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Abstract: In this paper, a leak detection and isolation wettogy in pressurized water pipe networks
is proposed. The methodology is based on computing residii@th are obtained comparing measured
pressures (heads) in selected points of the network andektiinated values by means of an interval
Linear Parameter VaryindLPV) model. The structure of the LPV models is obtained friti@ non-
linear mathematical model of the network. The proposedatiete method uses interval LPV models
to obtain uncertainty intervals for the estimated headsdhaw to indicate when a leak appears in the
water network. The isolation task employs an algorithm Basethe residual fault sensitivity analysis.
Finally, a typical water pipe network is employed to val&lite proposed methodology. This network
is simulated using EPANET software. Parameters of LPV nwdeld their uncertainty bounded by
intervals are estimated from data coming from this simul&everal leak scenarios allow to assess the
effectiveness of the proposed approach.
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1. INTRODUCTION usually to determine, given a set of models, if there is angnme
ber in the set that can explain the measurements. A common
Water system networks are used to supply water for indiistriapproach to this problem is to propagate the model uncéytain
and domestic use. Those systems include sources, treatmenthe alarm limits of the residuals. When the residuals are
works and networks, together with pump stations and resesutside of the alarm limits, it is argued that model uncetai
voirs. They also contain pipes, control valves and water comlone can not explain the residual and therefore a fault must
sumers (nodes). Moreover, water systems networks are-largeve occurred. This approach has the drawback that faalts th
scale systems. Normally, leaks are present in the water cgproduce a residual deviation smaller than the residual mince
sumers or nodes. Therefore, leak detection and isolatiagh-metainty due to parameter uncertainty will not be detected.
ods must be employed to localize leakage in the water distrib
tion system. Model-based leak detection techniques based
the pressure measurements and sensitivity analysis okniode
a network when a leak is present in a node have been stud
(Perez et al., 2009). These techniques are based on the us
the non-linear model of the network. However, the paramet
estimation of this model is not an easy task (Brdys and Ulanic
1994). This is why this paper proposes alternatively to use
non-linear model with LPV structure whose parameters can
more easily estimated using least-squares algorithmsas
proposed by Bamieh and Giarré (2002), among others. The innovation of this paper is to present a new leak detectio

Linear Parameter Varving (LPV) models have recently aftgic and is_olation method for water distribution systems thathoa
the attention of the )I/:D? (rese;rch community. Sucyh modefi€scribed by LPV models. The fault detection methodology

can be usedféciently to represent some non-linear system Pased on comparing on-line the real system behavior of
(Shamma and Cloutier, 1993). This has motivated some r e monitored system _obtalned _by means of sensors with the
f timated behavior using dtPV interval modelIn the case

searchers from the FDI community to develop model-bas S X X :
methods using LPV models (see Bokor et al. (2002), amo a significant discrepancy (residual) is d_etected betviben
’ V model and the measurements obtained by the sensors,

others). But even with the use of LPV models, modeling erro e existence of a fault is assumed. Due to tHed of the

are inevitable in complex engineering systems. So, in ord '
to increase reliability and performance of model-basedt faNcertain parameters, the outputs of LPV models are bounded
y an interval to avoid false alarms in the detection module.

detection, the development of robust fault detection étigors Analvzing i i how the faultsfiact to th idual
should be addressed. The robustness of a fault detectitensys’\12'¥ZINg In réa-imé nhow the faultsti@ct 1o the residuals
using the residual fault sensitivity, it is possible, tolée the

means that it must be only sensitive to faults, even in the-pr i ) X .
ence of model-reality dierences Chen and Patton (1999). O:éeaks, and even in some cases, it is also possible to determin
of the approaches to robustness, knowpassiveis based on ''S Magnitude.
enhancing the robustness of the fault detection systemeat th
decision-making stage. The aim with the passive approach is

'Bhe typical fault isolation approach proposed in the FDI eom
munity uses a set of binary detection tests to compose the
erved fault signature. When applying this methodolagy t
isolation, since they may exhibit symptoms witfelient
épnsitivities, the use of binary codification of the resiqua-
duces loss of information (Puig et al., 2005). Itis possiblase
oé{her additional information associated with the relagizip
tween the residuals and faults, as the residual faulitseétys
0 improve the isolation results (Meseguer et al., 2006).



