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SUMMARY 

 

 

Key Words: CAT(k ) Space, Fixed Point, Iterative Process, Strong Convergence, D -

Convergence, Hyperbolic Space. 

 

This thesis consists of seven chapters. In the first chapter, some basic definitions and 

theorems are given. In the second chapter, some fundamental definitions and 

theorems related to the concepts of CAT(k ) space and hyperbolic space, are given. 

 

In the first part of the third chapter, the strong and D-convergence of the SP-iteration 

process are studied for nonexpansive mappings in a CAT(0) space. In the second part 

of this chapter, the strong and D-convergence of an iteration process for 

approximating a common fixed point of nonexpansive mappings are proved in a 

uniformly convex hyperbolic space. 

 

In the first part of the fourth chapter, the strong and D-convergence of the S-iteration 

process are proved for mappings satisfying condition (C) in a CAT(0) space. In the 

second part of this chapter, the strong and D -convergence of the new three-step 

iteration process are examined for mappings of this type in a CAT(0) space. In the 

last part of it, some results on the strong and D-convergence of the S-iteration and the 

Noor iteration processes are given for nonself mappings in a CAT(0) space. 

 

In the first part of the fifth chapter, the strong and D-convergence of some iteration 

process are proved for k -strictly pseudo-contractive mappings in a CAT(0) space. In 

the second part of this chapter, a new class of mappings is introduced and the D -

convergence of the new multi-step iteration and the S-iteration processes are 

examined for mappings of this type in a CAT(0) space. Also some results on the 

strong convergence of these iteration processes are obtained for contractive-like 

mappings in a CAT(0) space. In the last part of it, the strong convergence of the 

modified S-iteration process is studied for asymptotically quasi-nonexpansive 

mappings in a CAT(0) space. 

 

In the first part of the sixth chapter, the strong and D -convergence theorems of the 

modified S-iteration and the modified two-step iteration processes are given for total 

asymptotically nonexpansive mappings in a CAT(0) space. In the last part of it, some 

results on the strong and D -convergence of the modified SP-iteration process are 

obtained for total asymptotically nonexpansive mappings in hyperbolic spaces. 

 

In the last section of this thesis, the main results, which were obtained, are 

summarized.  
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CAT(k ) VE HİPERBOLİK UZAYLARDA SABİT NOKTALARA 
İLİŞKİN BAZI D -YAKINSAMA VE KUVVETLİ YAKINSAMA 

TEOREMLERİ 

 

ÖZET 

 

 

Anahtar Kelimeler: CAT(k ) Uzayı, Sabit Nokta, İterasyon Yöntemi, Kuvvetli 

Yakınsama, D -Yakınsama, Hiperbolik Uzay. 
 

Bu tez çalışması yedi bölümden oluşmaktadır. Birinci bölümde, bazı temel tanım ve 
teoremler verildi. İkinci bölümde ise, CAT(k ) uzayı ve hiperbolik uzay kavramları 
ile ilgili bazı temel tanım ve teoremler verildi.  
 

Üçüncü bölümün ilk kısmında, CAT(0) uzayında genişlemeyen dönüşümler için SP-

iterasyon yönteminin kuvvetli ve D -yakınsaması çalışıldı. Aynı bölümün ikinci 
kısmında ise, düzgün konveks hiperbolik uzayda bir iterasyon yönteminin 
genişlemeyen dönüşümlerin ortak sabit noktasına kuvvetli ve D -yakınsaması 
ispatlandı. 
 

Dördüncü bölümün ilk kısmında, CAT(0) uzayında (C) şartını sağlayan dönüşümler 
için S-iterasyon yönteminin kuvvetli ve D -yakınsaması ispatlandı. Aynı bölümün 
ikinci kısmında, CAT(0) uzayında yine bu dönüşümler için üç adımlı bir iterasyon 

yönteminin kuvvetli ve D -yakınsaması incelendi. Son kısmında ise, yine CAT(0) 

uzayında kendi üzerine olmayan dönüşümler için S-iterasyon ve Noor iterasyon 

yönteminin kuvvetli ve D -yakınsaması üzerine bazı sonuçlar verildi. 
 

Beşinci bölümün ilk kısmında CAT(0) uzayında k-strictly pseudo contractive 

dönüşümler için bazı iterasyon yöntemlerinin kuvvetli ve D -yakınsaması ispatlandı. 
Aynı bölümün ikinci kısmında, yeni bir dönüşüm sınıfı tanımlandı ve CAT(0) 
uzayında bu dönüşüm sınıfı için çok adımlı bir iterasyon ve S-iterasyon yönteminin 

D -yakınsaması incelendi. Aynı zamanda CAT(0) uzayında contractive-like 

dönüşümler için bu iterasyon yöntemlerinin kuvvetli yakınsaması üzerine bazı 
sonuçlar elde edildi. Son kısmında ise, CAT(0) uzayında asimptotik quasi 
genişlemeyen dönüşümler için modified S-iterasyon yönteminin kuvvetli 
yakınsaması çalışıldı. 
 

Altıncı bölümün ilk kısmında, CAT(0) uzayında total asimptotik genişlemeyen 
dönüşümler için modified S-iterasyon ve modified iki adımlı iterasyon yöntemlerinin 
kuvvetli ve D -yakınsama teoremleri verildi. Son kısmında ise, hiperbolik uzayda 
total asimptotik genişlemeyen dönüşümler için modified SP-iterasyon yönteminin 
kuvvetli ve D -yakınsaması üzerine bazı sonuçlar elde edildi. 
 

Son bölümde ise elde edilen temel sonuçlar özetlendi. 



 

 

 

CHAPTER 1. INTRODUCTION 

 

 

In this section; review of the literature, some definitions and preliminaries, which are 

necessary throughout this thesis, are given.  

 

1.1.  Basic Facts and Definitions 

 

Definition 1.1.1. [1] A metric space is a pair ( , )X d , consisting of a nonempty set X  

and a metric function :d X X´ ®  such that, for all , ,x y z  in X , the following 

conditions hold, 

(M1) ( , ) 0d x y =  if and only if x y= , 

(M2) ( , ) ( , ),d x y d y x=  

(M3) ( , ) ( , ) ( , )d x z d x y d y z£ + . 

 

Example 1.1.2. [2] Let X = , the set of all real numbers. For ,x y XÎ , define 

( , )d x y x y= - . Then ( , )X d  is a metric space. This is called the metric space  

with the usual absolute metric. 

 

Example 1.1.3. [3] The metric space 22 , called the Euclidean plane, is obtained if 

we take the set of ordered pairs of real numbers, written 1 2 1 2( , ), ( , )x x x y y y= =  and 

the Euclidean metric defined by 
2 2

1 1 2 2( , ) ( ) ( )d x y x y x y= - + - . 

 

Definition 1.1.4. [1] Let ( , )X d  be a metric space. A sequence { }nx x=  is called a 

convergent sequence (with limit l ) if for every 0e > , there exists ( )N N e=  such 

that ( , ) ,nd x l e<  for all n N³ . We write ( )nx l n® ®¥  or limn nx l®¥ = . 
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Definition 1.1.5. [1] Let ( , )X d  be a metric space. A sequence { }nx x=  is called a 

Cauchy sequence if ( , ) 0 ( , )n md x x n m® ®¥ , i.e., for all 0e > , there exists 

( )N N e=  such that ( , )n md x x e<  for all ,n m N> . 

 

Remark 1.1.6. [1] A convergent sequence in a metric space has a unique limit. Every 

convergent sequence is also a Cauchy sequence, but not conversely, in general. If a 

Cauchy sequence has a convergent subsequence then the whole sequence is 

convergent. 

 

Definition 1.1.7. [1] A metric space ( , )X d  is called complete if every Cauchy 

sequence is convergent (to a point of X ). Explicitly, we require that if 

( , ) 0  ( , )n md x x n m® ®¥ , then there exists x XÎ  such that ( , ) 0 ( )nd x x n® ®¥ . 

 

Example 1.1.8. [1] The set of real numbers  with the usual metric forms a 

complete metric space. 

 

Definition 1.1.9. [1] Let ( , )X d  and ( , )Y r  be metric spaces. Then :T X Y®  is 

called continuous at 0x XÎ  if for every 0e > , there exists 0( , ) 0xd d e= >  such that 

0( , )d x x d<  implies 0( ( ), ( ))T x T xr e< . The mapping T  is called continuous on X  

if it is continuous at each point of X . 

 

Definition 1.1.10. [4] Let T  be a mapping from a metric space ( , )X d  into another 

metric space ( , )Y r . Then T  is said to be uniformly continuous on X  if for given 

0e > , there exists ( ) 0d d e= >  such that ( ( ), ( ))T x T yr e<  whenever ( , )d x y d<  

for all ,x y XÎ . 

 

Definition 1.1.11. [1] A linear space over a field , is a nonempty set X  with two 

operations: 

 

: :

( , ) ( , )

X X X X X

x y x y x xl l
+ ´ ® × ´ ®

® + ®( )

X X

l)

´ ®XX
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such that for all ,l mÎ  and elements (vectors) , ,x y z XÎ  we have 

 

(i) x y y x+ = + , 

(ii) ( ) ( )x y z x y z+ + = + + , 

(iii) there exists XqÎ  such that x x xq q+ = + = , 

(iv) there exists ( )x X- Î  such that ( ) ( )x x x x q+ - = - + = , 

(v) 1 x x× = , 

(vi) ( )x y x yl l l+ = + , 

(vii) ( )x x xl m l m+ = + , 

(viii) ( ) ( )x xlm l m= . 

 

If , X  is called real linear space and if ,  is called complex linear 

space. 

 

Definition 1.1.12. [1] Let X  be a (real and complex) linear space. The function 

 

. : X

x x

®

®
 

 

satisfies the following conditions for all ,x y XÎ  and lÎ , 

 

(i) 0x x q= Û = , 

(ii) x xl l= , 

(iii) x y x y+ £ + . 

 

Then, the function .  is called a norm, the pair of ( ), .X  is also called a normed 

linear space. 

 

Example 1.1.13. [1] [ , ]C a b  is a normed space with max ( )x x t=  for [ , ]t a bÎ . 
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Definition 1.1.14. [1] A Banach space X  is a complete normed linear space. 

Completeness means that if 0m nx x- ®  ( , )m n®¥  where nx XÎ , then there 

exists x XÎ  such that 0nx x- ®  ( )n®¥ . 

 

Example 1.1.15. [1] 0, , ,  ( 1), , and [ , ]p p c c C a b¥ ³, , ,  ( 1p p( 1( 1  are Banach spaces. 

 

Definition 1.1.16. [4] Let X  be a linear space over field . An inner product on X  

is a function .,. : X X´ ®  with the following three properties: 

 

(i) , 0x x ³  for all x XÎ  and , 0 if and only if ;x x x q= =  

(ii) , ,x y y x=  , where the bar denotes complex conjugation; 

(iii) , , ,x y z x z y za b a b+ = +  for all , ,x y z XÎ  and ,a bÎ . 

 

The ordered pair ( ), .,.X  is called an inner product space. Sometimes, it is called a 

pre-Hilbert space. ,x y  is called inner product of two elements , .x y XÎ   

 

Remark 1.1.17. [1] Each inner product space is a normed linear space under 

, .x x x=   

 

Definition 1.1.18. [1] A Hilbert space H  is a complete inner product space, i.e., a 

Banach space whose norm is generated by an inner product. 

 

Example 1.1.19. [3] The n-dimensional Euclidean space nn  is a Hilbert space with 

inner product defined by  

1 1 2 2, . . ... .n nx y x y x y x y= + + +
 

where 1 2( , ,..., )nx x x x=  and 1 2( , ,..., )ny y y y= . 
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1.2.  Some Basic Notations of Fixed Point Theory 

 

Definition 1.2.1. [5] Let X  be a nonempty set and :T X X®  be a self mapping. 

We say that x XÎ  is a fixed point of T  if ( )T x x=  and the set of all fixed points of 

T is denoted by ( )F T . 

 

Example 1.2.2. [5] 

 

(i) If X =  and 
2( ) 5 4T x x x= + + , then ( ) { 2}F T = - ; 

(ii) If X =  and 
2( )T x x x= - , then ( ) {0,2}F T = ; 

(iii) If X =  and ( ) 2T x x= + , then ( )F T =Æ; 

(iv) If X =  and ( )T x x= , then ( )F T = . 

