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Abstract: In this paper, a leak detection and isolation methodology in pressurized water pipe networks
is proposed. The methodology is based on computing residuals which are obtained comparing measured
pressures (heads) in selected points of the network and their estimated values by means of an interval
Linear Parameter Varying(LPV) model. The structure of the LPV models is obtained fromthe non-
linear mathematical model of the network. The proposed detection method uses interval LPV models
to obtain uncertainty intervals for the estimated heads that allow to indicate when a leak appears in the
water network. The isolation task employs an algorithm based on the residual fault sensitivity analysis.
Finally, a typical water pipe network is employed to validate the proposed methodology. This network
is simulated using EPANET software. Parameters of LPV models and their uncertainty bounded by
intervals are estimated from data coming from this simulator. Several leak scenarios allow to assess the
effectiveness of the proposed approach.
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1. INTRODUCTION

Water system networks are used to supply water for industrial
and domestic use. Those systems include sources, treatment
works and networks, together with pump stations and reser-
voirs. They also contain pipes, control valves and water con-
sumers (nodes). Moreover, water systems networks are large-
scale systems. Normally, leaks are present in the water con-
sumers or nodes. Therefore, leak detection and isolation meth-
ods must be employed to localize leakage in the water distribu-
tion system. Model-based leak detection techniques based on
the pressure measurements and sensitivity analysis of nodes in
a network when a leak is present in a node have been studied
(Perez et al., 2009). These techniques are based on the use of
the non-linear model of the network. However, the parameter
estimation of this model is not an easy task (Brdys and Ulanicki,
1994). This is why this paper proposes alternatively to use a
non-linear model with LPV structure whose parameters can be
more easily estimated using least-squares algorithms as the one
proposed by Bamieh and Giarré (2002), among others.

Linear Parameter Varying (LPV) models have recently attracted
the attention of the FDI research community. Such models
can be used efficiently to represent some non-linear systems
(Shamma and Cloutier, 1993). This has motivated some re-
searchers from the FDI community to develop model-based
methods using LPV models (see Bokor et al. (2002), among
others). But even with the use of LPV models, modeling errors
are inevitable in complex engineering systems. So, in order
to increase reliability and performance of model-based fault
detection, the development of robust fault detection algorithms
should be addressed. The robustness of a fault detection system
means that it must be only sensitive to faults, even in the pres-
ence of model-reality differences Chen and Patton (1999). One
of the approaches to robustness, known aspassive, is based on
enhancing the robustness of the fault detection system at the
decision-making stage. The aim with the passive approach is

usually to determine, given a set of models, if there is any mem-
ber in the set that can explain the measurements. A common
approach to this problem is to propagate the model uncertainty
to the alarm limits of the residuals. When the residuals are
outside of the alarm limits, it is argued that model uncertainty
alone can not explain the residual and therefore a fault must
have occurred. This approach has the drawback that faults that
produce a residual deviation smaller than the residual uncer-
tainty due to parameter uncertainty will not be detected.

The typical fault isolation approach proposed in the FDI com-
munity uses a set of binary detection tests to compose the
observed fault signature. When applying this methodology to
leak isolation, since they may exhibit symptoms with different
sensitivities, the use of binary codification of the residual pro-
duces loss of information (Puig et al., 2005). It is possibleto use
other additional information associated with the relationship
between the residuals and faults, as the residual fault sensitivity,
to improve the isolation results (Meseguer et al., 2006).

The innovation of this paper is to present a new leak detection
and isolation method for water distribution systems that can be
described by LPV models. The fault detection methodology
is based on comparing on-line the real system behavior of
the monitored system obtained by means of sensors with the
estimated behavior using anLPV interval model. In the case
of a significant discrepancy (residual) is detected betweenthe
LPV model and the measurements obtained by the sensors,
the existence of a fault is assumed. Due to the effect of the
uncertain parameters, the outputs of LPV models are bounded
by an interval to avoid false alarms in the detection module.
Analyzing in real-time how the faults affect to the residuals
using the residual fault sensitivity, it is possible, to isolate the
leaks, and even in some cases, it is also possible to determine
its magnitude.