The structure of this paper is the following: Section 2 pnse h—h
the modelling principles of water distribution networksldrow aj =+ - !
to obtain LPV models to represent their dynamics. In Section Rij
3, the leak detection methodology is presented while Sedtio
presents the leak isolation and estimation methodologygusi
sensitivity analysis. Finally, in Section 5, an applicaticase
study based on an hypothetical water distribution netwer
used to assess the validity of the proposed approach.

®3)

Then, the set of equations that represent the water network
dynamic is obtained by replacing Eg. (3) in Eq. (2). This set
k ©f equations is non-linear sin@# 1 and can not be solved
analytically to obtain the node heads, but instead numlerica
methods should be used. This non-linearity also makiésult

to estimate the parameters of the network (as, f.e. the pipe
resistances). For all these reasons, the non-linear médet o
network is not very useful for FDI purposes.

2. MODELLING WATER DISTRIBUTION NETWORKS
USING LPV MODELS

2.1 Physical modelling principles 2.2 LPV models

The physical components that constitute a water distobuti In this paper, is alternatively proposed a linear paramegéty-
system are given by a set of pipes, pumps and control valvegy (LPV) model of the water network. LPV models consist
connected by means of nodes that represent junctions witha linear lumped parameters in which the parameters are not
or without demands and also tanks and reservoirs (Brdys andnstant and depend on system state/@ndperating point.
Ulanicki, 1994). Junctions are points in the network wher&here are several ways to obtain an LPV model (Shamma and
pipes are joint and where water enters or leaves the netwotoutier, 1993)(Nelles, 2000)(Bamieh and Giarré, 206t&ye,

The reservoirs are nodes that represent an infinite exterraé LPV model structure of the water distribution networélis
source to the network, for example, rivers, lakes, grounidiva tained using physical modeling and Taylor linearisatioruad
aquifers, and also input points to other system. The tanks aa generic operating point Shamma and Cloutier (1993). Param
nodes with storage capacity, where the volume of storedrwateters are estimated using LPV identification methods (Bamie
can vary with time. and Giarré, 2002). Thus, the water distribution networldeio

: o can be written using the following LPV representation:
The pipes transport water from one point in the network to ~ ~ ~
another. Flow direction is always from the end at higher hy- X(k+ 1) = A@i)x(K) + B(dk)uo(k) + Fa(d) fa(k) (4)
draulic head (pressure) to at lower head. The hydraulic head Y(K) = C()x(K) + D(@)uo(K) + Fy(d) fy(K)
lost by water flowing in a pipe due to friction with the pipesiwa where up(t) € R™ is the real system inpug(t) € R" is the
can be computed using one of threéelient formulas: Hazen- measured system outpw(t) € R™ is the state-space vector,
Williams (H-W) formula, Darcy-Weisbach (D-W) formula and f,(t) € R™ and f,(t) € R represents faults in the actuators
Chezy-Manning formula(C-M)(Brdys and Ulanicki, 1994) €Th and system output sensors, respectivily=9(K) is the system
first formula can be only employed in a pipe for water as liquigector of time-varying parameters of dimensimnthat change
and was developed only for turbulent flow. The second formulgith the operating point scheduled by some measured system
is applied over all flow regimens and to all liquids and thedhi variablespy (p«:=p(k)) that can be estimated using some known
formula is used for pipe with long diameter. All these forasil function: 9= f(px). However, there is still some uncertainty in
employ the following equation to compute headloss betwegRe estimated values that can be bounded by:
the start and the end node of the pipe: Oc= (B e R | < <D D= (P )

a This set represents the uncertainty about the exact kngeled
hi —h;j = Rjq; (1) of real system parameteds.

where:h; is the pressure at the nodgeh; is the pressure at The system (4) describes a model parametrized by a schgdulin
the nodej, R; is the resistance cfiicient, q; is the flow rate variable denoted by.
through the pipe, andis the flow exponent.