 

Definition 1.2.3. [5] Let X  be any nonempty set and :T X X®  be a self mapping. 

For any given x XÎ , we define ( )nT x  inductively by 
0( )T x x=  and 

1( ) ( ( ));n nT x T T x+ =  we call ( )nT x  the thn  iteration of x  under T . In order to 

simplify the notations we will often use Tx  instead of ( )T x . 

 

Definition 1.2.4. [5] The mapping ( 1)nT n³  is called the thn  iteration of T . For any 

0x XÎ , the sequence 0{ }n nx X³ Ì  given by 1 0,  1,2,...n

n nx Tx T x n-= = =  is called the 

sequence of successive approximations with the initial value 0x . It is also known as 

the Picard iteration starting at 0x . 

 

For a given self mapping the following properties obviously hold: 

 

(i) ( ) ( ),nF T F TÌ  for each nÎ ; 

(ii) ( ) { },nF T x=  for some ( ) { }.n F T xÎ Þ =FÞ F  

 

The inverse of (ii) is not true, in general, as shown by the next example. 
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Example 1.2.5. [5] Let :{1,2,3} {1,2,3}T ® , (1) 3,  (2) 2 and (3) 1T T T= = = . Then 

2( ) {1,2,3}F T =  but ( ) {2}F T = . 

 

Definition 1.2.6. [5] Let ( , )X d  be a metric space. A mapping :T X X®  is called 

 

(i) Lipschitzian (or L -Lipschitzian) if there exists a constant 0L >  such that 

( , ) ( , ),  for all , ;d Tx Ty Ld x y x y X£ Î  

(ii) (strict) contraction (or a -contraction) if T  is a -Lipschitzian, with [0,1);aÎ   

(iii) nonexpansive if T  is 1-Lipschitzian; 

(iv) contractive if ( , ) ( , ),  for all , ,  .d Tx Ty d x y x y X x y< Î ¹  

 

Remark 1.2.7. The class of contractive mappings includes contraction mappings, 

whereas the class of nonexpansive mappings is larger than contractive mappings. 

Moreover, each nonexpansive mapping is a Lipschitzian mapping. 

 

Remark 1.2.8. [4] If T  is a Lipschitzian mapping, then T  is a uniformly 

continuous.  

 

Definition 1.2.9. [4] Let ( , )X d  be a metric space. A mapping :T X X®  is called 

(i) quasi-nonexpansive if ( )F T ¹Æ  and ( , ) ( , )d Tx p d x p£  for all x XÎ  and 

( );p F TÎ  

(ii) asymptotically nonexpansive if there exists a sequence { } [1, )nk Ì ¥  with 

lim 1n nk®¥ =  such that ( , ) ( , )n n

nd T x T y k d x y£  for all ,x y XÎ  and ;nÎ ;  

(iii) uniformly L-Lipschitzian if there exists a constant > 0L  such that 

( , ) ( , )n nd T x T y Ld x y£  for all ,x y KÎ  and .nÎ . 

 

Remark 1.2.10. [4] The class of quasi-nonexpansive mappings and asymptotically 

nonexpansive mappings includes nonexpansive mappings. Moreover, each 

asymptotically nonexpansive mapping is a uniformly L-Lipschitzian mapping with 

= { }sup nn
L kÎ { }n{{ .  
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Definition 1.2.11. [6] Let ( , )X d  be a metric space. A mapping :T X X®  is called 

asymptotically quasi nonexpansive if there exists a sequence { } [0, )nu Î ¥  with 

lim = 0n nu®¥  and such that 

( , ) (1 ) ( , )n

nd T x p u d x p£ +  

for all x XÎ  and ( ) .p F TÎ ¹Æ  

 

Remark 1.2.12. [6] The class of asymptotically quasi-nonexpansive mappings is 

larger than that of quasi-nonexpansive mappings and asymptotically nonexpansive 

mappings. 

 

Definition 1.2.13. ([7, Definition 2.1]) Let ( , )X d  be a metric space. A mapping 

:T X X®  is called total asymptotically nonexpansive if there exist non-negative 

real sequences { }nm , { }nv  with 0, 0 ( )n nv nm ® ® ®¥  and a strictly increasing 

continous function :[0, ) [0, )z ¥ ® ¥  with (0) = 0z  such that 

( , ) ( , ) ( ( , ))n n

n nd T x T y d x y v d x yz m£ + +  

for all ,x y XÎ  and nÎ . 

 

Remark 1.2.14. [7] Each asymptotically nonexpansive mapping is a total 

asymptotically nonexpansive mapping with = 1n nv k - , = 0nm , n" Î , ( ) = ,t tz  

0t" ³ . 

 

Definition 1.2.15. [8] Let ( , )X d  be a metric space. A mapping :T X X®  is said to 

satisfy condition (C) if 

1
( , ) ( , ) implies ( , ) ( , ),

2
d x Tx d x y d Tx Ty d x y£ £  

for all ,x y XÎ . 

 

Remark 1.2.16. [8]  

(i) Every nonexpansive mapping satisfies condition (C). 
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(ii) Assume that a mapping T  satisfies condition (C) and has a fixed point. Then 

T  is a quasi-nonexpansive mapping. 

 

Eaxmple 1.2.17. [8] Define a mapping T  on [0,3]  by 

0  if 3

1  if 3. 

x
Tx

x

¹ì
= í =î

 

Then T  satisfies condition (C), but T  is not nonexpansive. 

 

Eaxmple 1.2.18. [8] Define a mapping T  on [0,3]  by 

0  if 3

2  if 3. 

x
Tx

x

¹ì
= í =î

 

Then ( )F T ¹Æ  and T  is quasi-nonexpansive, but T  does not satisfy condition (C). 

 

Definition 1.2.19. [9] Let K  be a nonempty subset of a metric space ( , )X d . A 

mapping :T K K®  is said to be demi-compact if for any bounded sequence { }nx  in 

K  such that lim ( , ( )) = 0n n nd x T x®¥  there exists a subsequence { }nk
x  of { }nx  such 

that lim = .k nk
x p K®¥ Î  

 

Definition 1.2.20. [10] Let K  be a nonempty subset of a metric space ( , )X d . A 

mapping :T K K®  is said to satisfy condition (I) if there exists a non-decreasing 

function :[0, ) [0, )f ¥ ® ¥  with (0) = 0f  and ( ) > 0f r  for all (0, )rÎ ¥  such that 

( , ( )) ( ( , ( )))d x T x f d x F T³ for all x KÎ . 

 

Remark 1.2.21. It is clear that the condition (I) is weaker than both the compactness 

of  and the demi-compactness of the nonexpansive mapping . 

 

Definition 1.2.22. [11] A sequence { }nx  in a metric space ( , )X d  is said to be Fejér 

monotone with respect to K  (a subset of X ) if 1( , ) ( , )n nd x p d x p+ £  for all p KÎ  

and .nÎ . 
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Lemma 1.2.23. [11] Let K  be a nonempty closed subset of a complete metric space 

( , )X d  and let { }nx  be Fejér monotone with respect to .K  Then { }nx  converges 

strongly to some p KÎ  if and only if lim ( , ) = 0.n nd x K®¥  

 

1.3.  Some Iteration Processes 

 

Definition 1.3.1. [5] Let ( , )X d  be a metric space, K  be a closed subset of X  and 

:T K K®  be a self mapping. For a given 0x XÎ , the Picard iteration is the 

sequence { }nx  defined by 

1 0( ) ( ),   .n

n nx T x T x n-= = Î . 

The sequence defined by (1.3.1) is known as the sequence of successive 

approximations. 

 

When the contractive conditions are slightly weaker, then the Picard iterations 

doesn’t need to converge to a fixed point of the operator T , and some other iteration 

procedures must be considered. 

 

Example 1.3.2. [5] Let [0,1]K =  and :[0,1] [0,1],  1T Tx x® = -  for all [0,1].xÎ  

Then T  is nonexpansive, T  has a unique fixed point, 
1

( )
2

F T
ì ü= í ý
î þ

, but, for any 

0

1

2
x a= ¹ , the Picard iteration (1.3.1) yields an oscillatory sequence 

,  1 ,  ,  1 ,  a a a a- - . Since this sequence is not convergent for 
1

2
a ¹ , then the 

Picard iteration (1.3.1) no longer converge to a fixed point of T . 

 

Definition 1.3.3. [12] Let ( , )X d  be a metric space, K  be a nonempty convex subset 

of X and :T K K®  be a self mapping. Let { }na  
be a sequence of real numbers in 

[0,1] . For an arbitrary 1x KÎ , define a sequence { }nx  in K  by 

1 = (1 ) , .n n n n nx x Tx na a+ - + Î . 

(1.3.1) 

(1.3.2) 
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Then { }nx  is called the Mann iteration. 

 

Example 1.3.4. [5] Let 
1

,2
2

K
é ù= ê úë û

 and 
1

: ,  T K K Tx
x

® = , for all x KÎ . Then the 

Mann iteration (1.3.2) converges to the unique fixed point of T . 

 

Definition 1.3.5. [13] Let K  be a nonempty convex subset of a metric space ( , )X d

and :T K K®  be a self mapping. Let { }na  and { }nb  be two sequences of real 

numbers in [0,1] . For an arbitrary 1x KÎ , define a sequence { }nx  in K  by 

1 = (1 ) ,

= (1 ) , .

n n n n n

n n n n n

x x Ty

y x Tx n

a a
b b

+ - +ì
í - + Îî .

 

Then { }nx  is called the Ishikawa iteration.  

 

Remark 1.3.6. [5] Despite this apparent similarity and the fact that, for = 0nb , the 

Ishikawa iteration (1.3.3) is reduced to the Mann iteration, there is not a general 

dependence between convergence results for the Mann iteration and the Ishikawa 

iteration.  

 

Definition 1.3.7. [14] Let K  be a nonempty convex subset of a metric space ( , )X d

and :T K K®  be a self mapping. The Noor iteration, starting from 1x KÎ , is a 

sequence { }nx  in K  defined by 

1 (1 ) ,

(1 ) ,

(1 ) ,  ,

n n n n n

n n n n n

n n n n n

x x Ty

y x Tz

z x Tx n

a a
b b
g g

+ = - +ì
ï = - +í
ï = - + Îî ,

 

where { },  { }n na b  and { }ng  are three sequences of real numbers in [0,1] . 

 

Remark 1.3.8. If we take 0ng =  for all nÎ , (1.3.4) is reduced to the Ishikawa 

iteration and we take 0n nb g= =  for all nÎ , (1.3.4) is reduced to the Mann 

iteration. 

(1.3.3) 

(1.3.4) 
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Definition 1.3.9. [15] For a convex subset K  of a metric space ( , )X d  and a self 

mapping T  on K , the iterative sequence { }nx  of the S-iteration process is generated 

from 1x KÎ  and is defined by  

1 = (1 )

= (1 ) , ,

n n n n n

n n n n n

x Tx Ty

y x Tx n

a a
b b

+ - +ì
í - + Îî ,

 

where { }na  and { }nb  are sequences in [ ]0,1 . 

 

Remark 1.3.10. [15] The S-iteration process (1.3.5) is independent of the Mann and 

Ishikawa iteration processes. The rate of convergence of S-iteration process is similar 

to the Picard iteration process, but faster than the Mann iteration process for 

contraction mappings. 

 

Definition 1.3.11. [16] Let K  be a nonempty convex subset of a metric space ( , )X d

and :T K K®  be a self mapping. Let { }na  and { }nb  be two sequences of real 

numbers in [0,1] . For an arbitrary 1x KÎ , define a sequence { }nx  in K  by 

1 (1 ) ,

(1 ) ,  .

n n n n n

n n n n n

x y Ty

y x Tx n

a a
b b

+ = - +ì
í = - + Îî .

 

Then { }nx  is called the new two-step iteration.  

 

Remark 1.3.12. If we take 0nb =  for all nÎ , the new two-step iteration (1.3.6) is 

reduced to the Mann iteration. 

 

Definition 1.3.13. [17] Let K  be a nonempty convex subset of a metric space ( , )X d

and :T K K®  be a self mapping. Define a sequence { }nx  in K  by  

1 (1 ) ,

(1 ) ,

 (1 ) ,  ,

n n n n n

n n n n n

n n n n n

x y Ty

y z Tz

z x Tx n

a a
b b
g g

+ = - +ì
ï = - +í
ï = - + Îî ,

 

where 1x KÎ , { },  { }n na b  and { }ng  are sequences in [0,1] . Then { }nx  is called the 

SP-iteration. 

