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Abstract: In this paper, an approach to design an Admissible Model Matching (AMM) Fault Tolerant
Control (FTC) based on Linear Parameter Varying (LPV) faultrepresentation is proposed. The main
contribution of this approach is to consider the fault as a scheduling variable that allows the controller
reconfiguration online. The fault is expressed as a change inthe system dynamics (in particular, in the
model parameters). The suggested strategy is an active technique that requires the fault to be detected,
isolated and estimated by the FDI scheme. In case the fault estimation is not available, a passive strategy
based on a single AMM FTC controller could be designed. The FTC controller is designed using LMI
regional pole placement. The effectiveness and performances of the method have been illustrated in
simulation considering a thermal hydraulic system.
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1. INTRODUCTION

Fault Tolerant Control (FTC) is a new idea recently introduced
in the research literature (Blanke et al., 2003) which allows
to maintain current performances close to desirable perfor-
mances and preserve stability conditions in the presence of
component and/or instrument faults. Accommodation capa-
bility of a control system depends on many factors such as
severity of fault, the robustness of the nominal system and
mechanisms that introduce redundancy in sensors and/or ac-
tuators. Generally speaking, FTC systems can be categorized
into two main groups:activeand passive. The passive FTC
techniques are control laws that take into account the faultap-
pearance as a disturbance. Passive FTC technique is designed
with the consideration of a set of presumed faults modes. The
resulting control system performance tends to be conservative.
It also has the limitation to deal with unanticipated faults. In
Chen et al. (1998), among many others, a complete description
of passive FTC approach can be found. On the other hand,
the active FTC techniques consist on adapting the control
law using the information given by the Fault Detection and
Isolation (FDI) block (Blanke et al., 2003). With this informa-
tion, some automatic adjustments are done trying to reach the
control objectives. Active FTC is characterized by on-lineFDI
scheme and an automatic control reconfiguration mechanism.
Two main potential advantages of Active FTC are: 1) the
ability to deal with previously unknown faults with explicit
Fault Diagnosis and Controller Reconfiguration; and 2) the
possibility to achieve the optimal performance. However, the
price to pay for these nice features is that the overall system
becomes more complicated (Zhang and Jiang, 2006).

Fault accommodation has been addressed in the literature con-
sidering many different control objectives and using many

different solution techniques. The interested reader can see
Zhang and Jiang (2008), Noura et al. (2009) for a recent
review. In model matching approaches, the control objective
is defined in terms of similarity of the closed-loop system
matrix of the accommodated system to a given reference. In
the Pseudo-Inverse Method (PIM) (Ostroff, 1985), amodel
matching formulation provides a solution that minimizes a
distance between the closed-loop matrices of the accommo-
dated and the nominal systems. Anexact model matching
can be obtained in particular cases, but in the general case
the optimality of the obtained solution does not guarantee
stability. TheAdmissible Model Matching(AMM) approach
was initially proposed in Staroswiecki (2005a) and later ex-
tended in Staroswiecki (2005b). The main idea is to search the
solution in a set of closed-loop behaviors that are considered
as admissible for the accommodated system, instead of finding
the best approximation to an ideal one.

This paper proposes the development of AMM FTC approach
for LTI plants subject to faults that allows to specify the set
of admissible faults that the controller is able to toleratewith
an admissible degradation. This is one of the contributions
of the paper. The fault effect can be modeled either as a
parametric uncertainty or as a scheduling variable that should
be estimated on-line. In case that the fault is considered asa
scheduling variable, the faulty plant can be considered as a
LPV system. Then, an active FTC strategy can be designed
using LPV control theory that requires the fault to be detected,
isolated and estimated by the FDI scheme and the controller be
redesigned accordingly. This is the second contribution ofthis
paper. On the other hand, in case that the fault effect could not
be estimated because of the unavailability of the FDI system,
the fault effect can be considered as parametric uncertainty and
a passive FTC strategy can be used alternatively.



2. AMM FTC PRINCIPLE

2.1 Revision

The main idea of AMM FTC approach proposed in Staroswiecki
(2005a) is that instead of looking for a controller that provides
an exact (or best) matching to a given single behavior after
the fault appearance, a family of closed-loop behaviors that
present an acceptable is specified.

