
Test-Driven Conceptual Modeling:
A Method and a Tool

Albert Tort

Universitat Politècnica de Catalunya
atort@lsi.upc.edu

Abstract. Conceptual Schema-Centric Development (CSCD) has been
qualified as a grand challenge for many researchers in Information Sys-
tems (IS). It reformulates the historical goal of automating IS building
but emphasizing that the Conceptual Schema (CS) should be the center
of the development. CSCD requires explicit, complete, executable and
correct CSs. In this context, testing becomes critical in the conceptual
modeling activity. Test-Driven Conceptual Modeling (TDCM) is pro-
posed as a new development method to obtain a correct and complete CS.
TDCM applies to conceptual modeling the essential ideas of Test-Driven
Development(TDD), an emerging test-first eXtreme Programming (XP)
method. Our research proposal pretends to contribute to the IS research
community by developing the TDCM method and a tool to put it into
practice.

1 The research topic

1.1 Conceptual Schema-Centric Development

Conceptual Schema-Centric Development (CSCD) [20] reformulates the histor-
ical goal of automating Information Systems (IS) building. CSCD emphasizes
that the system’s conceptual schema should be the center of the development. In
this approach, the Conceptual Schema (CS) becomes the only external descrip-
tion to be defined. It can be executed in the production environment by using
a virtual machine or by an automatic translation into software components. To
achieve this goal, CSCD requires CSs to be explicit (written in a formal mod-
eling language), complete (all the general static and dynamic knowledge about
the domain needed by the IS to perform its functions is specified), executable
and correct. eXtreme Conceptual Modeling (XCM)[11] is a similar approach.

1.2 Test-Driven Development

Test-Driven Development (TDD) [1, 3, 12, 13] is an emerging eXtreme Program-
ming (XP) [4] practice. From the IS point of view, TDD is a development method
in which an IS is implemented in short iterations in each of which the program-
mer first writes a test. Then, the knowledge acquired by writing the test guides
the changes to be done in the code to pass it. Finally the code is refactored.
TDD tests are automatically executed after every change. Constant test feed-
back allows detecting errors in the code as soon as a new change causes them.



1.3 Test-Driven Conceptual Modeling

We propose a new method for obtaining a CS by introducing the TDD approach
to the field of conceptual modeling. We name it Test-Driven Conceptual Model-
ing (TDCM). TDCM pursues ensuring the correctness and completeness of the
resultant CS. A CS obtained by applying TDCM can be used in conjunction
with CSCD or as a solid base for design and implementation phases.

TDCM is a development method in which a system’s CS is obtained by
performing three kinds of tasks:

– Write a test the CS should pass.

– Change the schema to pass a test.

– Refactor the schema to improve its qualities.

These tasks are performed in short iterations. In each TDCM iteration, de-
velopers first write a test. A test is, in fact, an executable form of a functional
requirement validation criterion in a concrete scenario. Martin et al. state that
“you can specify system behavior by writing tests and then verify that behavior
by executing the tests” by using the Möbius strip approach [15]. The task of
writing a TDCM test provides a way of thinking what changes in the schema
should be done to pass it.

Tests are preserved and automatically executed after every change in the
CS. In this way, TDCM helps ensuring that once each iteration finishes, the CS
satisfies the already processed requirements. Otherwise, errors caused by new
knowledge added to the CS are detected immediately.

Finally, refactoring is applied to improve the quality of the CS without chang-
ing the knowledge specified in it. Automatic tests execution checks that the
knowledge represented in the CS is not affected by refactoring.

2 Expected contributions

This PhD research proposal pretends to make the following contributions:

– A method for the development of conceptual schemas using the TDCM ap-
proach.

– A TDCM supporting tool to allow the use of the method in practice.

In the programming field we can find experimental evaluations of TDD both
in academic [17, 21] and industry contexts [5, 7, 8, 16]. The conclusions reached
by these experiments are not coincident in all cases. The variety of experiment
designs explain differences and encourage more experimental evaluations to be
definitely conclusive about TDD benefits. Nevertheless, these TDD observations
in practice drive most of these researchers to claim TDD benefits such as more
testing deep, quality improvement and developers confidence.

