a value α=−1/2 produces close
to optimum results for the field at the TMs, but the errors incurred are very similar in practice
to the ones reported in the previous section. Again, this seems not to be on the right track for
a solution to the problem.
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3 A novel approach: Neural Networks
Search of an alternative approach to the above interpolation schemes is imperative, otherwise

the information provided by the magnetometers will hardly be useful for the main goal of the
LTP magnetic diagnostics, i.e., to quantify the contribution of the magnetic noise to the total
system noise. Here some promising preliminary results are presented on the implementation of
a completely different methodology: Neural Networks.

Artificial neural networks are made up of interconnecting artificial neurons (programming
constructs that mimic the properties of biological neurons) that have the property of learning
from processing data. Neural networks are often used in solving nonlinear classification and
regression tasks by learning from data, hence are worth trying with the present problem.

There are four sets of tasks which need to be implemented when solving a problem with
artificial neural networks:

1. Neuron model

2. Model and architecture

3. Learning paradigm and learning algorithm

4. Performance assessment

3.1 Neuron model

The neuron is the basic unit of any neural network. It performs the following two operations
—see figure 3.1:

• It collects the inputs from all other neurons connected to it and computes a weighted sum
of the signals the latter inject into it, generally adding a bias as well. If we represent
the inputs by a vector x≡ (x1, . . . , xn), and the weights by a w≡ (x1, . . . , wn) then this
operation consists in calculating the sum

Σ = w0 +
n∑
k=1

wkxk = w0 + wTx (3.1)

Figure 3.1: Schematics of the operations performed by an artificial neuron.
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where the superindex T stands for transpose matrix; in this case, wT is a row vector while
x is a column vector, so that wTx is the scalar product of w and x. Finally, w0 is the
bias.

• The above sum is used as the argument to the so called activation function, ϕ(Σ). The
neuron’s output, also known as its activation, is thus

o = ϕ(Σ) (3.2)

In general, ϕ(Σ) can be selected in many different ways; here, differentiable activation
functions will be used, which suit well the gradient descent back-propagation learning
algorithm —see section 3.3 below.

3.2 Neural network architecture

Artificial neural networks are software or hardware models inspired by the structure and
behaviour of biological systems, and they are created by a set of neurons distributed in layers.
There are many different types of neural networks in use today, but the architecture of a so
called feed-forward network, where each layer of neurons is linked with the next by means of a
set of weights, is the most commonly used, and will also be used here.

In this preliminary study, the above architecture has been adopted, see figure 3.2: magne-
tometers’ data streams will be considered the system inputs, while magnetic field results and
their gradients at the positions of the test masses will be the system outputs.

Figure 3.2: Feed-forward neural network architecture. Magnetometers readings are the system
inputs, and estimates of the field and gradient at the positions of the test masses
are the outputs of the system. In this architecture, one only intermediate, or hidden
layer is assumed. Each of the circles represents one neuron and corresponds to the
model shown in figure 3.1.
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3.3 Learning paradigms and learning/training algorithms

The investigation of learning algorithms is currently an active field of research. The design
and implementation of an adequate training scheme is the essential ingredient for a good quality
estimation of the magnetic field and its gradient at the LTP TMs.

3.3.1 Learning paradigms

There are two major learning paradigms, each corresponding to a particular abstract learning
task. These are supervised learning and unsupervised learning.

1. Supervised learning. The idea of this is quite clearly suggested by its very name: a
set of examples is filed, which consists in a number of vector of inputs (magnetometers’
readouts in this case) and the corresponding values of the magnetic field and its gradient
at the TMs for a given (chosen) distribution of dipoles in the S/C. Let x represent a
generic input vector, and y the associated vector output. These two vectors constitute
an example. The set of filed examples for supervised learning is thus a set of pairs (x, y),
where x ∈ X and y ∈ Y , X and Y being some suitable sample spaces.

The network is then fed the inputs x of one example and let it work out an output, o,
say. This output is then compared with the correct one, y, and an error is calculated if
o 6= y. Iterations are then triggered to adjust the weighting factors such that the error is
minimised. These will however vary as different examples are run, so a cost function is
defined which enables the network to optimise the set of weights which works best for the
set of examples analysed, based on some given criterion.

2. Unsupervised learning. In unsupervised learning a cost function is to be minimised
as well, but this function can be any relationship between x and the network output, o.
The cost function is determined by the task formulation. Unsupervised learning is thus a
form of self-adaptive system, whose guide is not an a priori knowledge of the final result
but knowledge gained from experience.

In either case, the learning process is based on the architecture of the network, i.e., number
of neurons and layers and their interconnections, as well as on the activation functions. These
are parameters which, at least in the simplest cases, are tuned ab initio by the user based on
observed performance of the network.

In this study, supervised learning has been the implemented learning paradigm. Analysis has
been done with the help of the Matlab software suite.

3.3.2 Learning algorithms

There are many algorithms for training neural networks. When training feed-forward neural
networks with supervised learning, a back-propagation algorithm is usually implemented. The
error of the mapping at the output is propagated backwards in order to readjust the weights
and improve the output error for the next iteration.