In order to recall the principle of Admissible Model Matching,
let us consider a LTI system that can be expressed as

x(k + 1) = Ax(k) + Bu(k) (1)
wherex(k)∈R

n is the system state,u(k)∈R
m is the control

input, andA∈R
n×n andB∈R

n×m are constant matrices.

It is assumed that the nominal behavior is characterized by a
given pair of matrices(An, Bn), the fault affects the system
in such a way the post-fault behavior is characterized by a
different pair(Af , Bf ) and a classical state feedback control
law is considered

u(k) = −Kx(k) (2)

Moreover, let assume that for the nominal system operation
a state gain feedbackKn that satisfies some nominal control
specifications has been obtained. Then:

x(k + 1) = (An − BnKn) x(k) = M∗x(k) (3)
andM∗ is known as the reference model.

For faulty operations, a set of matricesM is defined such any
solution

x(k + 1) = Mx(k), M ∈ M (4)
is admissible, i.e. it has acceptable dynamic behavior. Theset
M is a family of closed-loop behaviors that are acceptable.
This set is defined off-line. Depending on the problem,M
can be defined independently or specifying a neighborhood
of a given optimal behaviorM∗ such that the performance
degradation is guaranteed not to exceed a certain level. It is
obvious that setM must only contain stable matrices.

For a given fault(Af , Bf ), the goal of the fault accommoda-
tion is to find a feedback gainKf that provides an admissible
closed-loop behavior:

Af − BfKf ∈ M (5)

M

(An, Bn)

(Af , Bf )

Kn

Kf

f
M∗

Fig. 1. Fault accommodation using AMM.

Fig. 1 summarizes graphically the operating principle of
fault accommodation using approximate model matching.
The nominal controllerKn can be designed to provide an
optimal closed-loop behaviorM∗ for the nominal system
(An, Bn). When a fault appears, the system behavior changes
to (Af , Bf ) and this situation will be identified by the FDI
module. Then, accommodation is achieved by calculating a
new feedback gainKf to maintain an acceptable closed-loop
behavior inM.

In Staroswiecki (2005b), a characterization ofM in terms of
inequality constraints is proposed

M = {M |Φ(M) ≤ 0} (6)

whereΦ : Rn×n → Rd is a given vector function. It is proved
that the solution can then be found by solving the constrained
optimization problem:

min
M

J(M) (7)

subject to:Φ(M) ≤ 0 with

J(M) =
n

∑

i=1

(ai
f − mi)T (I − BfB+

f )(ai
f − mi) (8)

whereai
f andmi are respectively theith columns ofAf and

M . In the case that the solutionMf satisfiesJ(Mf ) = 0,
the fault is recoverable and the new feedback gain can be
calculated

Kf = B+
f (Af − Mf ) (9)

AMM approach can be extended to the tracking problem by
adding an integrator in order to eliminate steady-state errors.
The use of integral control eliminates the need to catalog
nominal values or to reset the control. Rather, the integral
term can be thought of as constantly calculating the value of
the control required at the set point to cause the error to go
to zero. To accomplish the design of the feedback gains for
the integral and the original state vector, an augmented model
is proposed by Franklin et al. (1997). The augmented model
can be determined with the statexI(k) and the integral error,
e(k) = y(k) − r(k). The discretized integral is implemented
as a summation of all past values ofe(k), which results in the
difference equation:

xI(k + 1) = xI(k) + e(k) = xI(k) + Cx(k) − r(k) (10)
wherer(k)∈R

nr and the augmented model can be expressed:

[

xI(k+1)
x(k+1)

]

=

[

I C

0 Af

] [

xI(k)
x(k)

]

+

[

0
Bf

]

u(k) −

[

I

0

]

r(k)

x̃(k + 1) = Āx̃(k) + B̄u(k) − Ēr(k) (11)

wherex̃(k) ∈ R
nx+nr is the augmented state vector.

Then, the control law is:

u(k) = −[KI Kf ]

[

xI(k)
x(k)

]

+ KfNxr(k)

= −K̄x̃(k) + Ḡr(k)
(12)

whereNx = CT I.

2.2 Recoverability

Let the fault tolerance control specification be defined by a
subset of faultsf ∈ F that must be tolerated. Thus, the whole
set of fault models that must be handled by the controller can
be specified as follows

{(Af , Bf ) , f ∈ F} . (13)

recalling that pair(Af , Bf ) denotes the change of system
matrices due to the faultf that acts as parameter.