(1.3.7) 

(1.3.5)

(1.3.6) 
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Remark 1.3.14. [17] The Mann, Ishikawa, Noor and SP-iterations are equivalent and 

the SP-iteration converges better than the others for the class of continuous and non-

decreasing functions. Clearly, the new two-step and Mann iterations are special cases 

of the SP-iteration. 

 



 

 

 

CHAPTER 2. THE CAT(k ) SPACE AND THE HYPERBOLIC 

SPACE 

 

 

In this section; some fundamental definitions and lemmas related to the concepts of 

CAT(k ) space and hyperbolic space, are given. 

 

2.1.  The CAT(k ) Space  

 

The terminology “CAT(k )” was coined by Gromov [18]. The initials are in honor of 

E. Cartan, A. D. Alexanderov and V. A. Toponogov whom considered similar 

conditions in varying degrees of generality. 

 

Definition 2.1.1. [19] Let ( , )X d  be a metric space. A geodesic path joining x XÎ  

to y XÎ  (or, more briefly, a geodesic from x  to y ) is a map c  from a closed 

interval [0, ]l Ì  to X  such that (0) = ,c x  ( ) =c l y  and ( ( ), ( ')) =| ' |d c t c t t t-  for 

all , ' [0, ]t t lÎ  (in particular, ( , )l d x y= ). The image of c  is called a geodesic 

segment with endpoints x  and y . When it is unique, this geodesic is denoted by 

[ , ]x y . 

 

  

 

 

Figure 2.1. The geodesic segment 

 

Definition 2.1.2. [19] The space ( , )X d  is said to be a geodesic metric space (or, 

more briefly, a geodesic space) if every two points of X  are joined by a geodesic, 

0
 

0 

l
 

0 

(0)c x=  

( )c l y=   

c   
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and X  is said to be a uniquely geodesic space if there is exactly one geodesic joining 

x  to y  for all ,x y XÎ . 

 

Definition 2.1.3. [19] Given 0r > , a metric space ( , )X d  is said to be r -geodesic if 

for every pair of points ,x y XÎ  with ( , ) <d x y r , there is a geodesic joining x  to y  

and X  is said to be a r -uniquely geodesic if there is a unique geodesic segment 

joining each such pair of points x  and y . 

 

Definition 2.1.4. [19] Let (X, d) be a geodesic space. A subset Y of X  is said to be 

convex if Y  includes every geodesic segment joining any two of its points. 

 

Definition 2.1.5. [19] Given a real number k , let 2Mk  denote the following metric 

spaces:  

 

(i) if = 0k  then 
2Mk  is the Euclidean plane 22 ; 

(ii) if < 0k  then 2
kM  is the real hyperbolic space 2H  with the metric scaled by a 

factor of 1 k- ;  

(iii) if > 0k  then 
2Mk  is the 2-dimensional sphere 2S  with the metric scaled by a 

factor of 1 k . 

 

Definition 2.1.6. [19] The diameter of 
2Mk  is denoted by 

  > 0,
=

 0.

Dk

p k
k

k

ì
ï
í
ï+¥ £î

 

 

Definition 2.1.7. [19] A geodesic triangle ( , , )x y zD  in a geodesic metric space 

( , )X d  consists of three points , ,x y z XÎ  and three geodesic segments 

[ , ],  [ , ],  [ , ]x y y z z x . A comparison triangle of ( , , )x y zD  is a geodesic triangle 

( , , ) ( , , )x y z x y zD =D  in 
2Mk  with vertices ,  ,  x y z  such that ( , ) = ( , ),d x y d x y  

( , ) = ( , )d y z d y z and ( , ) = ( , )d z x d z x . The point [ , ]p x yÎ  is called a comparison 
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point in D  for [ , ]p x yÎ  if ( , ) = ( , ).d x p d x p  Comprasion points on [ , ]y z  and [ , ]z x  

are defined similarly. 

 

Remark 2.1.8. [19] If 0k £  then such a D  always exists; if 0k > then it exists 

provided the perimeter ( , ) ( , ) ( , )d x y d y z d z x+ +  of D  is less than 2Dk ; in both 

cases it is unique up to isometry of 
2Mk . 

 

Definition 2.1.9. [19] Let X  be a geodesic space and let k  be a real number. Let D  

be a geodesic triangle in X  with perimeter less than 2Dk . Let D  in 
2Mk  be a 

comparison triangle for D . Then X  is said to satisfy the CAT(k ) inequality if for all 

,p qÎD  and all comparison points ,p qÎD , 

( , ) ( , ).d p q d p q£  

 

 

 

 

 

 

Figure 2.2. The CAT(k ) inequality 

 

Definition 2.1.10. [19]  

(iv) If 0,k £  then X  is called a CAT(k ) space (more briefly, “ X  is CAT(k )”) 

if X  is a geodesic space all of whose geodesic triangles satisfy the CAT(k ) 

inequality. 

(v) If 0,k >  then X  is called a CAT(k ) space if X  is Dk -geodesic and all 

geodesic triangle in X  with perimeter less than 2Dk  satisfy the CAT(k ) 

inequality. 

 

x
  

y  

z
  x

  

y

  

z
  

q

  

p

  

q

  

p
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Example 2.1.11. It is well known that any complete, simply connected Riemannian 

manifold having non-positive sectional curvature is a CAT(0) space. Other examples 

include Pre-Hilbert spaces (see [19]), Euclidean buildings (see [20]), -trees (see 

[21]), the complex Hilbert ball with a hyperbolic metric (see [22]) and many others. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The relation between some spaces 

 

Hilbert spaces (in which the CAT(0) inequality is an equality); the only Banach 

spaces that are CAT(0). -trees; the only hyperconvex metric spaces that are 

CAT(0). 

 

Fact 2.1.12. If 1 2, ,x y y  are points in a CAT(0) space and if 0y  is the mid-point of the 

segment 1 2[ , ]y y , then the CAT(0) inequality implies that 

2 2 2 2

0 1 2 1 2

1 1 1
( , ) ( , ) ( , ) ( , ) .

2 2 4
d x y d x y d x y d y y£ + -

 

This is the (CN) inequality of Bruhat and Tits [23]. In fact (see [19, p.163]), a 

geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality.  

 

 Metric spaces 
Banach Spaces 

Hilbert 

spaces 

CAT (0) spaces 

Hyperconvex 

metric spaces 

R
- trees 

¥¥  
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Remark 2.1.13. ([19, p.165]) It is worth mentioning that the results in a CAT(0) 

space can be applied to any CAT(k ) space with 0k £  since any CAT(k ) space is a 

CAT( ')k  space for every 'k k³ . 

 

Fact 2.1.14. ([24, Lemma 2.3]) Let X  be a CAT(0) space and let ,x y XÎ  such that 

.x y¹  Then 

[ , ] {(1 ) ; [0,1]}.x y t x ty t= - Å Î  

 

Lemma 2.1.15. ([24, Lemmas 2.4, 2.5]) Let X  be a CAT(0) space. Then the 

following inequalities hold: 

(i) ((1 ) , ) (1 ) ( , ) ( , ),d t x ty z t d x z td y z- Å £ - +  

(ii) 2 2 2 2((1 ) , ) (1 ) ( , ) ( , ) (1 ) ( , ) ,d t x ty z t d x z td y z t t d x y- Å £ - + - -  

for all [0,1]tÎ  and , ,x y z XÎ . 

 

Lemma 2.1.16. ([25, Lemma 2.7]) Let X  be a complete CAT(0) space and let 

x XÎ . Suppose that { }nt  is a sequence in [ , ]a b  for some , (0,1)a bÎ  and { },  { }n nx y  

are sequences in X  such that 

( ) ( ) ( )limsup , ,  limsup , ,  lim (1 ) , =n n n n n n
nn n

d x x r d y x r d t x t y x r
®¥®¥ ®¥

£ £ - Å  

for some 0r ³ . Then lim ( , ) = 0.n n nd x y®¥  

 

Fixed point theory in a CAT(0) space has been first studied by Kirk (see [26, 27]). He 

showed that every nonexpansive mapping defined on a bounded closed convex 

subset of a complete CAT(0) space always has a fixed point. Since then the fixed 

point theory in a CAT(0) space has been rapidly developed and many papers have 

appeared (see [23, 28-30]). It is worth mentioning that fixed point theorems in a 

CAT(0) space (especially in -trees) can be applied to graph theory, biology and 

computer science (see [21, 31-34]). 

 

We now give the definition and collect some basic properties of the D -convergence. 
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Definition 2.1.17. [35] Let { }nx  be a bounded sequence in a metric space X . For 

x XÎ , we set 

( ,{ }) = lim ( , ).supn nn
r x x d x x®¥  

The asymptotic radius ({ })nr x  of { }nx  is given by 

({ }) = inf{ ( ,{ }) : },n nr x r x x x XÎ
 

and the asymptotic radius ({ })K nr x  of { }nx  with respect to K XÌ  is given by
 

({ }) = inf{ ( ,{ }): }.K n nr x r x x x KÎ
 

The asymptotic center ({ })nA x  of { }nx  is the set 

({ }) ={ : ( ,{ }) = ({ })},n n nA x x X r x x r xÎ
 

and the asymptotic center ({ })K nA x  of { }nx  with respect to K XÌ  is the set 

({ }) ={ : ( ,{ }) = ({ })}.K n n K nA x x K r x x r xÎ  

 

Proposition 2.1.18. ([35, Proposition 3.2]) Let { }nx  be a bounded sequence in a 

complete CAT(0) space X  and let K  be a closed convex subset of X , then ({ })nA x  

and ({ })K nA x  are singletons.  

 

The notion of D -convergence in a general metric space was introduced by Lim [36]. 

Kirk and Panyanak [37] used the concept of D -convergence introduced by Lim [36] 

to prove on the CAT(0) space analogs of some Banach space results which involve 

weak convergence. Further, Dhompongsa and Panyanak [24] obtained the D -

convergence theorems for the Picard, Mann and Ishikawa iterations in a CAT(0) 

space. 

 

Definition 2.1.19. ([36, 37]) A sequence { }nx  in a CAT(0) space X  is said to be D -

convergent to x XÎ  if x  is the unique asymptotic center of { }nu  for every 

subsequence { }nu  of { }nx . In this case, we write limn nx x®¥D- =  and x  is called 

the D -limit of { }.nx
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Remark 2.1.20. [37] Every CAT(0) space satisfies the Opial property, i.e., if { }nx  is 

a sequence in K  and limn nx x®¥D- = , then for each ( )y x K¹ Î , 

limsup ( , ) limsup ( , ).n n n nd x x d x y®¥ ®¥<  

 

Lemma 2.1.21. ([37, p.3690]) Every bounded sequence in a complete CAT(0) space 

always has a D -convergent subsequence. 

 

Lemma 2.1.22. ([38, Proposition 2.1]) Let K  be a nonempty closed convex subset 

of a complete CAT(0) space and let { }nx  be a bounded sequence in K . Then the 

asymptotic center of { }nx  is in K .  

 

Lemma 2.1.23. ([24, Lemma 2.8]) If { }nx  is a bounded sequence in a complete 

CAT(0) space with ({ }) ={ }nA x x , { }nu  is a subsequence of { }nx  with ({ }) ={ }nA u u  

and the sequence { ( , )}nd x u  is convergent then = .x u  

 

Nanjaras and Panyanak [35] gave the concept of " " convergence and a connection 

between this convergence and D -convergence. 

 

Definition 2.1.24. [35] Let C  be a closed convex subset of a CAT(0) space X  and 

{ }nx  be a bounded sequence in .C  Denote the notation 

{ } ( ) = inf ( )n x Cx w w xÎÛF Fn x C  

where ( ) = lim ( , ).sup nn
x d x x®¥F

 

 

Proposition 2.1.25. ([35, Proposition 3.12]) Let C  be a closed convex subset of a 

CAT(0) space X  and { }nx  be a bounded sequence in C . Then lim =n nx w®¥D-  

implies that { } .nx w..  

 

 

(2.1.1) 
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2.2.  The Hyperbolic Space and Relation with the CAT(0) Space  

 

Kohlenbach [39] introduced the hyperbolic spaces, defined below, which play a 

significant role in many branches of mathematics. 