The propagation can be implemented with different methods, the Ideal Gradient Descent
being a classic which will also be used here. The method is widely used in the field of soft
computing, and is a variant of the method of steepest descent.
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Iterations on the weights of the different neurons at the different layers proceed according to
the following algorithm:

wn+1 = wn − η
∂E

∂w

∣∣∣∣
n

(3.3)

where n labels the current iteration step, and η is the learning rate, adjustable by the user. E
is the sum over the set of training examples of the square errors of the outputs:

E =
∑

examples

(o− y)T (o− y) (3.4)

where o is the (vector) output from the network, while y is the target, or correct output in
the corresponding example. This E can only be defined in supervised learning, of course, and
the idea of the above procedure is to find that point in weight space where E is the minimum
possible. E can therefore be considered the cost function to be minimised in this particular
supervised training scheme, also known as batch mode as the analysis is done across the entire
set of training patterns in a single block.

There are a number of technical issues in pursuing the iterations in equation (3.3), such as
the choice of the initial set of weights, identification of local minima of E, boundary effects,
etc. which need to be addressed in each specific case. We skip any detailed discussion of these
matters here.

3.4 Performance assessment

In this last step, the trained network must be tested with examples which differ from those
used in the learning process. This is needed to assess whether or not the trained neural network
is able to generate the expected results when fed with previously unseen inputs, hence determine
its usability for the specific purpose it is intended.

4 Results
This section reviews the results obtained so far —preliminary. Training and testing have been

done based on different field realisations, using information provided by ASU on 37 magnetic
dipole sources within the spacecraft.

Two different batches of examples, each including 1 000 realisations of a possible magnetic
environment, have been generated following the directives in the bulletted list of page 13. The
first batch has been used as the training set for a neural network with 12 inputs (3 inputs for
each of the 4 vector magnetometers) and 6 outputs representing the field information at the
position of the 2 test masses (3 field components for each test mass). The second batch has
been used for validation to assess the performance of the net in front of unseen magnetometers
readings.

As a further extension, another network has been trained, including the magnetic field gra-
dient values in the output vector.
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Figure 4.1: Probability density function of the error distributions for each field component at
the position of test mass 1 (black trace) and test mass 2 (red): top left plot for Bx,
top right for By, bottom left for Bz and bottom right for |B|.

4.1 Field estimation results

Figure 4.1 shows the probability density functions of the errors in the estimates of the com-
ponents of the magnetic field at the positions of each TMs. The plot is based on the outcome
of the 1 000 validation runs described in the previous section. Units are percentage errors. As
can be observed, the order of magnitude of the errors of the estimated fields are now within
much more acceptable margins (around 10-15%). This improvement represents the reduction of
estimation errors by more than one order of magnitude in comparison with the former methods.

4.2 Field gradient estimation results

The magnetic field gradient can and should also be estimated. An extension of the network
has accordingly been developed to estimate it at the TMs. The 9 components ∂Bi/∂Bj of
the gradient are not independent, since they must verify equations (2.2) which reduces their
number to 5. Neural network estimates of the gradient components does not guarantee that
those conditions are verified, but this is not a problem, as discrepancies are within tolerance
errors. Neural network approaches can also generate other similar inconsistencies with rigorous
analytic results but, again, these can be dealt with.

A first batch of results on gradient estimation is shown in figure 4.2 for ∇Bx and at the
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Figure 4.2: Probability density function of the errors distribution for the three components of
∇Bx. From top to bottom: ∂Bx/∂x, ∂Bx/∂y and ∂Bx/∂z at the positions of the
test masses. Errors are given in percents, black traces corresponding to TM1, and
red ones to TM2.

positions of both TMs. As may be observed, they are also within much more acceptable margins
than the earlier interpolation approach could produce.

5 Conclusion
The magnetic diagnostic sensor set in the LTP is such that to infer the magnetic field and

gradient on the TMs based on their readouts is far from simple. More or less conventional
interpolation schemes cannot generally go beyond the linear approximation, which grossly fails
to produce reliable results, so Artificial Neural Network models are under investigation. The
preliminary results reported herein are encouraging, as the network learning process is able to
significantly improve estimation errors.

The main problem is the adequacy of a training process to the set of data the magnetometers
will deliver in flight. This underlines the need to characterise on ground to our best ability
the magnetic properties of the S/C and LCA at all locations and working conditions, both
regarding their DC and fluctuating values. Reliable information on that appears to be essential
for a meaningful assessment of magnetic noise in the LTP.


	 Document Approval List
	 Document Distribution List
	 Document Status Sheet
	 Table of Contents
	 List of Figures
	 List of Tables
	Acronyms
	Applicable documents
	Reference documents
	1 Introduction and scope of this document
	2 Detailed description of the problem
	2.1 Interpolation theory
	2.2 Discussion so far
	2.3 Numerical simulations
	2.4 A more contrived interpolation scheme

	3 A novel approach: Neural Networks
	3.1 Neuron model
	3.2 Neural network architecture
	3.3 Learning paradigms and learning/training algorithms
	3.3.1 Learning paradigms
	3.3.2 Learning algorithms

	3.4 Performance assessment

	4 Results
	4.1 Field estimation results
	4.2 Field gradient estimation results

	5 Conclusion