It follows from the definition of admissibility that(Af , Bf ) is
recoverableif and only if the set:

K(Af , Bf ) = {K : Φ(Af , Bf , K) ≤ 0} (14)
is not empty. The setR(M) of all recoverable faults is:

R(M) = {(Af , Bf ) , f ∈ F : K(Af , Bf ) 6= ∅} (15)
and the FTC specification can be met if and only if (Staroswiecki,
2006):

{(Af , Bf ) , f ∈ F ⊆ R(M)} (16)



3. AMM FTC USING LPV GAIN-SCHEDULING
THEORY

3.1 Motivation

The goal of the AMM FTC is to maintain acceptable control
performances under the presence of the pre-established set
of faults. In case that AMM approach is combined with an
active strategy, once a fault has appeared, its magnitude will be
estimated by the FDI module and the controller will be adapted
accordingly (accommodation), trying to maintain acceptable
performance. This leads to the control structure shown in
Fig. 2 that can be view equivalent to a gain-scheduling control
structure where the faultf is the scheduling variable and
the FDI module is the parameter estimation algorithm. This
suggests that gain-scheduling LPV theory can be used for the
design of active AMM FTC. Moreover, this approach allows
to be applied to systems whose behavior can be represented by
a LPV model. Then, the controller must be adapted not only
according to faults but also according to the operation condi-
tions. In case that the FDI module is not available, a passive
FTC approach should be used and a single (robust) controller
should be design to maintain acceptable performance for the
whole set of admissible faults.

Fig. 2. AFTC for LPV systems wherêf(k) represents the fault magnitude
estimation provided by FDI module.

3.2 Admissible fault definition

According previous discussion, let us consider the system (11)
and its LPV representation using the faultf as the scheduling
variable:

x̃(k + 1) = Ā(f)x̃(k) + B̄(f)u(k) − Ēr(k), (17)

Note that whenf = 0 corresponds to the fault-free case
while f 6= 0 the faulty case. Let assume that (17) vary
affinely in a polytope with the fault (Apkarian et al., 1995).
In particular, the state-space matrices range in a polytopeof
matrices defined as the convex hull of a finite number of
matricesN (N =2nf) wherenf is the number of faults. Each
polytope vertex corresponds to a particular value of scheduling
variablef . In other words,

(

Ā(f) B̄(f)
)

∈ Co
{(

Āj B̄j

)

, j = 1, . . . , N
}

: =

N
∑

j=1

αj(f)
(

Āj B̄j

)

, (18)

with αj(f) ≥ 0 and
∑N

j=1 αj(f) = 1.

Consequently, the LPV system (17) can be expressed as:

x̃(k + 1) =

N
∑

j=1

αj(f)
[

Āj x̃(k) + B̄ju(k)
]

− Ēr(k), (19)

whereαj(f) = αj(f(k), k) andf(k) is the value off at the
samplek, (see, f.e. (Rodrigues et al., 2005) for more details

about LPV polytopic representation). HerēAj and B̄j are
constant matrices defined forjth model, where each model
is an admissible fault representation.

The polytopic system is scheduled through functions designed
as follows:αj(f), ∀j ∈ [1, . . . , N ] that lie in a convex set:

Ω =
{

αj(f) ∈ R
N , α(f) = [α1(f), . . . , αN (f)]

T
,

αj(f) ≥ 0, ∀j,

N
∑

j=1

αj(f) = 1} .
(20)

There are several ways to implement (18) depending on how
αj(f) functions are defined (Murray-Smith and Johansen,
1997). Here, the approach in Baranyi et al. (2003) is used:

(

Ā(f) B̄(f)
)

=

N
∑

j=1

2
∑

i1=1

· · ·

2
∑

iv=1

v
∏

m=1

µm,im
(fm)

(

Āj B̄j

)

(21)

with µm,1 =

(

fm−fj
m

)

(

f
j
m−f

j
m

) andµm,2 = 1 − µm,1 wheref
j
m and

f j
m represents the upper and lower bounds offm, respectively,

andv is the number of scheduling variables (fault modes).