 

Definition 2.2.1. A hyperbolic space ( , , )X d W  is a metric space ( , )X d  together 

with a mapping : [0,1]W X X X´ ´ ®  satisfying 

(W1) ( , ( , , )) (1 ) ( , ) ( , ),d z W x y d z x d z yl l l£ - +  

(W2) 1 2 1 2( ( , , ), ( , , )) = ( , ),d W x y W x y d x yl l l l-  

(W3) ( , , ) = ( , ,1 )W x y W y xl l-  

(W4) ( ( , , ), ( , , )) (1 ) ( , ) ( , )d W x z W y w d x y d z wl l l l£ - +  

for all , , ,x y z w XÎ  and 1 2, , [0,1]l l l Î . 

 

Definition 2.2.2. A subset K  of a hyperbolic space X  is convex if ( , , )W x y Kl Î  

for all ,x y KÎ  and [0,1]lÎ .  

 

Remark 2.2.3. If a space satisfies only (W1), it coincides with the convex metric 

space introduced by Takahashi [40]. The concept of hyperbolic space in [39] is more 

restrictive than the hyperbolic type introduced by Goebel and Kirk [41] since (W1)-

(W3) together are equivalent to ( , , )X d W  being a space of hyperbolic type in [41]. 

Also it is slightly more general than the hyperbolic space defined by Reich and 

Shafrir [42].  

 

Remark 2.2.4. The class of hyperbolic spaces in [39] contains all normed linear 

spaces and convex subsets thereof, -trees, the Hilbert ball with the hyperbolic 

metric (see [22]), Cartesian products of Hilbert balls, Hadamard manifolds and 

CAT(0) spaces (see [19]), as special cases. 
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Example 2.2.5. [43] Let HB  be an open unit ball in a complex Hilbert space ( , . )H  

with respect to the metric (also known as the Kobayashi distance) 

1

2( , ) = arg tanh  (1 ( , )) ,BH
k x y x ys-  

where 

( )
2 2

2

(1 )(1 )
, = for all , .

1 ,
H

x y
x y x y B

x y
s

- -
Î

-
 

Then ( , , )H BH
B k W  is a hyperbolic space where ( , , )W x y l  defines a unique point 

(1 )x yl l- Å  in a unique geodesic segment [ , ]x y  for all , .Hx y BÎ   

 

Definition 2.2.6. A hyperbolic space ( , , )X d W  is said to be 

(i) [40] strictly convex if for any ,x y XÎ  and [0,1]lÎ , there exists a unique 

element z XÎ  such that ( ), = ( , )d z x d x yl  and ( , ) = (1 ) ( , );d z y d x yl-  

(ii) [44] uniformly convex if for all , , ,  > 0u x y X rÎ  and (0,2]eÎ , there exists 

(0,1]dÎ  such that 
1

, , , (1 )
2

d W x y u rdæ öæ ö £ -ç ÷ç ÷è øè ø
 whenever ( , )d x u r£ , 

( , )d y u r£  and ( , )d x y re³ . 

 

Remark 2.2.7. [30] A uniformly convex hyperbolic space is strictly convex. 

 

Definition 2.2.8. [43] A mapping : (0, ) (0,2] (0,1]h ¥ ´ ® , which provides such a for 

given > 0r  and (0,2]eÎ , is called modulus of uniform convexity. We call h  

monotone if it decreases with r  (for a fixed e ), i.e., 0e" > , 2 1 0r r" ³ > , 

2 1( , ) ( , )r rh e h e£ . 

 

It is known that uniformly convex Banach spaces and even CAT(0) spaces enjoy the 

property that “bounded sequences have unique asymptotic centers with respect to 

closed convex subsets”. The following lemma is due to Leustean [45] and ensures 

that this property also holds in a complete uniformly convex hyperbolic space. 
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Lemma 2.2.9. ([45, Proposition 3.3]) Let ( , , )X d W  be a complete uniformly convex 

hyperbolic space with monotone modulus of uniform convexity h . Then every 

bounded sequence { }nx  in X  has a unique asymptotic center with respect to any 

nonempty closed convex subset K  of X . 

 

Lemma 2 2.10. ([46, Lemma 2.5]) Let ( , , )X d W  be a uniformly convex hyperbolic 

space with monotone modulus of uniform convexity h . Let x XÎ  and { }na  be a 

sequence in [ , ]a b  for some , (0,1)a bÎ . If { }nx  and { }ny  are sequences in X  such 

that 

( ) ( ) ( )limsup , ,  limsup , ,  lim ( , , , ) =n n n n n n
n n

d x x r d y x r d W x y x ra®¥
®¥ ®¥

£ £  

for some 0r ³ , then lim ( , ) = 0.n n nd x y®¥  

 

Lemma 2.2.11. ([46, Lemma 2.6]) Let K  be a nonempty closed convex subset of a 

uniformly convex hyperbolic space and let { }nx  be a bounded sequence in K  such 

that ({ }) ={ }nA x y  and ({ }) =nr x r . If { }my  is another sequence in K  such that 

lim ( ,{ }) = ,m m nr y x r®¥  then lim = .m my y®¥   

 



 

 

 

CHAPTER 3. SOME CONVERGENCE RESULTS FOR 

NONEXPANSIVE MAPPINGS 

 

 

In this section, some strong and D-convergence theorems for nonexpansive mappings 

are proved. 

 

3.1.  The Strong and D-Convergence of SP-Iteration for Nonexpansive Mappings 

on CAT(0) Spaces 

 

In this subsection, we prove the strong and D-convergence theorems of SP-iteration 

for nonexpansive mappings on a CAT(0) space.  

 

Now, we apply the SP-iteration in a CAT(0) space for nonexpansive mappings as 

follows. 

 

Definition 3.1.1. Let X  be a CAT(0) space, K  be a nonempty convex subset of X  

and :T K K®  be a nonexpansive mapping. The SP-iteration, starting from 1x KÎ , 

is the sequence { }nx  defined by 

1 (1 ) ,

(1 ) ,

 (1 ) ,  ,

n n n n n

n n n n n

n n n n n

x y Ty

y z Tz

z x Tx n

a a
b b
g g

+ = - Åì
ï = - Åí
ï = - Å Îî ,

 

where { },  { }n na b  and { }ng  are sequences in [0,1] . 

 

Lemma 3.1.2. ([37, Proposition 3.7]) Let K  be a nonempty closed convex subset of 

a complete CAT(0) space X  and :f K X®  be a nonexpansive mapping. Then the 

conditions, { }nx  D -converges to x  and ( , ( )) 0n nd x f x ® , imply x KÎ  and 

( ) = .f x x   

 

(3.1.1) 
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We give the following lemma which is used later. 

 

Lemma 3.1.3. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K K®  be a nonexpansive mapping with ( )F T ¹Æ . Let 

{ } and { }n na b  be sequences in [0,1] , { }ng  be a sequence in [ ,1 ]e e-  for some 

(0,1)eÎ  and { }nx  be defined by the iteration process (3.1.1). Then 

(vi) lim ( , )n nd x p®¥  exists for all ( )p F TÎ , 

(vii) lim ( , ) = 0n n nd x Tx®¥ . 

 

Proof. (i) Let ( ).p F TÎ  By (3.1.1) and Lemma 2.1.15(i), we have 

( , ) = ((1 ) , )

            (1 ) ( , ) ( , )

            (1 ) ( , ) ( , )

            = ( , ).

n n n n n

n n n n

n n n n

n

d z p d x Tx p

d x p d Tx p

d x p d x p

d x p

g g
g g
g g

- Å

£ - +

£ - +
 

Also, we get  

( , ) = ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) ( , )

              = ( , ).

n n n n n

n n n n

n n n n

n

d y p d z Tz p

d z p d Tz p

d z p d z p

d z p

b b
b b
b b

- Å

£ - +

£ - +
 

Then we obtain 

( , ) ( , ).n nd y p d x p£  

Using (3.1.1) and Lemma 2.1.15(i), we have 

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) ( , )

               = ( , ).

n n n n n

n n n n

n n n n

n

d x p d y Ty p

d y p d Ty p

d y p d y p

d y p

a a
a a
a a

+ - Å

£ - +

£ - +
 

Combining (3.1.4) and (3.1.5), we get 

1( , ) ( , ).n nd x p d x p+ £  

(3.1.2) 

(3.1.3) 

(3.1.4) 

(3.1.5) 
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This implies that the sequence { ( , )}nd x p  is non-increasing and bounded below, and 

so lim ( , )n nd x p®¥  exists for all ( )p F TÎ . This completes the proof of part (i). 

(ii) Let 

lim ( , ) = .n nd x p c®¥  

Firstly, we will prove that lim ( , ) = .n nd y p c®¥  By (3.1.5) and (3.1.6), 

liminf ( , ) .n nd y p c®¥ ³  Also, from (3.1.4) and (3.1.6), limsup ( , ) .n nd y p c®¥ £  Then 

we obtain 

lim ( , ) = .n nd y p c®¥  

Secondly, we will prove that lim ( , ) = .n nd z p c®¥  From (3.1.2) and (3.1.3), we have 

( , ) ( , ) ( , ).n n nd y p d z p d x p£ £  

This gives 

lim ( , ) = .n nd z p c®¥  

Next, by Lemma 2.1.15(ii), 

2 2

2 2 2

2 2 2

2 2

( , ) = ((1 ) , )

              (1 ) ( , ) ( , ) (1 ) ( , )

              (1 ) ( , ) ( , ) (1 ) ( , )

              ( , ) (1 ) ( , ) .

n n n n n

n n n n n n n n

n n n n n n n n

n n n n n

d z p d x Tx p

d x p d Tx p d x Tx

d x p d x p d x Tx

d x p d x Tx

g g

g g g g

g g g g

g g

- Å

£ - + - -

£ - + - -

= - -

 

Thus, 

2 2 2(1 ) ( , ) ( , ) ( , ) ,n n n n n nd x Tx d x p d z pg g- £ -  

so that 

2 2 2

2 2

2

1
( , ) ( , ) ( , )

(1 )

1
                 ( , ) ( , ) .

n n n n

n n

n n

d x Tx d x p d z p

d x p d z p

g g

e

é ù£ -ë û-

é ù£ -ë û

 

(3.1.6) 

(3.1.7) 

(3.1.8) 
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Now using (3.1.6) and (3.1.8), limsup ( , ) 0n n
n

d x Tx
®¥

£  and hence, 

lim ( , ) = 0.n n nd x Tx®¥  This completes the proof of part (ii).  

 

Now, we give the D -convergence theorem of SP-iteration in a CAT(0) space. 

 

Theorem 3.1.4. Let , , ,{ },{ },{ },{ }n n n nX K T xa b g  satisfy the hypotheses of Lemma 

3.1.3. Then the sequence { }nx  D -converges to a fixed point of .T   

 

Proof. By Lemma 3.1.3, we have lim ( , ) = 0n n nd x Tx®¥ . Also, lim ( , )n nd x p®¥  exists 

for all ( )p F TÎ . Thus { }nx  is bounded. Let ( ) = ({ }),n nW x A uD È  where the union is 

taken over all subsequences { }nu  of { }nx . We claim that ( ) ( ).nW x F TD Í  Let 

( ).nu W xDÎ  Then, there exists a subsequence { }nu  of { }nx  such that ({ }) ={ }.nA u u  

By Lemmas 2.1.21 and 2.1.22, there exists a subsequence { }nv  of { }nu  such that

lim = .n nv v K®¥D- Î  By Lemma 3.1.2, ( ).v F TÎ  By Lemma 3.1.3(i), 

lim ( , )n nd x v®¥  exists. Now, we claim that = .u v  On the contrary, assume that .u v¹  

Then, by the uniqueness of asymptotic centers, we have 

limsup ( , ) < limsup ( , )

                       limsup ( , )

                       < limsup ( , )

                       = limsup ( , )

                       = limsup ( , ).

n n
n n

n
n

n
n

n
n

n
n

d v v d v u

d u u

d u v

d x v

d v v

®¥ ®¥

®¥

®¥

®¥

®¥

£

 

That is a contradiction. Thus = ( )u v F TÎ  and ( ) ( ).nW x F TD Í  To show that the 

sequence { }nx  D -converges to a fixed point of T , we will show that ( )nW xD  

consists of exactly one point. Let { }nu  be a subsequence of { }nx  with ({ }) ={ }nA u u  

and let ({ }) ={ }.nA x x  We have already seen that =u v  and ( ).v F TÎ  Finally, we 

claim that = .x v  If not, then the existence of lim ( , )n nd x v®¥  and the uniqueness of 

asymptotic centers imply that 
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limsup ( , ) < limsup ( , )

                       limsup ( , )

                       < limsup ( , )

                       = limsup ( , ),

n n
n n

n
n

n
n

n
n

d v v d v x

d x x

d x v

d v v

®¥ ®¥

®¥

®¥

®¥

£
 

a contradiction and hence = ( ).x v F TÎ  Therefore, ( ) ={ }.nW x xD  As a result, the 

sequence { }nx  D -converges to a fixed point of .T   

 

We give the strong convergence theorems on CAT(0) space as follows. 