. . o . 3. LEAKS DETECTION METHODOLOGY
The pumps supplies energy to a fluid to raise its hydraulidhea

The pumps commonly employed are the centrifuge pumps1 |nputoutput form

which contain a rotative system that impulse the water. The

valves are used to control thg rovy or pressure between.tvqme system (4) can be expressed in input-output form using
parts of the network at a specific point. The valves are dlessi the shift operatoq, assuming zero initial conditions an non-

aCCOfding to the function that perform. fau|ty Conditions’ as fo”owg:
In each node, the flow continuity law must be fulfilled indicat
ing that sum of flows in a node must be zero, in equatiah 2 9(K) = G(qL, F)u(k) (6)
is negative because the demand goes out of the node;zere _
the flows that go into or go out of the node. The dfect of the uncertain parametefly on the temporal
responsg(k, J) can be bounded using an interval satisfying
S (G- d) =0 @) Y(K) € [909.5()] )

. . 1 In the following, for simplicity and with abuse of notatiomansfer functions
The set of equations that describes the Water network dymfam(lire used for LPV systems, although computations are peefentirely using
can be represented as nodes head function. Solving eqBione state space representation

with respecty; the following flow expression (see equation 3} in the remainder of the paper, interval bounds for vectoiates should be
is obtained considered component wise.



in a non-faulty case. This interval is computed indeperigent 4. LEAKS ISOLATION METHODOLOGY
for each output (neglecting couplings between outputs):
- . _ 4.1 Fault signature matrix
9(K) = min {G(™, (k)| (8)
= _ Fault isolation consists in identifying the faultffecting the
— 1
y(k) = 9:33({6((1 L u(k)| (9)  system. Itis carried out on the basis of fault signaturesn{g
erated by the detection module) and its relation with all the

using the zonotope algorithm presented in Guerra et al.gr00considered faultsf (k) = {fu(k), fy(k)}- Robust residual evalu-
ation presented in Section 3.2 allows obtaining a sefaaft

signaturesg(k) = K), p2(K), ..., k)], where each fault
3.2 Basic adaptive thresholding ingicator i?g(;i\)/en b[f:l( » 92 ]

Fault detection is based on generating a nominal residuat co i(K) = 0 !f r(k) ¢ [L(k)’i(k)] a7
: : : 1if r(K) € [r(K), (k)]
paring the measurements of physical varialy{g$ of the pro- i ' _ -
cess with their estimatiop(K) provided by the associated sys- The standard FDI fault isolation method is based on expigiti
tem model: the relation defined on the Cartesian product of the sets of
r(K) = y(K) — (k) (10) considered faults:

wherer(k) € R™ is the residual set ang[K) is the prediction '\ horeFSM is the theoretical fault signature matrix (Gertler,

obtained using the nqmmal LPV model. Accordmg to Gertleﬁggs)_ One element of such matf&M, will be equal to one,

(1998), the computational form of the residual generatbt, Ot e a1t £, (k) is affected by the residuai(K). In this case, the

tained using (6), is: value of the fault indicatos;(k) must be equal to one when the
fault appears in the monitored system. Otherwise, the eleme

r(k) — y(k) _ G(q_l, ‘ﬂk)u(k) (11) FSM, will be zero.
. . ) In leak detection and isolation, the use of the classic inar

Alternatively, the residual given by (11) can be also exgeels soation approach leads to a fault signature matrix futboés

in terms of the #fects caused by faults using its internal Okpat makes impossible to isolate leaks. This is why in this

unknown-input-éect form (Gertler, 1998) as follows: paper the use use of information provided by fielt residual
sensitivityis proposed in order to increase leak isolability.

FSM c ¢x f, (18)

_ -1 _ -1
1) =Gy (a7 9 (0 ~Gr (@ 9fu)  (12) 4 5 | eak sensitivity analysis
whereGy (g%, %) and Gy, (g1, 9) are the transfer functions
that describe theffect of inputoutput sensors faults in the
residual, respectively.