Our method pretends to make possible the use of the essential TDD tech-
niques in a conceptual modeling environment working with UML/OCL CSs.
Once developed the TDCM method and its supporting tool it will be possible to
evaluate it. At this moment we consider a complete evaluation as further work.



3 TDCM today

As far as we know, the application of the TDD approach to the development of
CSs has not been explored yet.

The number of CASE tools that help specifying CSs has increased in the last
years. The most well-known commercial CASE tools (Poseidon, Magic Draw, Ra-
tional Rose, etc.) help drawing schemas but they offer rather limited verification
and code-generation functionalities, specially for OCL expressions.

In the testing side, several researchers have proposed different techniques in
the context of Model-Driven Development (MDD) to introduce approaches for
testing models. The MODEST method [18] proposed by Santos Neto et al., the
Test-Driven Modeling (TDM) approach [24] by Zhang, the TOTEM approach
[6] by Briand and Labiche and the UMLAnT Eclipse plugin [22, 23] presented
by the Colorado State University are examples of these efforts mainly focused
on automatically deriving some tests from design models.

In the programming context, we find JUnit [14] as an important reference
tool which provides an easy-use framework to support the TDD method for Java
systems development.

Other tools like USE [10], can be considered precursors of CSCD tools in
the academic context. USE helps in the validation of UML/OCL schemas [9] by
creating possible system states (called snapshots) and checking whether those
snapshots are valid instantiations of the schema. It also offers some functionalities
to query the model and executing transformations on it. However, USE does not
provide support on automated collections of tests.

None of these tools satisfy completely the requirements demanded by TDCM.

4 The research approach

In order to achieve the proposed contributions we plan structuring our research
in the following main stages:

– Definition of the TDCM purpose: In this stage, we define the objectives of
the method (what is the problem and why we need a new method to solve
it?), the properties of its results (the desired output to be obtained) and the
context of its application.

– Method requirements elicitation: Once defined the method strategy, we can
identify the method requirements, taking into account the TDCM purpose
and the experiences about related methods and techniques.

– Method formalization: We propose the elaboration of a metamodel to for-
mally define TCDM static concepts and the process guidelines to apply it.
This task requires clarifying concepts and name them. We will reuse as much
as possible the general UTP definitions about testing [2]. We need to answer
questions like the following: What are CS tests? In what language (an al-
ready existing or a new specific one) is more appropriate to write TDCM
tests? What is the optimal order to test the requirements?



– Development of a TDCM tool : The requirements elicitation for the TDCM
tool should contemplate the necessity of considering those which are not di-
rectly associated to the theoretical method but they are necessary to ensure
the viability of its application. Some of the requirements are mandated (nec-
essary to put the method into practice). Others are optional. The implemen-
tation should be planned taking into account the requirements priorization.
We should also consider the exploration of already existing modular and
extensible platforms which could be the base for our tool implementation.

– Elaboration of a refactoring patterns catalog : The study of criteria to evaluate
the quality of CSs and patterns to improve it is a parallel research line to
be considered. Some of these refactoring patterns will be inspired in those
already used in programming or ontologies. Others will be specific to TDCM.

5 Results achieved so far

During our initial research stage, our main efforts have been focused on the
definition of the TDCM purpose, the context of its application, the study of
concepts associated to it and the elicitation of the method requirements. We
have also studied the adaptability of TDD practices to the aim of defining a
system’s conceptual schema and the role of TDCM in the evolution of ISs.

The following are some of the main requirements already discussed. They are
also useful to complement the description of TDCM.

5.1 The starting point

Conceptual modelers usually obtain, during the requirements engineering phase,
different specifications. The most common are the domain CS (a draft model
of knowledge about the domain) and the use case specification, which can be
obtained following different techniques depending on each project. Usually, these
specifications are not complete and cannot be used in CSCD environments. From
these preliminary specifications, TDCM guides the obtention of a complete sys-
tem’s CS. This context of application is the TDCM starting point.