 

Theorem 3.1.5. Let , , ,{ },{ },{ },{ }n n n nX K T xa b g  satisfy the hypotheses of Lemma 

3.1.3. Then the sequence { }nx  converges strongly to a fixed point of T  if and only if  

liminf ( , ( )) = 0.n
n

d x F T
®¥

 

 

Proof. If { }nx  converges to ( ),p F TÎ  then lim ( , ) = 0n nd x p®¥ . Since 

0 ( , ( )) ( , )n nd x F T d x p£ £ , we have liminf ( , ( )) = 0n nd x F T®¥ . 

Conversely, suppose that liminf ( , ( )) = 0n
n

d x F T
®¥

. Now, 1( , ) ( , )n nd x p d x p+ £  gives 

1
( ) ( )

( , ) ( , ),inf infn n
p F T p F T

d x p d x p+
Î Î

£  

which means that 1( , ( )) ( , ( ))n nd x F T d x F T+ £  and so lim ( , ( ))n nd x F T®¥  exists. 

Thus, by hypothesis, lim ( , ( )) = 0.n nd x F T®¥  Next, we will show that { }nx  is a 

Cauchy sequence in K . Let > 0e  be arbitrarily chosen. Since 

lim ( , ( )) = 0n nd x F T®¥ , there exists a constant 0n  such that 

( , ( )) < ,
4

nd x F T
e

 

for all 0n n³ . In particular, 
0

inf{ ( , ) : ( )}<
4

nd x p p F T
e

Î . Thus there exists 

( )p F T*Î  such that 
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0
( , ) < .

2
nd x p

e*  

Now, for all 0,m n n³ , we have 

0
( , ) ( , ) ( , ) 2 ( , ) < 2 .

2
n m n n m n nd x x d x p d x p d x p

e e* * *
+ +

æ ö£ + £ =ç ÷
è ø

 

Hence { }nx  is a Cauchy sequence in a closed subset K  of a complete CAT(0) space 

X , it must be convergent to a point in K . Let lim =n nx p K®¥ Î . Now, 

lim ( , ( )) = 0n nd x F T®¥  gives that ( , ( )) = 0d p F T  and the closedness of ( )F T  forces 

p  to be in ( )F T . Therefore, the sequence { }nx  converges strongly to a fixed point 

p  of T . 

 

Theorem 3.1.6. Let , ,{ },{ },{ },{ }n n n nX K xa b g  satisfy the hypotheses of Lemma 

3.1.3 and :T K K®  be a nonexpansive mapping satisfying condition (I). Then the 

sequence { }nx  converges strongly to a fixed point of .T   

 

Proof. By Lemma 3.1.3(i), lim ( , )n nd x p®¥  exists for all ( )p F TÎ . Let this limit be 

c , where 0.c ³  If = 0,c  there is nothing to prove. Suppose that > 0.c  As proved in 

Theorem 3.1.5, lim ( , ( ))n nd x F T®¥  exists. Also, by Lemma 3.1.3(ii), we have 

lim ( , ) = 0.n n nd x Tx®¥  It follows from condition (I) that 

lim ( ( , ( ))) lim ( , ) = 0.n n n n nf d x F T d x Tx®¥ ®¥£  

That is, 

lim ( ( , ( ))) 0.n nf d x F T®¥ =  

Since :[0, ) [0, )f ¥ ® ¥  is a non-decreasing function satisfying (0) = 0f , ( ) > 0f r  

for all (0, )rÎ ¥ , therefore we obtain 

lim ( , ( )) = 0.n nd x F T®¥  

The conclusion now follows from Theorem 3.1.5.  
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Since SP-iteration is reduced to the new two-step iteration when = 0na  for all nÎ  

and to the Mann iteration when = = 0n na b  for all nÎ , we obtain the following 

corollaries. 

 

Corollary 3.1.7. Let , , ,{ }nX K T g  satisfy the hypotheses of Lemma 3.1.3 and { }nx  

be defined by the iteration process (1.3.6). Then the sequence { }nx  D -converges to a 

fixed point of .T  Further, if { }nx  is defined by the iteration process (1.3.2), the 

sequence { }nx  D -converges to a fixed point of .T   

 

Corollary 3.1.8. Let , ,{ }nX K g  satisfy the hypotheses of Lemma 3.1.3, :T K K®  

be a nonexpansive mapping satisfying condition (I) and { }nx  be defined by the 

iteration process (1.3.6). Then, the sequence { }nx  converges strongly to a fixed point 

of .T  Also, if { }nx  is defined by the iteration process (1.3.2), the sequence { }nx  

converges strongly to a fixed point of .T   

 

3.2.  The Strong and D-Convergence of an Iteration Process for Nonexpansive 

Mappings in Uniformly Convex Hyperbolic Spaces  

 

In this subsection, we establish some strong and D-convergence theorems of an 

iteration process for approximating a common fixed point of three nonexpansive 

mappings in a uniformly convex hyperbolic space. 

 

Khan, Cho and Abbas [47] introduced a new iteration process in Banach spaces. We 

now modify this iteration in hyperbolic spaces as follows. 

 

Definition 3.2.1. Let K  be a nonempty convex subset of a hyperbolic space X  and 

, ,T S Q  be three nonexpansive self mappings on K . The sequence { }nx  is defined by 

1

1

1

,

= ( , , ),

= ( , , ),  ,

n n n n

n n n n

x K

x W Tx Sy

y W x Qx n

a
b

+

+

Îì
ï
í
ï Îî ,

 (3.2.1) 
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where { }na  and { }nb  are real sequences in (0,1) . 

 

Remark 3.2.2. It is worth mentioning that the iteration process (3.2.1) coincides with 

the iteration process of Khan, Cho and Abbas [47] when ( , , ) = (1 )W x y x ya a a- +  

and X  is a uniformly convex Banach space. Moreover, this iteration is reduced to 

the S-iteration process of Khan and Abbas [48] in a CAT(0) space if 

( , , ) = (1 )W x y x ya a a- Å  and = = .T S Q  It is also reduced to Ishikawa iteration 

when = ,  =T I S Q , Mann iteration when = =T Q I  and Picard iteration when 

= ,  = .T S Q I  

 

We give the following key lemmas. 

 

Lemma 3.2.3. Let K  be a nonempty, closed and convex subset of a hyperbolic space 

X  and , ,T S Q  be three nonexpansive self mappings on K  with F ¹Æ . Then  the 

sequence { }nx  defined by (3.2.1) is Fejér monotone with respect to .F  

  

Proof. Let .p FÎ  Using (3.2.1), we have 

( , ) = ( ( , , ), )

             (1 ) ( , ) ( , )

             (1 ) ( , ) ( , )

             = ( , ).

n n n n

n n n n

n n n n

n

d y p d W x Qx p

d x p d Qx p

d x p d x p

d x p

b
b b
b b

£ - +

£ - +
 

Thus from (3.2.2), we get  

1( , ) = ( ( , , ), )

               (1 ) ( , ) ( , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) ( , )

               = ( , ).

n n n n

n n n n

n n n n

n n n n

n

d x p d W Tx Sy p

d Tx p d Sy p

d x p d y p

d x p d x p

d x p

a
a a
a a
a a

+

£ - +

£ - +

£ - +
 

Hence { }nx  is Fejér monotone with respect to .F   

 

(3.2.2) 
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Lemma 3.2.4. Let K  be a nonempty, closed and convex subset of a uniformly 

convex hyperbolic space X  with monotone modulus of uniform convexity h  and 

, ,T S Q  be three nonexpansive self mappings on K  such that 

( , ) ( , )n n n nd x Sx d Tx Sx£  and F ¹Æ . Let the sequence { }nx  be as defined in (3.2.1). 

Then 

lim ( , ) = lim ( , ) = lim ( , ) = 0.n n n n n n n n nd x Tx d x Sx d x Qx®¥ ®¥ ®¥  

 

Proof. Let .p FÎ  By Lemma 3.2.3, it follows that lim ( , )n nd x p®¥  exists. We may 

assume that lim ( , ) = .n nd x p r®¥  The case = 0r  is trivial. Next, we deal with the 

case > 0r . By (3.2.2), we obtain 

limsup ( , ) limsup ( , )

                          lim ( , ) = .

n n
n n

n
n

d Sy p d y p

d x p r

®¥ ®¥

®¥

£

£
 

Moreover, we have limsup ( , ) .n
n

d Tx p r
®¥

£  Since  

1lim ( , ) = lim ( ( , , ), ) = ,n n n n
n n

d x p d W Tx Sy p ra+®¥ ®¥
 

Lemma 2.2.10 gives 

lim ( , ) = 0.n n
n

d Tx Sy
®¥

 

Next 

1( , ) (1 ) ( , ) ( , )

               (1 ) ( , ) (1 ) ( , ) ( , )

               ( , ) (1 ) ( , )

n n n n n

n n n n n n n

n n n n

d x p d Tx p d Sy p

d Tx Sy d Sy p d Sy p

d y p d Tx Sy

a a
a a a

a

+ £ - +

£ - + - +

£ + -
 

yields that liminf ( , ) .n nd y p r®¥ ³  But by (3.2.2), lim ( , )sup nn
d y p r®¥ £ . Hence 

lim ( , ) = lim ( ( , , ), ) = .n n n n n nd y p d W x Qx p rb®¥ ®¥  

Since limsup ( , )n nd Qx p r®¥ £  and lim ( , ) = ,n nd x p r®¥  Lemma 2.2.10 guarantees 

lim ( , ) = 0.n n nd x Qx®¥  

(3.2.3) 

(3.2.4) 
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By virtue of (3.2.4), we get 

( , ) ( , )

                 = ( , ( , , ))

                 ( , ) 0 as .

n n n n

n n n n

n n n

d Sx Sy d x y

d x W x Qx

d x Qx n

b
b

£

£ ® ®¥

 

From the hypothesis ( , ) ( , )n n n nd x Sx d Tx Sx£ , we have 

( , ) ( , )

               ( , ) ( , ).

n n n n

n n n n

d x Sx d Tx Sx

d Tx Sy d Sy Sx

£

£ +
 

It follows from (3.2.3) and (3.2.5) that lim ( , ) = 0.n n nd x Sx®¥  Since 

( , ) ( , ) ( , ) ( , ),n n n n n n n nd x Tx d x Sx d Sx Sy d Sy Tx£ + +  

we conclude that lim ( , ) = 0.n n nd x Tx®¥  The proof is completed.  

 

Now we prove the D -convergence of the iteration process defined by (3.2.1) in a 

hyperbolic space. 

 

Theorem 3.2.5. Let , , , ,K X T S Q  and { }nx  be the same as in Lemma 3.2.4. Then the 

sequence { }nx  D -converges to some .p FÎ   

 

Proof. It follows from Lemma 3.2.3 that lim ( , )n nd x p®¥  exists for each .p FÎ  This 

implies that the sequence { }nx  is bounded. Hence { }nx  has a D -convergent 

subsequence. We now prove that every D -convergent subsequence of { }nx  has a 

unique D -limit in .F  Let u  and v  be the D -limits of the subsequences { }nu  and 

{ }nv  of { }nx , respectively. Then, ({ }) ={ }nA u u  and ({ }) ={ }nA v v . By Lemma 3.2.4, 

we have 

lim ( , ) = lim ( , ) = lim ( , ) = 0.n n n n n n n n nd u Tu d u Su d u Qu®¥ ®¥ ®¥  

We claim that .u FÎ  So, we calculate 

( , ) ( , ) ( , )

              ( , ) ( , ).

n n n n

n n n

d Tu u d Tu Tu d Tu u

d u u d Tu u

£ +

£ +
 

(3.2.5) 

(3.2.6) 
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Taking limsup on both sides of the above inequality and using (3.2.6), we have 

( ,{ }) = limsup ( , ) limsup ( , ) = ( ,{ }).n n n n
n n

r Tu u d Tu u d u u r u u
®¥ ®¥

£  

By the uniqueness of asymptotic centers implies that = .Tu u  A similar argument 

shows that =Su u  and =Qu u . This means that u FÎ . By the same method, we can 

also prove that v FÎ . Finally, we claim that = .u v  If not, then by the uniqueness of 

asymptotic centers, we have 

limsup ( , ) = limsup ( , )

                       < limsup ( , )

                       = limsup ( , )

                       = limsup ( , )

                       < limsup ( , )

       

n n
n n

n
n

n
n

n
n

n
n

d x u d u u

d u v

d x v

d v v

d v u

®¥ ®¥

®¥

®¥

®¥

®¥

                = limsup ( , ).n
n

d x u
®¥

 

a contradiction and hence = .u v FÎ  Consequently, { }nx  D -converges to a point in 

F .  