Since the activation of a residual can be caused [fierdint
leaks to distinguish one leak from the others a deep anai§sis
the residual should be performed. This analysis can be dpne b
When considering model uncertainty (in this paper, assum@adeans of theesidual fault sensitivityntroduced by (Gertler,
located in parameters), the residual generated by (10) wilP98) as follows:

not be zero, even in a non-faulty scenario. To cope with the S, = or (19)
parameter uncertaintyfect a passive robust approach based on T

adaptive thresholding can be used (Horak, 1988). Thusgusithat leads to a transfer function that describes tiiece on
this passive approach, thiect of parameter uncertainty in the the residualy, of a given faultf. The expression of residual
residualr (k) (associated to each system outp(ld) is bounded sensitivities is obtained using the residual internal fgjiwen

by the interval: by (12). Thus, the residual (12) can be re-written as follows
r(k) € [r(k).7(k)] 13) r() = S (a5 3 fy(K) + Se, (a7 B fu() (20)

where: B whereS (7%, ) = Gy,(qL, Jy) is the sensitivity of the output
1(K) = 9(k) - (k) andr(k) = 9(K) — (k) (14) sensor fault an®y, (gL, 9) = -Gy, (g% Jy) is the sensitivity

of the actuator fault.

being yTK) the nominal predicted outpug(K) and J(k) the  Notice that the sensitivity changes with the operating poin
bounds of the predicted output (7). The residual generatg@rametrized by scheduling varialgieas the LPV system (4).
by (14) can be expressed in input-output form using (6) as:

r(K) = Ti@';'{AG(q_l’ ﬂ)u(k)} (15) 4.3 Fault isolation and estimation methodology

_ . Figure 1 shows the scheme of the whole leak detection and
r(k) = r&%x{AG(q LK)} (16) isolation algorithm proposed in this paper. The detectiaum
ule has been already explained in Section 3. The result sf thi

where: i i i module applied to the residuglk) produces ambserved fault
AG(q™,9) = G(a,9) - G(a ™, do) signatures(k). The observed fault signature is then supplied to
beingd, the nominal parameters. the fault isolation module that will try to isolate and e<tit®
the leak.

Then, a fault is indicated if the residuals do not satisfy the
relation given by (13), or alternatively, if the measuremisn The proposed isolation approach makes use of the fault@stim
not inside the interval of predicted outputs given by (8)-(9  tion provided the residual fault sensitivity (19). More gieely,



network is composed by the following elements: Two reser-
voirs, three pipes and two nodes with demadgdsandd, ex-

) L pressed irf?. Head sensordf; andh,,) (expressed im) are
fo.e(K) = (ng,[(q‘l, ﬂk)) ri(K) (21) located in the two nodes. The possible leaks farand f, are

) A A~ A also located in the nodes. The pipe resistancéficientsRy,

wherei e [1,...,n] and beingf,r = {f;fucl, ¥ € € R, andRs in the H-W formula (1) are given big = 1221&0.L
[1,....ny,1,....ny]. This relation considers the influence ofwhereL is the pipe length in metersn, D is the pipe diameter
each faultf (k) on the each residua(k). in millimeters Mmm) anda is flow exponentd = 1.852). The
pipeslength are; = L, = 1000mandL3; = 2000mrespectively

and the diameters is the same in all pifgss= D, = D3 =

200mm
S
Lok

assuming tha(Sf(q‘l, 1§k))_l exists®, the expression of the
fault estimation is given by:

Using the fault estimation (21), a ndv&6M matrix (calledfault
signature matrix FSMeytan be defined as shown in Table 1
This fault signature matrix is evaluated at every time insta

fg,t’ fy,l e fy,n fu,l e fu,nu
R R Y Y frifg oo Trafun Reservoir 1
r2(K) fr2fy.1 e fr2fy,ny frafus e fr2fu‘nu
S]]

rny(k) fl'ny fya e frn fyny f"ny fu1 e frn funy

Table 1.Fault signature matrix based on the fault estimation :L Q2

(FSMes} with respect ta (k) i A\ i l
Each fault hypothesis corresponds to eathcolumn of f4 d‘“ d; v fz
FSMestmatrix of Table 1. The fault hypothesis corresponding e sl
to £M-column is accepted if all the fault estimation values are ( Sector 1 ) ( s:::::lz )
equal. More precisely, assuming that the system is jlistged
by one faultf(K) at a timety, the isolation process is done by Figure 2. Water network proposed as case study
finding the fault that presents a fault estimation with a mini
mum distance with respect to the average of fault estimation
hypothesis being postulated as a diagnosed fault: 5.2 LPV modelling
min{ds,,.....dyn, ... Aun, (22)
where the distance is calculated using the Euclidean distanAPplying the flow equation (2) to the network under study, the
between vectors: set of equations that describe the flow behaviour is obtained
N N 2 N N 2
d ol = \/( frlfg,z(k) - ffj:z(k)) i (frnyfg,/(k) - ffj:z(k)) SVfQ,( i +0Q2 — d]_ — f]_ =0 (24)
where (23) Ga =2~z =0 (25)
n 2 .
£m ) = 22y frit, (K) and svf = J @ IfESM=r(K Analogously, the application of the pressure equationd 3 e
foc ny ol 1 ifFSM=r(k) case study network leads to the following set of equations:
for fr = {fye fuc) V€€ 1,0y 1,0y,
-1
_hdl +h 1 &
f1| {2 {m 0L = (—Tn (26)
e v, v
dl i water _hnZ + hnl
dj’ etk =+ ol ::;ene\‘:tmn c . kﬂeaa;ﬂitude QZ = (_ R2 ) (27)
O™ matuie M e [T RS
-I —Nd2 + N2
model q3 = (_ ) (28)
LPY model R R3
— Toai ealation and scirration Hodk Finally, the complete non-linear model of the network is ob-

Figure 1. Scheme of leak detection and isolation procedure. Egzl)egnkéy(sélgl;stltutmg equations (26), (27) and (28) in &iqua

5. APPLICATION CASE STUDY

_ (hd1 = hn1 T = b\ _
Fj_—( R]_ ) +( R2 ) —d]_—f]_—o (29)

5.1 Description
L . N haz - Me2\™ (P2 — hot\*

The application case study is based on the water distributio Fr = R - R —-d,-f,=0 (30)

network presented in Fig. 2. In this particular case, theswat S 2

Sf (gt Fn())'lis non-square and can be tackled using the lefthis model is used to develop a high-fidelity simulator othi
pseudo-inverse water network using EPANET software.



5.3 LPV identification

To obtain the structure of the LPV model of this network, the 004 -0.02 -0.02
non-linear model (29) is linearized around the operatinigtpo < o006 o o004 < o004
characterized by the head measurements in nidjendh®,: © © ©
-0.08 : -0.06 : —-0.06
A d Fu(he. he) ] [he P R L
nl [ _ -1 Y1 ~-1| 71 g5 Mo nl d, 14 d d, 14 d d, 14 d
QA = Ann + Ann 8- 10 | + | 0 (31) 2146 2 14 ¢ 2 14 d
[ hn2 ] d2 Fa(hyy, ) hrz
where: -0.04 155
1 1 1 o 7008 < o
hey-hg; \a =t he-hg;\at he,—hg; \at :
Ry Rz Rz —vog 1§ \
_ aRy aR aR 2 6 2 6
" (et ()™ (5m) b1 d, 41 5, v
Ry R3 Ry
aR aRs aR Figure 3. LPV parameters variation with the demands

Notice from Eq. (31) that parameters vary with nodes head. Bu
according to Egs. (29) and (30), the nodes head is fixed by th
demands. Thus, it means that LPV model (31) can alterngtivel

be rewritten as follows: 15
14.9

real data
maximum prediction bound
minimum prediction bound

14.95

hnt = a11(d1, d2)d1 + a12(dy, do)d + ag3(dy, dy) (32) 1485

hn2 = a1(dy, d2)d1 + apa(dy, d2)dz + ap3(dy, do)
E

Parameterizing the parameter dependence of this model wit =
the demand as follows