The polytopic formulation in (18) assumes that the effect of
faults is included in the model through scheduling parameters
f(k) = [f1(k), . . . , fnf

(k)] that evolve within known bounds:
fj ≤ fj(k) ≤ fj , j = 1, ..., nf . From a practical point of
view, these bounds can be prespecified to define the subset of
the possible faults that must be tolerated by the FTC system.
Note that it is possible that the control performances specified
throughM can not be satisfied for all the range of faults
defined by [fj , fj ]. In this case, the performances can be
reduced (less restrictiveM) or the range of tolerable faults
must be reduced.

3.3 AMM FTC design using LMI pole placement

According to Chilali and Gahinet (1996), a disk region LMI
calledD included in the unit circle with an affix(−q, 0) and a
radiusr such that(q + r) < 1 is fixed. These two scalarsq and
r are used to determine a specific region included in the unit
circle. The LMI region can be expressed as follows:

(

−rX qX + (A0,jX)T

(q + A0,jX) −rX

)

< 0, (22)

whereA0,j is the state matrixx(k +1) = A0,jx(k) for the
jth model.A0 is stable if and only if there exists a symmetric
matrix such thatX = XT > 0. It is obvious that well chosen
LMI region is needed for ensuring stability and good results:
the parametersq, r have to be defined by the engineer.

For each model,A0,j is defined as:

A0,j = Ā
f
j − B̄

f
j K̄j . (23)

Thus, the inequalities can be written as follows:
[

−rXj qXj +XT
j

((Āf
j
)T −K̄T

j
(B̄f

j
)T )

(q+Ā
f
j
−B̄

f
j
K̄j)Xj −rXj

]

<0, (24)

for all j ∈ [1, . . . , N ]. Thus, by substitutingWj = K̄jXj it
can be shown that:
[

−rXj qXj + XT
j

(Āf
j
)T − W T

j
(B̄f

j
)T

(q + Āf )Xj − B̄
f
j
Wj −rXj

]

< 0, (25)



The design procedure boils down to solving the LMI (25), and
then determining the set of gains̄Kj = WjX

−1
j .

Finally, the active AMM FTC control law is given by:

u(k) =
N

∑

j=1

αj(f)
[

Ḡjr(k) − K̄jx̃(k)
]

(26)

where K̄j = [KI,jKj] and Ḡj = KjNx. Note that the
evaluation of (26) just requires the computation ofαj(f) ac-
cording to (21) and the solutions of the LMIs (25). Due to the
simplicity of this computation, the real-time implementation
of the controller reconfiguration is possible.

In case that FDI module is not implemented, a passive FTC
control law can analogously be solved with the pole placement
of the closed-loop system for all admissible faults of the
modelsj ∈ [1, . . . , N ] in the LMI region definingA0,j as:

A0,j = Ā
f
j − B̄

f
j K̄. (27)

Proceeding in the same way than in the case of the (23), but
substitutingW = K̄X it is possible to obtain:

[

−rX qX + XT (Āf
j
)T − W T (B̄f

j
)T

(q + Ā
f
j
)X − B̄

f
j
W −rX

]

< 0, (28)

The design procedure boils down to solving the set ofN
LMIs (28) by determiningK̄ = WX−1. Finally, consider the
gainK̄ to calculate the control law:

u(k) = Ḡr(k) − K̄x̃(k) (29)

whereK̄ = [KIK] andḠ = KNx.

4. DESIGN EXAMPLE

4.1 Process description

The FTC approach has been applied to a thermal hydraulic
system (see Fig. 3). The goal of the process is to assure a
constant water flow rateQ0 with a given controlled temper-
atureT0.

Fig. 3. Thermal Hydraulic System

The process is composed of a tank equipped with two heating
resistorsR1 andR2. The inputs are the water flow rateQi,
the water temperatureTi and the heater electric powerP .
The outputs are the water flow rateQ0 and the temperatureT
which is regulated around an operating point. The temperature
of the waterTi is assumed to be constant.

The system can be represented by the following equations:

S
dh(t)

dt
= qi(t) − q(t)

dT (t)

dt
=

P

µCSh(t)
−

(T (t) − Ti)Qi

Sh(t)

(30)

q(t)=α
√

h(t), Ti =20oC, S =1, µC =2·106, α= 20(10−3)

60
√

0.6
.