 

Next we discuss the strong convergence of the iteration process defined by (3.2.1) in 

a hyperbolic space. 

 

Theorem 3.2.6. Let , , , ,K X T S Q  and { }nx  be the same as in Lemma 3.2.4. Then 

{ }nx  converges strongly to some p FÎ  if and only if liminf ( , ) = 0n nd x F®¥ . 

 

Proof. Necessity is obvious. Conversely, suppose that liminf ( , ) = 0n nd x F®¥ . It 

follows from Lemma 3.2.3 that lim ( , )n nd x F®¥  exists. Thus by hypothesis, 

lim ( , ) = 0.n nd x F®¥  Again by Lemma 3.2.3, { }nx  is Fejér monotone with respect to 

.F  Thus Lemma 1.2.23 implies that { }nx  converges strongly to a point p  in .F   

 

Remark 3.2.7. In Theorem 3.2.6, the condition liminf ( , ) = 0n nd x F®¥  may be 

replaced with limsup ( , ) = 0n nd x F®¥ .  
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Example 3.2.8. Let  be the real line with the usual absolute metric and 

, , :T S Q ®®  be three mappings defined by ( ) 1 ,T x x= -
2 1

( )
4

x
S x

+
=  and

1
( ) .

2
Q x =  It is noticed in [47, p.10] that T  and S  satisfy the condition 

( , ) ( , )n n n nd x Sx d Tx Sx£ . Additionally ,  and T S Q are nonexpansive mappings. 

Clearly, 
1

2
F

ì ü= í ý
î þ

. Set  
2 1

n

n

n
a =

+
 and 

2
 

3 1
n

n

n
b =

+
for all nÎ . Thus, the 

conditions of Lemma 3.2.4 are fulfilled. Therefore the results of Theorem 3.2.5 and 

Theorem 3.2.6 can be easily seen. 

 

Khan and Fukhar-ud-din [49] introduced the so-called condition ( ')A  for two 

mappings and gave an improved version of it in [50] as follows. 

 

Definition 3.2.9. Two mappings , :T S K K®  with F ¹Æ  are said to satisfy the 

condition ( ')A  if there exists a non-decreasing function :[0, ) [0, )f ¥ ® ¥  with 

(0) = 0, ( ) > 0f f r  for all (0, )rÎ ¥  such that either ( , ) ( ( , ))d x Tx f d x F³  or 

( , ) ( ( , ))d x Sx f d x F³  for all x KÎ . 

 

This condition becomes condition (I) whenever = .S T  We can modify this definition 

for three mappings as follows. 

 

Definition 3.2.10. Let ,T S  and Q  be three nonexpansive self mappings on K  with 

.F ¹Æ  These mappings are said to satisfy condition (B) if there exists a non-

decreasing function :[0, ) [0, )f ¥ ® ¥  with (0) = 0, ( ) > 0f f r  for all (0, )rÎ ¥  such 

that ( , ) ( ( , ))d x Tx f d x F³  or ( , ) ( ( , ))d x Sx f d x F³  or ( , ) ( ( , ))d x Qx f d x F³  for all 

x KÎ . 

 

The condition (B) is reduced to the condition ( ')A  when =Q T . We use the 

condition (B) to study strong convergence of { }nx  defined in (3.2.1). 
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Theorem 3.2.11. Let , , , ,K X T S Q  and { }nx  be the same as in Lemma 3.2.4. If 

, ,T S Q  satisfy the condition (B), then { }nx  converges strongly to a point in F . 

 

Proof. By Lemma 3.2.3, lim ( , )n nd x F®¥  exists. Also, by Lemma 3.2.4, 

lim ( , ) = lim ( , ) = lim ( , ) = 0.n n n n n n n n nd x Tx d x Sx d x Qx®¥ ®¥ ®¥  

By using the condition (B), we get lim ( ( , )) = 0n nf d x F®¥ . Since f  is a non-

decreasing function with (0) = 0f , it follows that lim ( , ) = 0n nd x F®¥ . Therefore 

Theorem 3.2.6 implies that { }nx  converges strongly to a point in F .  

 

Now, we obtain the following strong convergence theorem. 

 

Theorem 3.2.12. Under the assumptions of Lemma 3.2.4, if one of the mappings 

,T S  and Q  is demi-compact or K  is compact, then { }nx  converges strongly to a 

point in F . 

 

Proof. It is clear that the condition (B) is weaker than both the compactness of K  

and the demi-compactness of one of the nonexpansive mappings ,T S  and Q . 

Therefore we have the result by Theorem 3.2.11. 

 

Remark 3.2.13.  

(i) Theorems 3.2.5, 3.2.6, 3.2.11 extend the corresponding results of Khan and 

Abbas [48] from CAT(0) space to the general setup of uniformly convex 

hyperbolic spaces. 

(ii) Theorems 3.2.5, 3.2.6, 3.2.11, 3.2.12 contain the corresponding theorems 

proved for the Ishikawa iteration when = , =T I S Q , for the Mann iteration 

when = =T Q I  and for the Picard iteration when = , =T S Q I . Then these 

theorems improve and generalize some results of Dhompongsa and Panyanak 

[24]. 
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If we take =Q T  in Theorems 3.2.5, 3.2.6, 3.2.11, 3.2.12 we get the following 

corollary, yet it is new in the literature. 

 

Corollary 3.2.14. Let K  be a nonempty, closed and convex subset of a uniformly 

convex hyperbolic space X  with monotone modulus of uniform convexity h  and 

,T S  be two nonexpansive self mappings on K  such that F ¹Æ . Let the sequence 

{ }nx  be defined by 

1

1

1

,

= ( , , ),

= ( , , ),  .

n n n n

n n n n

x K

x W Tx Sy

y W x Tx n

a
b

+

+

Îì
ï
í
ï Îî .

 

(i) Then the sequence { }nx  D -converges to some .p FÎ  

(ii) Then { }nx  converges strongly to some p FÎ  if and only if 

liminf ( , ) = 0n nd x F®¥  or limsup ( , ) = 0n nd x F®¥ . 

(iii) If T  and S  satisfy the condition ( ')A , then { }nx  converges strongly to a 

point in F . 

(iv) If one of the mappings T  and S  is demi-compact or K  is compact, then 

{ }nx  converges strongly to a point in F . 

 

Remark 3.2.15. Note that the iteration process (3.2.7) has two nonexpansive 

mappings ,  T S  and the condition ( , ) ( , )n n n nd x Sx d Tx Sx£  doesn’t need to get 

convergence of this iteration. 

 

(3.2.7) 



 

 

 

CHAPTER 4. SOME CONVERGENCE RESULTS FOR 

MAPPINGS SATISFYING CONDITION (C) 

 

 

In this section, some strong and D-convergence theorems for mappings satisfying 

condition (C) are proved in CAT(0) spaces. 

 

4.1.  The Strong and D-Convergence of S-Iteration in CAT(0) Spaces  

 

In this subsection, we prove the strong and D-convergence theorems of S-iteration 

process for mappings satisfying condition (C) in a CAT(0) space.  

 

Khan and Abbas [48] modified the S-iteration process in CAT(0) spaces for 

nonexpansive mappings as follows. 

 

Definition 4.1.1. Let K  be a nonempty, closed, convex subset of a CAT(0) space X

and :T K K®  be a nonexpansive mapping. The sequence { }nx  is defined by 

1

1

,

= (1 ) ,

= (1 ) , ,

n n n n n

n n n n n

x K

x Tx Ty

y x Tx n

a a
b b

+

Îì
ï - Åí
ï - Å Îî ,

 

where { },  { }n na b  are the sequences such that ,n na ba b£ £  for all nÎ  and for 

some , (0,1)a bÎ . 

 

Lemma 4.1.2. [51] Let K  be a closed convex subset of a complete CAT(0) space X  

and :T K K®  be a mapping satisfying condition (C). Then, 

( , ) 3 ( , ) ( , )d x Ty d x Tx d x y£ +  for all ,x y KÎ . 

 

Before proving strong and D -convergence theorems, we need the following lemmas. 

(4.1.1) 
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Lemma 4.1.3. Let K  be a nonempty, closed, convex subset of a complete CAT(0) 

space X , :T K K®  be a mapping satisfying condition (C) and { }nx  be a sequence 

defined by the iteration process (4.1.1). If ( ) ,F T ¹Æ  then lim ( , )n nd x p®¥  exists for 

all ( )p F TÎ .  

 

Proof. Set = (1 )n n n n ny x Txb b- Å , nÎ .  Since T  is a mapping satisfying 

condition (C) and ( )p F TÎ , we have ( , ) ( , )n nd Ty p d y p£  and ( , ) ( , )n nd Tx p d x p£  

for all .nÎ . By combining these inequalities and Lemma 2.1.15(i), we get  

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) ( , ).

n n n n n

n n n n

n n n n

d x p d Tx Ty p

d Tx p d Ty p

d x p d y p

a a
a a
a a

+ - Å

£ - +

£ - +

 

Also, 

( , ) = ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) ( , )

             = ( , ).

n n n n n

n n n n

n n n n

n

d y p d x Tx p

d x p d Tx p

d x p d x p

d x p

b b
b b
b b

- Å

£ - +

£ - +
 

Using (4.1.2) and (4.1.3), we have 

1( , ) ( , ).n nd x p d x p+ £  

This implies ( , )nd x p  is non-increasing and bounded below, and so lim ( , )n nd x p®¥  

exists for all p FÎ . This completes the proof.  

 

Lemma 4.1.4. Let , , ,{ }nX K T x  satisfy the hypotheses of Lemma 4.1.3. Then, ( )F T  

is nonempty if and only if { }nx  is bounded and lim ( , ) = 0n n nd x Tx®¥ .  

 

Proof. Suppose that ( )F T  is nonempty and ( ).p F TÎ  Then, by Lemma 4.1.3, 

lim ( , )n nd x p®¥  exists and { }nx  is bounded. Set  

lim ( , )n nd x p c®¥ =  

(4.1.2) 

(4.1.3) 

(4.1.4) 
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and = (1 ) ,n n n n ny x Txb b- Å  for .nÎ . We first prove that lim ( , ) .n nd y p c®¥ =  By 

(4.1.2), we have 

1( , ) (1 ) ( , ) ( , ).n n n n nd x p d x p d y pa a+ £ - +  

This gives that 

1( , ) ( , ) ( , ) ( , )n n n n n nd x p d x p d y p d x pa a +£ + -  

or 

[ ]

[ ]

1

1

1
( , ) ( , ) ( , ) ( , )

1
             ( , ) ( , ) ( , ) .

n n n n

n

n n n

d x p d y p d x p d x p

d y p d x p d x p
a

a +

+

£ + -

£ + -

 

This implies that 

liminf ( , ).n
n

c d y p
®¥

£  

By (4.1.3) and (4.1.4), limsup ( , ) .n nd y p c®¥ £  By combining this inequality and 

(4.1.5), we get 

lim ( , ) = .n nd y p c®¥  

Next, by Lemma 2.1.15(ii), 

2 2

2 2 2

2 2

( , ) = ((1 ) , )

              (1 ) ( , ) ( , ) (1 ) ( , )

              ( , ) (1 ) ( , ) .

n n n n n

n n n n n n n n

n n n n n

d y p d x Tx p

d x p d Tx p d x Tx

d x p d x Tx

b b

b b b b

b b

- Å

£ - + - -

£ - -

 

Thus 

2 2 2(1 ) ( , ) ( , ) ( , )n n n n n nd x Tx d x p d y pb b- £ -  

so that 

2 2 2

2 2

1
( , ) ( , ) ( , )

(1 )

1
                 ( , ) ( , ) .