14.8 =

14.7

aj = a;jdy + Bijd2 + i (33) 1A 6 1465
3 6
and using the LPV parameter estimation algorithm propose 5 5 > ) .
by Bamieh and Giarré (2002) to a set of hamanand data 45
d, (Iis) 14 d, (Is) d, (I1s) 1 4 d, (Us)

registered in the netowrk in a non-leak scenario, the paiensie
@ij, Bij andy;; are obtained. Table 2 shows the numeric values, o o ]
of these parametersl Figure 3 presents graphica”y thesalt Flgure 4. Variation of head predlctlon bounds with demands.

these parameters in function of the demands. ] ) o )
5.4 Leak detection and isolation implementation

an -0.0105 | az1 -0.0086
ii g_ gggg fi 8 'gggg Using the LPV model (32) with the parameters and uncertainty
o 20.0027 | a2 0.0050 estlmated_above, the fault de_tect!on procedur_e descrilyed b
Bz 0.0047 | Bz 20.0016 Section 3 is implemented considering the following resislua
Y12 -0.0236 | y2 -0.0290
a3 0.0543 | a3 0.0498 -
Bis 0.0229 | fas 0.0274 1 = Py = O (35)
Y13 14.8658 | y23 14.8713 M2 = hn2 — o
Table 2. Estimated;;, 8;; andy;; parameters corre- R R )
sponding to LPV parametey; = ijdy + fi;d2 + ¥ij wherehy; andhy, are given by Eq. (32).

Once the nominal LPV model has been estimated, parametfigult isolation procedure is implemented using the fawliis
modelling uncertaintyt;; for each LPV parametes; will be  tion procedure described by Section 4 and residuals (35). To
bounded using intervals such that implement such procedure th&fext of leaks is included in the

LPV model (32) as follows
ai € [afj(c. do) — Aij, 8(d, ) + ] (34) (32)

This uncertainty will be bounded using the algorithm pragabs
by Ploix et al. (1999) that guarantees that all registered in
putoutput data from the system in non-faulty scenarios will be

g]lcgjr(ijt?]?r:g» Fh_eénéggv?égtﬁde;}:ri:t(rj;uIt of applicatiorhis that leads to the following leak sensitivity matrix using flault
9 ij =% P : residual sensitivity definition (19)

Figure 4 presents the maximum (blue) and minimum (red)
prediction bounds for node heads provided by the LPV model

(31). It can be noticed that the real node heads are inside the S(dy, dy) = a11(d, dp) a12(ds, dy)
minimum and maximum prediction bounds. az1(da, 0) agz(ch, c)

1 = a11(di, d2) fy + a12(ds, d2) f2 (36)
M2 = a1(d1, d2) f + axa(d1, d2) f2

(37)



5.5 Leak isolation and estimation scenarios

09 09

To show the #ectiveness of the proposed method two leak o8 : 0s ,
scenarios corresponding to leaks appearing in nodes 1 and o7 e 07 [l
are considered. o ” ’
Leak scenario 1. Figure 5 (top plots) shows the evaluation os oS ot
of real head measurements against prediction bounds uséng t e o
LPV interval model (32) when a leak is present in the node T ”
1. Notice that the nodes head measurements do not belong
the uncertainty interval once the leak appears. Once the le¢
is detected, fault isolation and estimation modules igotatd Figure 7. Fault Isolation in Scenario 1 and 2
estimate the leak. Figure 7 illustrates the leak isolatEsult

using the rule (22). Figure 5 (bottom plots) also illustsatiee  t0 the relationship between residuals and leaks. Moredtver,
leak magnitude estimation using Eq. (21). allows obtaining a leak estimation. Satisfactory resuits a

obtained using the water pipe network case study. As a furthe
ek dtcion research, the proposed methodology will be applied in a real
network.

’ /
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