The system (30) is linearized around the operating point given
by q

op
in = q

op
out = α

√

hop, Pop = µC(qop
in )(Top − Ti), Top =

50oC, hop = 0.6. In this example, the level of the waterh
is used instead of the water flow rateQ0 to obtain the linear
model. With the previous conditions, the linear system in fault-
free case can be specified by:

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Cx(t)

(31)

with:

Ac =

[

−q
op
out

2Shop
0

0
−q

op
out

Shop

]

, Bc =

[

1
S

0
Top−Ti

Shop

1
µCShop

]

, C =

[

1 0
0 1

]

Let consider sampling time equal toTs = 360s and the
system (30) in discrete time can be defined by:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(32)

whereA=TsAc+I andB=TsBc using Euler approximation.

The augmented model in fault-free case can be determined as
the closed-loop fault-free system (11):

x̃(k + 1) = Āx̃(k) + B̄u(k) − Ēr(k), (33)
with:

Ā =







1 0 1 0
0 1 0 1

0 0 a1 0
0 0 0 a2







, B̄ =







0 0
0 0

b1 0
b2 b3







, Ē =







1 0
0 1

0 0
0 0







, r(k) =

[

T0

h

]

,

a1 =0.9, a2 =0.8, b1 =360, b2 =−18000 andb3 =0.0003.

The considered faults are expressed as a change in the system
dynamics (32), i.e. changes in the parameters ofA andB:

A =

[

a1 + fa1 0
0 a2 + fa2

]

, B =

[

b1 + fb1 0
b2 + fb2 b3 + fb3

]

.

In this application example, only a fault at a time has been con-
sidered to illustrate the effectiveness of the proposed strategy.
However, it can also be applied to multiple faults.

The desired closed-loop poles of the controller are:
λ∗

i = {0.3} ∀i ∈ [1, 2, 3, 4]

Finally, for the AMM method is necessary to specify which is
the set of admissible closed loop behaviors. In this example, a
close-loop behavior is considered admissible if the eigenvalues
lie in a disk around in0.3 with a radius of0.3 that corresponds
to a30% degradation of the nominal closed-loop behavior :

M = {M : λi ∈ D(λ∗
i , 0.3)} ∀i ∈ [1, 2, 3, 4] (34)

In order to show the effectiveness of the proposed approach
a passive and active FTC AMM controllers will be compared
with a nominal controller designed using pole placement tools.

4.2 Set of admissible faults

To determine the set of admissible faults for a given controller
and a given the set of admissible modelsM, the AMM FTC
design procedure is applied by increasing iteratively the fault
size. Then, the maximum admissible fault size is reached when
the AMM FTC design problem has no solution.

Nominal controller: The nominal controller is designed using
standard pole place tools considering that can be expressed
the augmented model (33) and that the desired poles are
(34). Then, the parameters of the control law (12) areK̄n =
[Kn

I Kn], Ḡn = KnNx, Nx = I with

Kn
I =

[

0.0014 0
81875 1713

]

, Kn =

[

0.0036 0
216965 4114

]

,



Before synthesizing the passive and active FTC controllers, the
maximum fault size under which the closed-loop response is
still acceptable in case of using the nominal controller is eval-
uated. In Blanke et al. (2003), a theoretical method is proposed
in case of using a LQR control, being an open issue for other
types of control. In this paper, the maximum admissible faults
(that leads to a desired closed-loop response shown in Table1)
has been computed by an iterative process based on increasing
the fault size and checking the admissibility, as discussed
before. It this table, an interval or the maximum admissible
fault in each parameter of matricesA and B is presented.
For example, in nominal controller casea1 ∈ [0.81, 0.99]. In
this tableno limits corresponds to the case the FTC system
performance is admissible for any fault size.

Finally, the obtained closed-loop pole migration is drawn in
Fig. 4 where the desired regionDα is also represented.

Table 1. Admissible faults: They are presented as the maximum possible
variation of each parameter that leads to a desired closed-loop response. (a)
Parameters of matrixA. (b) Parameters of matrixB.