The structure of this paper is the following: Section 2 presents
the modelling principles of water distribution networks and how
to obtain LPV models to represent their dynamics. In Section
3, the leak detection methodology is presented while Section 4
presents the leak isolation and estimation methodology using
sensitivity analysis. Finally, in Section 5, an application case
study based on an hypothetical water distribution network is
used to assess the validity of the proposed approach.

2. MODELLING WATER DISTRIBUTION NETWORKS
USING LPV MODELS

2.1 Physical modelling principles

The physical components that constitute a water distribution
system are given by a set of pipes, pumps and control valves
connected by means of nodes that represent junctions with
or without demands and also tanks and reservoirs (Brdys and
Ulanicki, 1994). Junctions are points in the network where
pipes are joint and where water enters or leaves the network.
The reservoirs are nodes that represent an infinite external
source to the network, for example, rivers, lakes, groundwater
aquifers, and also input points to other system. The tanks are
nodes with storage capacity, where the volume of stored water
can vary with time.

The pipes transport water from one point in the network to
another. Flow direction is always from the end at higher hy-
draulic head (pressure) to at lower head. The hydraulic head
lost by water flowing in a pipe due to friction with the pipes wall
can be computed using one of three different formulas: Hazen-
Williams (H-W) formula, Darcy-Weisbach (D-W) formula and
Chezy-Manning formula(C-M)(Brdys and Ulanicki, 1994). The
first formula can be only employed in a pipe for water as liquid
and was developed only for turbulent flow. The second formula
is applied over all flow regimens and to all liquids and the third
formula is used for pipe with long diameter. All these formulas
employ the following equation to compute headloss between
the start and the end node of the pipe:

hi − h j = Ri j qi j
a (1)

where:hi is the pressure at the nodei, h j is the pressure at
the nodej, Ri j is the resistance coefficient,qi j is the flow rate
through the pipe, anda is the flow exponent.

The pumps supplies energy to a fluid to raise its hydraulic head.
The pumps commonly employed are the centrifuge pumps
which contain a rotative system that impulse the water. The
valves are used to control the flow or pressure between two
parts of the network at a specific point. The valves are classified
according to the function that perform.

In each node, the flow continuity law must be fulfilled indicat-
ing that sum of flows in a node must be zero, in equation 2di

is negative because the demand goes out of the node andqi j are
the flows that go into or go out of the node.

∑

(qi j − di) = 0 (2)

The set of equations that describes the water network dynamics
can be represented as nodes head function. Solving equation(1)
with respectqi j the following flow expression (see equation 3)
is obtained

qi j =
a

√

hi − h j

Ri j
(3)

Then, the set of equations that represent the water network
dynamic is obtained by replacing Eq. (3) in Eq. (2). This set
of equations is non-linear sincea , 1 and can not be solved
analytically to obtain the node heads, but instead numerical
methods should be used. This non-linearity also makes difficult
to estimate the parameters of the network (as, f.e. the pipe
resistances). For all these reasons, the non-linear model of the
network is not very useful for FDI purposes.

2.2 LPV models

In this paper, is alternatively proposed a linear parametric vary-
ing (LPV) model of the water network. LPV models consist
of a linear lumped parameters in which the parameters are not
constant and depend on system state and/or operating point.
There are several ways to obtain an LPV model (Shamma and
Cloutier, 1993)(Nelles, 2000)(Bamieh and Giarré, 2002).Here,
the LPV model structure of the water distribution network isob-
tained using physical modeling and Taylor linearisation around
a generic operating point Shamma and Cloutier (1993). Param-
eters are estimated using LPV identification methods (Bamieh
and Giarré, 2002). Thus, the water distribution network model
can be written using the following LPV representation:

x(k+ 1) = A(ϑ̃k)x(k) + B(ϑ̃k)u0(k) + Fa(ϑ̃k) fa(k)
y(k) = C(ϑ̃k)x(k) + D(ϑ̃k)u0(k) + Fy(ϑ̃k) fy(k)

(4)

whereu0(t) ∈ ℜnu is the real system input,y(t) ∈ ℜny is the
measured system output,x(t) ∈ ℜnx is the state-space vector,
fa(t) ∈ ℜnu and fy(t) ∈ ℜny represents faults in the actuators
and system output sensors, respectively.ϑ̃k:=ϑ(k) is the system
vector of time-varying parameters of dimensionnϑ that change
with the operating point scheduled by some measured system
variablespk (pk:=p(k)) that can be estimated using some known
function:ϑk= f (pk). However, there is still some uncertainty in
the estimated values that can be bounded by:

Θk = {ϑk ∈ ℜ
nϑ | ϑk ≤ ϑk ≤ ϑk}, ϑk = f (pk) (5)

This set represents the uncertainty about the exact knowledge
of real system parametersϑ̃k.