(1 )

n n n n

n n

n n

d x Tx d x p d y p

d x p d y p
a b

b b
é ù£ -ë û-

é ù£ -ë û-

 

(4.1.5) 

(4.1.6) 
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Using (4.1.4) and (4.1.6), we get limsup ( , ) 0.n n nd x Tx®¥ £  Hence, 

lim ( , ) = 0.n n nd x Tx®¥  

Conversely, suppose that { }nx  is bounded and lim ( , ) = 0.n n nd x Tx®¥  Let 

({ }) ={ }.nA x x  Then x KÎ , by Lemma 2.1.22. Since T  is a mapping satisfying 

condition (C), we have, by Lemma 4.1.2, 

( , ) 3 ( , ) ( , ),n n n nd x Tx d x Tx d x x£ +  

which implies 

[ ]limsup ( , ) limsup 3 ( , ) ( , )

                         = limsup ( , ).

n n n n
n n

n
n

d x Tx d x Tx d x x

d x x

®¥ ®¥

®¥

£ +
 

By the uniqueness of asymptotic centers, we get = .Tx x  Therefore, x  is a fixed 

point of .T  This completes the proof.  

 

Now, we prove the D -convergence theorem of S-iteration process in CAT(0) space. 

 

Theorem 4.1.5. Let , , ,{ }nX K T x  satisfy the hypotheses of Lemma 4.1.3 with 

( ) .F T ¹Æ  Then { }nx  D -converges to a fixed point of .T   

 

Proof. Lemma 4.1.4 guarantees that the sequence { }nx  is bounded and 

lim ( , ) = 0n n nd x Tx®¥ . We claim that ( ) ( ).nW x F TD Í  Let ( ).nu W xDÎ  Then, there 

exists a subsequence { }nu  of { }nx  such that ({ }) ={ }.nA u u  By Lemmas 2.1.21 and 

2.1.22, there exists a subsequence { }nv  of { }nu  such that lim = .n nv v K®¥D- Î  Since 

lim ( , ) = 0n n nd v Tv®¥  and T  is a mapping satisfying condition (C), then, by Lemma 

4.1.2, 

( , ) 3 ( , ) ( , ).n n n nd v Tv d v Tv d v v£ +  

By taking limsup and using the Opial property, we obtain ( ).v F TÎ  By Lemma 

4.1.3, { ( , )}nd x v  converges. Then, by using Lemma 2.1.23, we have = ( ).u v F TÎ  
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This shows that ( ) ( ).nW x F TD Í  Next, we show that ( )nW xD  consists of exactly one 

point. Let { }nu  be a subsequence of { }nx  with ({ }) ={ }nA u u  and let ({ }) ={ }.nA x x  

We have already seen that =u v  and ( ).v F TÎ  Since ( ) ( )nu W x F TDÎ Í , { ( , )}nd x u  

converges. Again, by using Lemma 2.1.23, = ( ).x u F TÎ  Therefore, ( ) ={ }.nW x xD  

As a result, the iteration sequence { }nx  D -converges to a fixed point of .T   

 

We briefly discuss the strong convergence of S-iteration process in a CAT(0) space 

setting in Theorems 4.1.6 and 4.1.7. 

 

Theorem 4.1.6. ([52, Theorem 3.4]) Let , , ,{ }nX K T x  satisfy the hypotheses of 

Lemma 4.1.3 and :T K K®  be a mapping satisfying condition (I) with ( )F T ¹Æ . 

Then, { }nx  converges strongly to a fixed point of .T   

 

Theorem 4.1.7. Let , , ,{ }nX K T x  satisfy the hypotheses of Lemma 4.1.3 with 

( )F T ¹Æ  and K  be compact subset of X . Then, { }nx  converges strongly to a fixed 

point of .T   

 

Proof. Lemma 4.1.4 guarentees that { }nx  is bounded and lim ( , ) = 0.n n nd Tx x®¥  

Since K  is compact, there exists a subsequence { }nk
x  of { }nx  such that 

.nk
x z K® Î  By Lemma 4.1.2, we have 

( , ) 3 ( , ) ( , ) for all .n n n nk k k k
d x Tz d x Tx d x z k£ + Î . 

Letting k ®¥ , we have { }nk
x  converges to .Tz  This implies = ,Tz z  that is 

( ).z F TÎ  By Lemma 4.1.3, we have lim ( , )n nd x z®¥  exists, thus z  is the strong 

limit of the sequence { }nx . As a result, the iteration sequence { }nx  converges 

strongly to a fixed point of .T  
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4.2.  The Strong and D-Convergence of New Three-Step Iteration in CAT(0) 

Spaces  

 

In this subsection, we apply a new three-step iteration process into a CAT(0) space 

and present some results on the strong and D -convergence of the new three-step 

iteration for mappings satisfying condition (C) in a CAT(0) space. 

 

Karakaya et. al. [53] established a new three-step iteration method in a Banach space. 

We modified this iteration process into a CAT(0) space as follows. 

 

Definition 4.2.1. Let K  be a nonempty, closed, convex subset of a CAT(0) space X

and :T K K®  be a mapping satisfying condition (C). The new three-step iteration 

sequence { }nx  is defined by 

1

1

,

= (1 ) ,

= (1 ) ,

= (1 ) ,  ,

n n n n n n n n

n n n n n n n n

n n n n n

x K

x y Ty Tz

y a b z a Tz b Tx

z c x c Tx n

a b a b+

Îì
ï - - Å Åï
í - - Å Åï
ï - Å Îî ,

 

where =1 =1 =1{ } ,{ } ,{ } [0,1].n n n n n n n na b ca b¥ ¥ ¥+ + Ì  

 

Remark 4.2.2. [53] Some special cases of the new three-step iteration process given 

by (4.2.1), as follows. 

(i) If =1nc  and = = = = 0n n n na ba b  for all nÎ , then (4.2.1) is reduced to 

the Picard iteration. 

(ii) If = = = = 0n n n na ba b  for all nÎ , then (4.2.1) is reduced to the Mann 

iteration. 

(iii) If = = 0n nc b  and =1n na b+  for all nÎ , then (4.2.1) is reduced to the S-

iteration. 

(iv) If = = = 0n n na ba  for all nÎ , then (4.2.1) is reduced to the new two-step 

iteration. 

(4.2.1) 
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(v) If = = 0n nbb  for all nÎ , then (4.2.1) is reduced to the SP-iteration. 

 

Lemma 4.2.3. ([54, Lemma 2.5 (1)]) Let X  be a CAT(0) space. Then 

=1

( , ) ( , ),
n

i i
i

d z z d z za a£å  

where 1 2, ,..., [0,1]na a a Î  with 
=1

=1
n

ii
aå , , ,iz z XÎ  1 i n£ £  and 

1 1 2 2= ... .n nz z z za a a aÅ Å Å  

 

We give a basic property of the new three-step iterative sequence { }nx  defined by 

(4.2.1) for mappings satisfying condition (C). 

 

Lemma 4.2.4. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K K®  be a mapping satisfying condition (C) with ( )F T ¹Æ . 

Assume that { }nx  be a sequence defined by (4.2.1) such that 

=1 =1 =1 =1 =1{ } ,{ } ,{ } ,{ } ,{ } [0,1]n n n n n n n n n na b ca b¥ ¥ ¥ ¥ ¥ Ì . Then lim ( , )n nd x p®¥  exists for each 

( )p F TÎ .  

 

Proof. Since T  is a mapping satisfying condition (C) and ( )p F TÎ , we have 

1
( , ) = 0 ( , ) for all .

2
d p Tp d p z z K£ Î  

It implies that ( , ) ( , )d Tp Tz d p z£  for all z KÎ . Then, by Lemma 2.1.15(i), we get 

( , ) = ((1 ) , )

            (1 ) ( , ) ( , )

            (1 ) ( , ) ( , )

            = ( , ).

n n n n n

n n n n

n n n n

n

d z p d c x c Tx p

c d x p c d Tx p

c d x p c d x p

d x p

- Å

£ - +

£ - +
 

Also, by Lemma 4.2.3, we obtain 

(4.2.2) 
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( , ) = ((1 ) , )

             (1 ) ( , ) ( , ) ( , )

             (1 ) ( , ) ( , ) ( , )

             (1 ) ( , ) ( , )

             = ( , ).

n n n n n n n n

n n n n n n n

n n n n n n n

n n n n

n

d y p d a b z a Tz b Tx p

a b d z p a d Tz p b d Tx p

a b d z p a d z p b d x p

b d x p b d x p

d x p

- - Å Å

£ - - + +

£ - - + +

£ - +

 

Similarly, we have 

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , ).

n n n n n n n n

n n n n

d x p d y Ty Tz p

d y p d z p

a b a b
b b

+ - - Å Å

£ - +
 

By combining (4.2.2), (4.2.3) and (4.2.4), we obtain 

1( , ) ( , ).n nd x p d x p+ £  

This implies that lim ( , )n nd x p®¥  exists for each ( )p F TÎ .  

 

By using Lemmas 2.1.16 and 4.2.4, we prove the other property of the iterative 

sequence (4.2.1) for mappings satisfying condition (C). 

 

Lemma 4.2.5. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be a mapping satisfying condition (C) with ( )F T ¹Æ  and 

{ }nx  be a sequence defined by (4.2.1). If =1 =1 =1{ } ,{ } ,{ } [0,1]n n n n n na b a¥ ¥ ¥ Ì  and 

=1 =1{ } ,{ } [ , ]n n n nc a bb ¥ ¥ Ì  for some , (0,1)a bÎ , then lim ( , ) = 0n n nd x Tx®¥ .  

 

Proof. Let ( )p F TÎ . By Lemma 4.2.4, there exists at least one [0, )cÎ ¥  such that 

lim ( , ) = .n nd x p c®¥  

The case = 0c  is trivial. Next, we deal with the case > 0c . First, we prove that 

lim ( , ) = .n nd z p c®¥  By (4.2.3) and (4.2.4), we have 

1( , ) (1 ) ( , ) ( , )

               (1 ) ( , ) ( , ).

n n n n n

n n n n

d x p d y p d z p

d x p d z p

b b
b b

+ £ - +

£ - +
 

It follows that 

1( , ) ( , ) ( , ) ( , )n n n n n nd x p d x p d z p d x pb b +£ + -  

(4.2.3) 

(4.2.4) 

(4.2.5) 

(4.2.6) 
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or 

[ ]

[ ]

1

1

1
( , ) ( , ) ( , ) ( , )

1
            ( , ) ( , ) ( , ) .

n n n n

n

n n n

d x p d z p d x p d x p

d z p d x p d x p
a

b +

+

£ + -

£ + -
 

This gives liminf ( , ).n
n

c d z p
®¥

£  Also, from (4.2.2) and (4.2.6), we obtain 

limsup ( , ) .n nd z p c®¥ £  Then we get lim ( , ) = .n nd z p c®¥  Since ( , ) ( , )n nd Tx p d x p£  

for all nÎ , by (4.2.6), we obtain  

limsup ( , ) .n
n

d Tx p c
®¥

£  

Also, we have 

= lim ( , ) = lim ((1 ) , ).n n n n n
n n

c d z p d c x c Tx p
®¥ ®¥

- Å  

By Lemma 2.1.16, we can conclude that lim ( , ) = 0.n n nd x Tx®¥  

 

Theorem 4.2.6. ([55, Theorem 8]) Let K  be a nonempty closed convex subset of a 

complete CAT(0) space X  and :T K K®  be a mapping satisfying condition (C) 

with ( )F T ¹Æ . Assume that { }nx  be a sequence defined by (4.2.1) such that 

=1 =1 =1{ } ,{ } ,{ } [0,1]n n n n n na b a¥ ¥ ¥ Ì  and =1 =1{ } ,{ } [ , ]n n n nc a bb ¥ ¥ Ì  for some , (0,1)a bÎ . Then 

{ }nx  D -converges to an element of ( ).F T   

 

We now discuss the strong convergence of the new three-step iteration for mappings 

satisfying condition (C) in a CAT(0) space setting. 