(a)
Parameter Nominal Passive Active

a1 = 0.9 a1(1 ± 0.1) a1(1 ± 0.15) no limits
a2 = 0.8 a2(1 ± 0.11) a2(1 ± 0.16) no limits

(b)
Parameter Nominal Passive Active

b1=360 b1(1 ± 0.11) b1(1 ± 0.21) b1(1 ± 0.33)

b2=-18000 b2(1 ± 0.19) no limits no limits
b3=3e-4 b3(1 ± 0.13) b3(1 ± 0.43) b3(1 ± 0.67)
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Fig. 4. Closed-loop pole migration for different fault sizes for nominal
controller. The maximum admissible fault is shown in Table 1. (a) Fault
fa1 or fa2 (b) Faultfb1 (c) Faultfb2 (d) Faultfb3

Passive Controller:For comparison purposes with the nom-
inal controller, a passive AMM FTC has been designed using
the method presented in Section 3.3 using the LMI region (25)
with one possible faultnf = 1, thereforeN = 2 vertices. In
this case, the LMIs (25) are defined considering the vertices
matrices:

A1 =

[

a1 − fa1 0
0 0.8

]

, A2 =

[

a1 + fa1 0
0 0.8

]

, (35)

The parametersq andr are defined by the setM in (34).

The maximum admissible fault size is evaluated using the
procedure based on iteratively redesigning the control law

by incrementing the fault and reevaluating admissibility.The
results of this process are shown in Table 1 while the closed-
loop poles evolution varying the fault size for each parameter
(see Fig. 5).
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Fig. 5. Closed-loop pole migration for different fault sizes for passive con-
troller. The maximum admissible fault is shown in Table 1. (a) Fault
fa1 or fa2 (b) Faultfb1 (c) Faultfb2 (d) Faultfb3

Active Controller: Active AMM FTC has been designed
using the method presented in Section 3.3 using the same
LMI (28) and vertexes matrices than in the passive case. It is
assumed that the FDI module is the ideal providing a perfect
fault magnitude estimation.

As in the case of the nominal and passive controllers, the
maximum admissible fault size is evaluated by iteratively re-
designing by incrementing the fault and reevaluating admissi-
bility. The results of this process are shown in Table 1 where
the closed-loop poles evolution varying the fault size for each
parameter. The pole migration for different fault sizes offa1,
fa2 andfb2 are the same as those shown in Fig. 5(c), whilefb1

andfb3 is drawn in Fig. 6.
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Fig. 6. Closed-loop pole migration for different fault sizes for active controller.
The maximum admissible fault is shown in Table 1. (a) Faultfb1

(b) Faultfb3

Comparison: Analyzing, the results of Table 1 corresponding
to the interval of admissible faults that achieve the desired
objectives (34), the following conclusions can extracted:The
nominal controller is designed for the fault-free system. There-
fore this controller accepts less variation in the parameters of
matricesA andB than the two others. On the other hand, the
active controller allows parametersa1, a2 andb2 vary without
limits. While parametersb1 andb3 can vary in a larger interval
than the nominal and passive controllers.



4.3 Result of simulations

To illustrate the effectiveness of the proposed AMM FTC
approach, a fault in the parametera1 of matrixA has been sim-
ulated. In this case, the temperature response does not show
significant changes. In the following, the results corresponding
only to level response will be analyzed .

The active and passive AMM FTC are designed using fault-
free matricesB andC given (33) and matrixA is in the poly-
tope of matrices defined by (35). Table 2 shows the admissible
values of parameters of (35) and the fault magnitude.
Table 2. Interval admissible of design for each controller and fault scenarios

a1=0.9 Nominal Passive FTC Active FTC Fault

Figure a1 [a1-fa1,a1+fa1] [a1-fa1,a1+fa1] a
f
1

Fig. 7(a) 0.9 [0.774, 1.026] [-0.45, 2.25] 0.98
Fig. 7(b) 0.9 [0.774, 1.026] [-0.45, 2.25] 1.53
Fig. 7(c) 0.9 [0.774, 1.026] [-0.45, 2.25] 1.8

The first scenario (af
1=0.98) is shown in Fig. 7(a), the fault is

admissible for all controllers and their temporal responses are
similar. The Fig. 7(b) shows the second scenario (a

f
1=1.53),

where the fault affects the performance of nominal and passive
controller since this fault is out of their interval of admissible
faults. The third fault (af

1=1.8) is shown in Fig. 7(b) that the
nominal and passive controller can not stabilize this system
fault. On the other hand, the active controller achieves the
desired performance.
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Fig. 7. Level of the water response with fault ink = 40Ts. The fault

parameter of: (a)af = 0.981, (b) af = 1.53 and (c)af = 1.8

To select between the passive and active approach, it is nec-
essary to analyze the admissible faults (Table 2). For example
if the system admits20% of degradation, according to Table
2, the Passive FTC controller is sufficient. But, the system
requires50% of degradation, the active FTC controller should
be used.