The system (4) describes a model parametrized by a scheduling
variable denoted bypk.

3. LEAKS DETECTION METHODOLOGY

3.1 Input/output form

The system (4) can be expressed in input-output form using
the shift operatorq−1, assuming zero initial conditions an non-
faulty conditions, as follows1 :

ŷ(k) = G(q−1, ϑk)u(k) (6)

The effect of the uncertain parametersϑk on the temporal
response ˆy(k, ϑk) can be bounded using an interval satisfying2 :

y(k) ∈
[

ŷ(k), ŷ(k)
]

(7)

1 In the following, for simplicity and with abuse of notation,transfer functions
are used for LPV systems, although computations are performed entirely using
the state space representation
2 In the remainder of the paper, interval bounds for vector variables should be
considered component wise.



in a non-faulty case. This interval is computed independently
for each output (neglecting couplings between outputs):

ŷ(k) = min
ϑk∈Θ

{

G(q−1, ϑk)u(k)
}

(8)

ŷ(k) = max
ϑk∈Θ

{

G(q−1, ϑk)u(k)
}

(9)

using the zonotope algorithm presented in Guerra et al. (2008).

3.2 Basic adaptive thresholding

Fault detection is based on generating a nominal residual com-
paring the measurements of physical variablesy(k) of the pro-
cess with their estimation ˆy(k) provided by the associated sys-
tem model:

r(k) = y(k) − ŷ(k) (10)

wherer(k) ∈ ℜny is the residual set and ˆy(k) is the prediction
obtained using the nominal LPV model. According to Gertler
(1998), the computational form of the residual generator, ob-
tained using (6), is:

r(k) = y(k) −G(q−1, ϑk)u(k) (11)

Alternatively, the residual given by (11) can be also expressed
in terms of the effects caused by faults using its internal or
unknown-input-effect form (Gertler, 1998) as follows:

r(k) = G fy(q
−1, ϑk) fy(k) −G fa(q

−1, ϑk) fu(k) (12)

whereG fy(q
−1, ϑk) andG fa(q

−1, ϑk) are the transfer functions
that describe the effect of input/output sensors faults in the
residual, respectively.

When considering model uncertainty (in this paper, assumed
located in parameters), the residual generated by (10) will
not be zero, even in a non-faulty scenario. To cope with the
parameter uncertainty effect a passive robust approach based on
adaptive thresholding can be used (Horak, 1988). Thus, using
this passive approach, the effect of parameter uncertainty in the
residualr(k) (associated to each system outputy(k)) is bounded
by the interval:

r(k) ∈ [r(k), r(k)] (13)

where:

r(k) = ŷ(k) − ŷ(k) andr(k) = ŷ(k) − ŷ(k) (14)

being ŷ(k) the nominal predicted output, ˆy(k) and ŷ(k) the
bounds of the predicted output (7). The residual generated
by (14) can be expressed in input-output form using (6) as:

r(k) = min
θ∈Θ

{

∆G(q−1, ϑ)u(k)
}

(15)

r(k) = max
θ∈Θ

{

∆G(q−1, ϑ)u(k)
}

(16)

where:
∆G(q−1, ϑ) = G(q−1, ϑ) −G(q−1, ϑ0)

beingϑ0 the nominal parameters.

Then, a fault is indicated if the residuals do not satisfy the
relation given by (13), or alternatively, if the measurement is
not inside the interval of predicted outputs given by (8)-(9).