5.2 “Silent” automatic execution of tests

Another essential requirement to make useful the method-in-practice is the au-
tomation of tests execution after every change. We have concluded the necessity
of providing a “silent” automatic execution of tests by requiring the attention
of developers only when a test fails.

5.3 Reducing testing effort

There are also optional requirements to improve the usability of the TDCM tool.
We propose test coverage analysis functionalities, warnings about the coherence
between the behavioral and the static part of the CS [19] and automatic assis-
tance (based on test patterns) for reducing the test design effort (by inferencing
some conceptual schema changes from tests and vice versa).



References

1. Astels, D.: Test driven development: A practical guide. Prentice Hall (2003)
2. Baker, P., Dai, Z. R., Grabowski, J. et al.: Model-driven testing: Using the UML

testing profile. Springer (2008)
3. Beck, K.: Test-driven development: By example. Addison-Wesley Prof. (2003)
4. Beck, K., Beedle, M., van Bennekum, A. et al.: Manifesto for Agile Software Devel-

opment (2001) at: http://agilemanifesto.org
5. Bhat, T., Nagappan, N.: Evaluating the Efficacy of Test-Driven Development: In-

dustrial Case Studies. Proc. ACM/IEEE 2006 International symposium on empirical
software engineering (2006) 356-363

6. Briand, L., Labiche, Y.: A UML-Based Approach to System Testing. Proc. UML
2001, 4th International Conference on UML, Toronto, Canada (2001)

7. Canfora, G., Cimitile, A., Garcia, F. et al.: Evaluating Advantages of Test Driven
Development: A Controlled Experiment with Professionals. Proc. 2006 ACM/IEEE
International symposium on empirical software engineering, (2006) 364-371

8. George, B., Williams, L.: An Initial Investigation of Test Driven Development in
Industry. Proc. 2003 ACM symposium on Applied computing (2003) 1135-1139

9. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE by
Automatic Snapshot Generation. Software and Systems Modeling, 4 (2005) 386-398

10. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming (2007)

11. Insfrán, E., Pelechano, V., Pastor, O.: Conceptual Modeling in the eXtreme. In-
formation and Software Technology, 44 (2002) 659-669

12. Janzen, D., Saiedian, H.: Does Test-Driven Development really Improve Software
Design Quality? Software, IEEE, 25 (2008) 77-84

13. Janzen, D., Saiedian, H.: Test-Driven Development Concepts, Taxonomy, and Fu-
ture Direction. Computer, 38 (2005) 43-50

14. JUnit website at: www.junit.org
15. Martin, R. C., Melnik, G., Inc, O. M.: Tests and Requirements, Requirements and

Tests: A Möbius Strip. Software, IEEE, 25 (2008) 54-59
16. Maximilien, E. M., Williams, L.: Assessing Test-Driven Development at IBM. Proc.

25th International Conference on Software Engineering, (2003) 564-569
17. Muller, M., Hagner, O.: Experiment about Test-First Programming. Software, IEE

Proceedings, 149 (2002) 131-136
18. Neto, P. S., Resende, R., Padua, C.: A Method for Information Systems Testing

Automation. LNCS 3520 (2005) 504-518
19. Olivé, A.: Conceptual modeling of information systems. Springer (2007)
20. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Infor-

mation Systems Research. Advanced Information Systems Engineering: Proc. 17th
International Conference, CAiSE 2005, Porto, Portugal (2005)

21. Pancur, M., Ciglaric, M., Trampus, M. et al.: Towards Empirical Evaluation of
Test-Driven Development in a University Environment. EUROCON 2003.Computer
as a Tool.The IEEE Region 8, 2 (2003)

22. Pilskalns, O., Andrews, A., Knight, A. et al.: Testing UML Designs. Information
and Software Technology, 49 (2007) 892-912

23. Trong, T. D., Ghosh, S., France, R. B. et al.: UMLAnT: An Eclipse Plugin for
Animating and Testing UML Designs. Proc. 2005 OOPSLA workshop on Eclipse
technology eXchange (2005) 120-124

24. Zhang, Y.: Test-Driven Modeling for Model-Driven Development. Software, IEEE,
21 (2004) 80-86