5. CONCLUSIONS

In this paper, a new approach to design an AMM FTC has been
proposed based on LPV fault representation. The active AMM
FTC uses a LPV controller where the scheduling variables
are the faults. Under these assumptions, the advantage of the
approach is that allow the redesign of the controllers online by
using a set of pre-established admissible faults. When the fault
is in this interval admissible the system can be recovered with
the performance desired.

If the fault estimation is not available, a passive AMM FTC
approach can be used following same ideas than the active
version. Passive approach determines a single controller that
is able to cope with set of considered admissible faults. The
drawback is that the size of the admissible faults is smaller
compared to the active case.

The AMM FTC controllers are designed such that admissible
closed-loop behavior of the faulty plant is guaranteed by
specifying aD region using LMI pole placement to design the
gain of the controller. As a future work, this approach will be
designed for non-linear systems.

REFERENCES

P. Apkarian, P. Gahinet, and G. Becker. Self-scheduledH∞

Control of Linear Parameter-Varying Systems: A Design
Example.Automatica, 31(9):1251 – 1261, 1995.

P. Baranyi, D. Tikk, Y. Yam, and R. J. Patton. From Differ-
ential Equations to PDC Controller Design via Numerical
Transformation. Computers in Industry, 51(3):281–297,
2003.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer-Verlag
Berlin Heidelberg, 2003. ISBN 3-540-01056-4.

J. Chen, R. J. Patton, and Z. Chen. An LMI Approach to Fault-
Tolerant Control of Uncertain Systems. InIEEE Conference
on Decision and Control, volume 1, pages 175–180, 1998.

M. Chilali and P. Gahinet.H∞ Design with Pole Placement
Constraints: An LMI Approach. IEEE Transactions on
Automatic Control, 41(3):358–367, 1996.

G. F. Franklin, J. D. Powell, and M. L. Workman.Digital
Control of Dynamic Systems. Addison Wesley Longman,
3rd. edition, 1997. ISBN 0-201-33153-5.

R. Murray-Smith and T. A. Johansen.Multiple Model Ap-
proaches to Modelling and Control. Taylor and Francis,
1997. ISBN 0-7484-0595-X.

H. Noura, D. Theilliol, J. C. Ponsart, and A. Chamseddine.
Fault-tolerant control systems: Design and practical appli-
cations. Springer London, 2009.

A. J. Ostroff. Techniques for Accommodating Control Ef-
fector Failures on a mildly Statically Unstable Airplane.
American Control Conference, pages 903–906, 1985.

M. Rodrigues, D. Theilliol, and D. Sauter. Design of an Active
Fault Tolerant Control and Polytopic Unknown Input Ob-
server for Systems described by a Multi-Model Representa-
tion. 44th IEEE Conference on Decision and Control and
European Control Conference ECC, Sevilla, Spain, 2005.

M. Staroswiecki. Fault Tolerant Control: The Pseudo-Inverse
Method Revisited. IFAC World Congress, Prague, Czech
Republic, 2005a.

M. Staroswiecki. Fault Tolerant Control using an Admissible
Model Matching Approach.44th IEEE Conference on De-
cision and Control - European Control Conference, 2005b.

M. Staroswiecki. Robust Fault Tolerant Linear Quadratic
Control based on Admissible Model Matching.45th IEEE
Conference on Decision and Control, pages 3506–3511,
2006.

Y. Zhang and J. Jiang. Issues on Integration of Fault Diagnosis
and Reconfigurable Control in Active Fault-Tolerant Con-
trol. 6th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, 2006.

Y. Zhang and J. Jiang. Bibliographical review on reconfig-
urable fault-tolerant control systems.Annual Reviews in
Control, 32(2):229–252, December 2008.