4. LEAKS ISOLATION METHODOLOGY

4.1 Fault signature matrix

Fault isolation consists in identifying the faults affecting the
system. It is carried out on the basis of fault signatures, (gen-
erated by the detection module) and its relation with all the
considered faults,f (k) =

{

fu(k), fy(k)
}

. Robust residual evalu-
ation presented in Section 3.2 allows obtaining a set offault
signaturesφ(k) = [φ1(k), φ2(k), . . . , φny(k)], where each fault
indicator is given by:

φi(k) =

{

0 if r(k) < [r(k), r(k)]
1 if r(k) ∈ [r(k), r(k)] (17)

The standard FDI fault isolation method is based on exploiting
the relation defined on the Cartesian product of the sets of
considered faults:

FSM ⊂ φ× f , (18)
whereFSM is the theoretical fault signature matrix (Gertler,
1998). One element of such matrixFSMiℓ will be equal to one,
if the fault fℓ(k) is affected by the residualr i(k). In this case, the
value of the fault indicatorφi(k) must be equal to one when the
fault appears in the monitored system. Otherwise, the element
FSMiℓ will be zero.

In leak detection and isolation, the use of the classic binary
isolation approach leads to a fault signature matrix full ofones
that makes impossible to isolate leaks. This is why in this
paper the use use of information provided by thefault residual
sensitivityis proposed in order to increase leak isolability.

4.2 Leak sensitivity analysis

Since the activation of a residual can be caused by different
leaks to distinguish one leak from the others a deep analysisof
the residual should be performed. This analysis can be done by
means of theresidual fault sensitivityintroduced by (Gertler,
1998) as follows:

S f =
∂r
∂ f

(19)

that leads to a transfer function that describes the effect on
the residual,r, of a given fault f . The expression of residual
sensitivities is obtained using the residual internal formgiven
by (12). Thus, the residual (12) can be re-written as follows:

r(k) = S fy(q
−1, ϑ̃k) fy(k) + S fu(q

−1, ϑ̃k) fu(k) (20)

whereS fy(q
−1, ϑ̃k) = G fy(q

−1, ϑ̃k) is the sensitivity of the output
sensor fault andS fu(q

−1, ϑ̃k) = −G fu(q
−1, ϑ̃k) is the sensitivity

of the actuator fault.

Notice that the sensitivity changes with the operating point
parametrized by scheduling variablepk as the LPV system (4).

4.3 Fault isolation and estimation methodology

Figure 1 shows the scheme of the whole leak detection and
isolation algorithm proposed in this paper. The detection mod-
ule has been already explained in Section 3. The result of this
module applied to the residualr(k) produces anobserved fault
signatureφ(k). The observed fault signature is then supplied to
the fault isolation module that will try to isolate and estimate
the leak.

The proposed isolation approach makes use of the fault estima-
tion provided the residual fault sensitivity (19). More precisely,



assuming that
(

Sf (q−1, ϑ̃k)
)−1

exists3 , the expression of the
fault estimation is given by:

f̺̂,ℓ(k) =
(

Sf̺,ℓ (q
−1, ϑ̃k)

)−1
r i(k) (21)

where i ∈ [1, . . . , ny] and being f̺̂,ℓ =
{

f̂y,ℓ, f̂u,ℓ
}

, ∀ ℓ ∈
[1, . . . , ny, 1, . . . , nu]. This relation considers the influence of
each faultf (k) on the each residualr(k).

Using the fault estimation (21), a newFSMmatrix (calledfault
signature matrix FSMest) can be defined as shown in Table 1.
This fault signature matrix is evaluated at every time instant.

f̺̂,ℓ fy,1 · · · fy,ny fu,1 · · · fu,nu

r1(k) f̂r1 fy,1 · · · f̂r1 fy,ny
f̂r1 fu,1 · · · f̂r1 fu,nu

r2(k) f̂r2 fy,1 · · · f̂r2 fy,ny
f̂r2 fu,1 · · · f̂r2 fu,nu

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

rny(k) f̂rny fy,1 · · · f̂rny fy,ny
f̂rny fu,1 · · · f̂rny fu,nu

Table 1.Fault signature matrix based on the fault estimation
(FSMest) with respect tor i (k)

Each fault hypothesis corresponds to eachℓth-column of
FSMestmatrix of Table 1. The fault hypothesis corresponding
to ℓth-column is accepted if all the fault estimation values are
equal. More precisely, assuming that the system is just affected
by one fault f (k) at a timet0, the isolation process is done by
finding the fault that presents a fault estimation with a mini-
mum distance with respect to the average of fault estimation
hypothesis being postulated as a diagnosed fault:

min
{

dfy,1, . . . , dy,ny, dfu,1, . . . , du,nu

}

(22)

where the distance is calculated using the Euclidean distance
between vectors:

df̺,ℓ =

√

(

f̂r1 f̺,ℓ (k) − f̂ m
f̺,ℓ

(k)
)2
+ · · · +

(

f̂rny f̺,ℓ (k) − f̂ m
f̺,ℓ

(k)
)2

svf̺,ℓ
(23)

where:

f̂ m
f̺,ℓ

(k) =

∑ny

i=1 f̂r i f̺,ℓ (k)

ny
and svf̺,ℓ =

{

∞ i f FS M , r(k)
1 i f FS M = r(k)

for f̺,ℓ =
{

fy,ℓ, fu,ℓ
}

, ∀ ℓ ∈ [1, . . . , ny, 1, . . . , nu].

Figure 1. Scheme of leak detection and isolation procedure.

5. APPLICATION CASE STUDY

5.1 Description

The application case study is based on the water distribution
network presented in Fig. 2. In this particular case, the water

3 If
(

Sf (q−1, ϑ̃k)
)−1is non-square and can be tackled using the left

pseudo-inverse

network is composed by the following elements: Two reser-
voirs, three pipes and two nodes with demandsd1 andd2 ex-
pressed inm3

s . Head sensors (hn1 andhn2) (expressed inm) are
located in the two nodes. The possible leaks aref1 and f2 are
also located in the nodes. The pipe resistance coefficientsR1,
R2 andR3 in the H-W formula (1) are given byR = 1.2216e10∗L

Ca∗D4.87

whereL is the pipe length in meters (m), D is the pipe diameter
in millimeters (mm) anda is flow exponent (a = 1.852). The
pipes length areL1 = L2 = 1000mandL3 = 2000mrespectively
and the diameters is the same in all pipesD1 = D2 = D3 =

200mm

Figure 2. Water network proposed as case study

5.2 LPV modelling

Applying the flow equation (2) to the network under study, the
set of equations that describe the flow behaviour is obtained:

q1 + q2 − d1 − f1 = 0 (24)

q3 − q2 − d2 − f2 = 0 (25)

Analogously, the application of the pressure equation (3) to the
case study network leads to the following set of equations:

q1 =

(

−
−hd1+ hn1

R1

)a−1

(26)

q2 =

(

−
−hn2 + hn1

R2

)a−1

(27)

q3 =

(

−
−hd2+ hn2

R3

)a−1

(28)

Finally, the complete non-linear model of the network is ob-
tained by substituting equations (26), (27) and (28) in equations
(24) and (25):

F1 =

(

hd1 − hn1

R1

)a−1

+

(

hn2− hn1

R2

)a−1

− d1 − f1 = 0 (29)

F2 =

(

hd2 − hn2

R3

)a−1

−

(

hn2− hn1

R2

)a−1

− d2 − f2 = 0 (30)

This model is used to develop a high-fidelity simulator of this
water network using EPANET software.



5.3 LPV identification

To obtain the structure of the LPV model of this network, the
non-linear model (29) is linearized around the operating point
characterized by the head measurements in nodesho

n1 andho
n2:

[

ĥn1

ĥn2

]

= Ahn
−1

[

d1
d2

]

+ Ahn
−1

[

F1(ho
n1, h

o
n2)

F2(ho
n1, h

o
n2)

]

+

[

ho
n1

ho
n2

]

(31)

where:

Ahn =


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)
1
a−1

aR1
−
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R2

)
1
a−1

aR2

(

ho
n2−ho
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1
a−1
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1
a−1
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)
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a−1
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


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Notice from Eq. (31) that parameters vary with nodes head. But
according to Eqs. (29) and (30), the nodes head is fixed by the
demands. Thus, it means that LPV model (31) can alternatively
be rewritten as follows:

ĥn1 = a11(d1, d2)d1 + a12(d1, d2)d2 + a13(d1, d2)
ĥn2 = a21(d1, d2)d1 + a22(d1, d2)d2 + a23(d1, d2)

(32)

Parameterizing the parameter dependence of this model with
the demand as follows

ai j = αi j d1 + βi j d2 + γi j (33)

and using the LPV parameter estimation algorithm proposed
by Bamieh and Giarré (2002) to a set of head/demand data
registered in the netowrk in a non-leak scenario, the parameters
αi j , βi j andγi j are obtained. Table 2 shows the numeric values
of these parameters. Figure 3 presents graphically the values of
these parameters in function of the demands.

α11 -0.0105 α21 -0.0086
β11 -0.0027 β21 -0.0050
γ11 0.0006 γ21 0.0033
α12 -0.0027 α22 -0.0050
β12 -0.0047 β22 -0.0016
γ12 -0.0236 γ22 -0.0290
α13 0.0543 α23 0.0498
β13 0.0229 β23 0.0274
γ13 14.8658 γ23 14.8713

Table 2. Estimatedαi j , βi j andγi j parameters corre-
sponding to LPV parameterai j = αi j d1 + βi j d2 + γi j

Once the nominal LPV model has been estimated, parametric
modelling uncertaintyλi j for each LPV parameterai j will be
bounded using intervals such that

ai j ∈
[

a0
i j (d1, d2) − λi j , a

0
i (d1, d2) + λi j

]

. (34)

This uncertainty will be bounded using the algorithm proposed
by Ploix et al. (1999) that guarantees that all registered in-
put/output data from the system in non-faulty scenarios will be
included in the interval model. As a result of application ofthis
algorithmλi j = 0.007 for all parameters.

Figure 4 presents the maximum (blue) and minimum (red)
prediction bounds for node heads provided by the LPV model
(31). It can be noticed that the real node heads are inside the
minimum and maximum prediction bounds.
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Figure 3. LPV parameters variation with the demands
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Figure 4. Variation of head prediction bounds with demands.

5.4 Leak detection and isolation implementation

Using the LPV model (32) with the parameters and uncertainty
estimated above, the fault detection procedure described by
Section 3 is implemented considering the following residuals

rn1 = hn1 − ĥn1

rn2 = hn2 − ĥn2
(35)

whereĥn1 andĥn2 are given by Eq. (32).

Fault isolation procedure is implemented using the fault isola-
tion procedure described by Section 4 and residuals (35). To
implement such procedure the effect of leaks is included in the
LPV model (32) as follows

rn1 = a11(d1, d2) f1 + a12(d1, d2) f2
rn2 = a21(d1, d2) f1 + a22(d1, d2) f2

(36)

that leads to the following leak sensitivity matrix using the fault
residual sensitivity definition (19)

S(d1, d2) =

[

a11(d1, d2) a12(d1, d2)
a21(d1, d2) a22(d1, d2)

]

(37)



5.5 Leak isolation and estimation scenarios

To show the effectiveness of the proposed method two leak
scenarios corresponding to leaks appearing in nodes 1 and 2
are considered.

Leak scenario 1. Figure 5 (top plots) shows the evaluation
of real head measurements against prediction bounds using the
LPV interval model (32) when a leakf1 is present in the node
1. Notice that the nodes head measurements do not belong to
the uncertainty interval once the leak appears. Once the leak
is detected, fault isolation and estimation modules isolate and
estimate the leak. Figure 7 illustrates the leak isolation result
using the rule (22). Figure 5 (bottom plots) also illustrates the
leak magnitude estimation using Eq. (21).
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Figure 5. Fault Detection and Estimation in Scenario 1

Fault scenario 2. Figure 6 (top plots) shows the evaluation
of the model prediction against prediction bounds when a leak
f2 is present in the node 2. As in the case of fault scenario 2,
Figure 7 illustrates the leak isolation result using the rule (22)
while Figure 6 (bottom plots) also illustrates the leak magnitude
estimation using Eq. (21).
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Figure 6. Fault Detection and Estimation in Scenario 2

6. CONCLUSIONS

In this paper, a leak detection and isolation method for water
pipe network system described by means of LPV model has
been proposed. The leak detection methodology is based on
checking if head measurements are inside the prediction bounds
provided by a interval LPV model. The leak isolation module
has been implemented using fault residual sensitivity analysis.
This concept has been used to provide additional information
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Figure 7. Fault Isolation in Scenario 1 and 2

to the relationship between residuals and leaks. Moreover,it
allows obtaining a leak estimation. Satisfactory results are
obtained using the water pipe network case study. As a further
research, the proposed methodology will be applied in a real
network.
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