 

Theorem 4.2.7. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K K®  be a mapping satisfying condition (C) with ( )F T ¹Æ . Let 

{ }nx  be a sequence defined by (4.2.1) such that 

=1 =1 =1 =1 =1{ } ,{ } ,{ } ,{ } ,{ } [0,1]n n n n n n n n n na b ca b¥ ¥ ¥ ¥ ¥ Ì . Then { }nx  converges strongly to a 

fixed point of T  if and only if liminf ( , ( )) = 0.n
n

d x F T
®¥
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Proof. Necessity is obvious. Conversely, suppose that liminf ( , ( )) = 0.n
n

d x F T
®¥

 It 

follows from Lemma 4.2.4 that lim ( , ( ))n nd x F T®¥  exists. Thus by hypothesis, 

lim ( , ( )) = 0.n nd x F T®¥  Again by Lemma 4.2.4, { }nx  is is Fejér monotone with 

respect to ( )F T . Since T  is quasi-nonexpansive, it is known by [29, Lemma 1.1] 

that ( )F T  is always closed. Thus Lemma 1.2.23 implies that { }nx  converges 

strongly to a point p  in ( ).F T   

 

Remark 4.2.8.  

(i) In Theorem 4.2.7, the condition liminf ( , ( )) = 0n nd x F T®¥  may be replaced 

with limsup ( , ( )) = 0n nd x F T®¥ . 

(ii) Theorem 4.2.7 generalizes Theorem 2 of [56] since every nonexpansive 

mapping satisfies condition (C) and (4.2.1) is reduced to the SP-iteration 

when = = 0n nbb  for all nÎ . 

(iii) Theorem 4.2.7. is an extension of Theorem 2 of [48] since every 

nonexpansive mapping satisfies condition (C) and (4.2.1) is reduced to the S-

iteration when = = 0n nc b  and =1n na b+  for all nÎ .  

 

Theorem 4.2.9. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K K®  be a mapping satisfying condition (C) with ( )F T ¹Æ . For 

arbitrary 1x KÎ , let { }nx  be a sequence defined by (4.2.1) such that 

=1 =1 =1{ } ,{ } ,{ } [0,1]n n n n n na b a¥ ¥ ¥ Ì  and =1 =1{ } ,{ } [ , ]n n n nc a bb ¥ ¥ Ì  for some , (0,1)a bÎ . 

(i) If T  is demi-compact, then { }nx  converges strongly to a fixed point of .T  

(ii) If T  satisfies condition (I), then { }nx  converges strongly to a fixed point of 

.T   

 

Proof. (i) It follows from Lemma 4.2.4 that { }nx  is a bounded sequence. Also, by 

Lemma 4.2.5, we have lim ( , ) = 0.n n nd x Tx®¥  Then, by the demi-compactness of T , 
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there exists a subsequence { } of { }n nk
x x  such that nk

x z K® Î  as k ®¥ . The rest 

of the proof closely follows the proof of Theorem 4.1.7. 

(ii) It follows from Lemma 4.2.4 that lim ( , ( ))n nd x F T®¥  exists. Further, by the 

condition (I) and Lemma 4.2.5, we have lim ( , ( )) 0.n
n

d x F T
®¥

=  The conclusion now 

follows from Theorem 4.2.7. 

 

Remark 4.2.11. If we take = = = 0n n na ba  for all nÎ , the new three-step 

iteration is reduced to the new two-step iteration. Then theorems in this subsection 

contain the corresponding theorems proved for the new two-step iteration.  

 

4.3.  The Strong and D-Convergence Theorems for Nonself Mappings on CAT(0) 

Spaces  

 

In this subsection, we study the S-iteration and the Noor iteration processes for 

nonself mappings satisfying condition (E) on a CAT(0) space. 

 

In 2011, Falset et. al. [57] introduced condition (E) as follows. 

 

Definition 4.3.1. ([57, Definition 2]) Let K  be a bounded closed convex subset of a 

complete CAT(0) space .X  A mapping :T K X®  is called to satisfy condition ( )Em  

on ,K  if there exists 1m ³  such that 

( , ) ( , ) ( , ),d x Ty d x Tx d x ym£ +  

for all ,x y KÎ . The mapping T  is said to satisfy condition (E) on K  whenever T  

satisfies condition ( )Em  for some 1.m ³   

 

Remark 4.3.2. [57] Every mapping satisfying condition(C) satisfies condition (E).  

 

Now, we apply the S-iteration and the Noor iteration processes in a CAT(0) space for 

a nonself mapping satisfying condition (E) as follows. 
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Definition 4.3.3. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  with the nearest point projection P  from X  into K . Let :T K X®  be a 

nonself mapping satisfying condition (E) with ( )F T ¹Æ . Then, we give the 

following iteration processes; 

1

1

,

= ((1 ) )

= ((1 ) ), ,

n n n n n

n n n n n

x K

x P Tx Ty

y P x Tx n

a a
b b

+

Îì
ï - Åí
ï - Å Îî ,

 

and 

1

1

,

= ((1 ) ),

= ((1 ) ),

= ((1 ) ), ,

n n n n n

n n n n n

n n n n n

x K

x P x Ty

y P x Tz

z P x Tx n

a a
b b
g g

+

Îì
ï - Åï
í - Åï
ï - Å Îî ,

 

where { }na ,{ }nb  and { }ng  are real sequences in [ ,1 ]e e-  for some (0,1)eÎ . 

 

Lemma 4.3.4. ([19, Proposition 2.4]) Let K  be a convex subset of X  which is 

complete in the induced metric. Then for every ,x XÎ  there exists a unique point 

( )P x KÎ  such that { }( , ( )) = inf ( , ) : .d x P x d x y y KÎ  Moreover, the mapping 

( )x P x®  is nonexpansive retract from X  onto .K   

 

Lemma 4.3.5. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K X®  be a nonself mapping satisfying condition (E) with 

( )F T ¹Æ . Let { }na  and { }nb  be real sequences in [ ,1 ]e e-  for some (0,1)eÎ  and 

{ }nx  be defined by the iteration process (4.3.1). Then, 

(i) lim ( , )n nd x x*®¥  exists for all ( )x F T*Î . 

(ii) lim ( , ) = 0n n nd x Tx®¥ .  

 

Proof. (i) Suppose that ( )F T  is nonempty and ( ).x F T*Î  Since the nearest point 

projection :P X K®  is nonexpansive by Lemma 4.3.4 and T  is a mapping 

satisfying condition (E), we have 

(4.3.1) 

(4.3.2) 
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( , ) = ( ((1 ) ), )

              ((1 ) ), )

              (1 ) ( , ) ( , )

              (1 ) ( , ) ( ( , ) ( , ))

              = (1 ) ( , ) ( ,

n n n n n

n n n n

n n n n

n n n n

n n n n

d y x d P x Tx Px

d x Tx x

d x x d Tx x

d x x d Tx x d x x

d x x d x

b b

b b

b b

b b m

b b

* *

*

* *

* * * *

*

- Å

£ - Å

£ - +

£ - + +

- + )

              = ( , ).n

x

d x x

*

*

 

Also, we have 

1( , ) = ( ((1 ) ), )

                ((1 ) , )

                (1 ) ( , ) ( , )

                (1 )( ( , ) ( , )) ( ( , ) ( , ))

              

n n n n n

n n n n

n n n n

n n n n

d x x d P Tx Ty Px

d Tx Ty x

d Tx x d Ty x

d Tx x d x x d Tx x d y x

a a

a a

a a

a m a m

* *
+

*

* *

* * * * * *

- Å

£ - Å

£ - +

£ - + + +

   = (1 ) ( , ) ( , ).n n n nd x x d y xa a* *- +

 

Using (4.3.3) and (4.3.4), we obtain 

1( , ) ( , ).n nd x x d x x* *
+ £  

This implies that lim ( , )n nd x x*®¥  exists for all ( )x F T*Î . This completes the proof 

of part (i). 

(ii) Let 

lim ( , ) = .n nd x x c*
®¥  

If = 0,c  by the condition (E) for some 1,m ³  we obtain 

( , ) ( , ) ( , )

                ( , ) ( , ) ( , ).

n n n n

n n

d x Tx d x x d x Tx

d x x d x Tx d x xm

* *

* * * *

£ +

£ + +
 

Therefore, lim ( , ) = 0.n n nd x Tx®¥  Let > 0.c  Firstly, we will prove that 

lim ( , ) = .n nd y x c*
®¥  From (4.3.4), we have 

1( , ) (1 ) ( , ) ( , ).n n n n nd x x d x x d y xa a* * *
+ £ - +  

This gives that 

1( , ) ( , ) ( , ) ( , )n n n n n nd x x d x x d y x d x xa a* * * *
+£ + -  

(4.3.3) 

(4.3.4) 

(4.3.5) 
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or 

1

1

1
( , ) ( , ) ( , ) ( , )

1
             ( , ) ( , ) ( , ) .

n n n n

n

n n n

d x x d y x d x x d x x

d y x d x x d x x

a

e

* * * *
+

* * *
+

é ù£ + -ë û

é ù£ + -ë û

 

This shows 

1

1
= liminf ( , ) liminf ( , ) ( , ) ( , )limn n n n

n n n

c d x x d y x d x x d x x
e

* * * *
+®¥ ®¥ ®¥

é ù£ + -ë û  

so that 

liminf ( , ).n
n

c d y x*
®¥

£  

By (4.3.3) and (4.3.5), we get limsup ( , ) .n nd y x c*
®¥ £  By combining this inequality 

and (4.3.6), we obtain 

lim ( , ) = .n nd y x c*
®¥  

By Lemma 2.1.15(ii), we get 

2 2

2

2 2 2

2 2

( , ) = ( ((1 ) ), )

               ((1 ) , )

               (1 ) ( , ) ( , ) (1 ) ( , )

               (1 ) ( , ) ( ( , ) ( , )) (1 )

n n n n n

n n n n

n n n n n n n n

n n n n n n

d y x d P x Tx Px

d x Tx x

d x x d Tx x d x Tx

d x x d Tx x d x x

b b

b b

b b b b

b b m b b

* *

*

* *

* * * *

- Å

£ - Å

£ - + - -

£ - + + - - 2

2 2 2

2 2

( , )

                = (1 ) ( , ) ( , ) (1 ) ( , )

                = ( , ) (1 ) ( , ) .

n n

n n n n n n n n

n n n n n

d x Tx

d x x d x x d x Tx

d x x d x Tx

b b b b

b b

* *

*

- + - -

- -

 

Therefore, 

2 2 2(1 ) ( , ) ( , ) ( , )n n n n n nd x Tx d x x d y xb b * *- £ -  

so that  

2 2 2

2 2

2

1
( , ) ( , ) ( , )

(1 )

1
                 ( , ) ( , ) .

n n n n

n n

n n

d x Tx d x x d y x

d x x d y x

b b

e

* *

* *

é ù£ -ë û-

é ù£ -ë û

 

(4.3.6) 

(4.3.7) 
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Using (4.3.5) and (4.3.7), we get limsup ( , ) 0.n n nd x Tx®¥ £  Hence, 

lim ( , ) = 0.n n nd x Tx®¥  This completes the proof of part (ii).  

 

Now, we give the D -convergence theorem of the S-iteration process in a CAT(0) 

space. 

 

Theorem 4.3.6. Let , , ,{ },{ },{ }n n nX K T xa b  satisfy the hypotheses of Lemma 4.3.5. 

Then the sequence { }nx  D -converges to a fixed point of .T   

 

Proof. By Lemma 4.3.5, the sequence { }nx  is bounded and lim ( , ) = 0.n n nd x Tx®¥  

We claim that ( ) ( ).nW x F TD Í  Let ( ).nu W xDÎ  Then, there exists a subsequence 

{ }nu  of { }nx  such that ({ }) ={ }.nA u u  By Lemmas 2.1.21 and 2.1.22, there exists a 

subsequence { }nv  of { }nu  such that lim = .n nv v K®¥D- Î  Since T  is a mapping 

satisfying condition (E) and we get 

( , ) ( , ) ( , )n n n nd v Tv d v Tv d v vm£ +  

for some 1m ³ . Also lim ( , ) = 0,n n nd v Tv®¥  we get 

limsup ( , ) limsup( ( , ) ( , ))

                         = limsup ( , ).

n n n n
n n

n
n

d v Tv d v Tv d v v

d v v

m
®¥ ®¥

®¥

£ +
 

By using the uniqueness of asymptotic center, we obtain ( ).v F TÎ  The rest of the 

proof closely follows the proof of Theorem 4.1.5.  

 

We briefly discuss the strong convergence of the S-iteration process in a CAT(0) 

space. 

 

Theorem 4.3.7. ([58, Theorem 3.4]) Let , , ,{ },{ },{ }n n nX K T xa b  satisfy the 

hypotheses of Lemma 4.3.5 and T  be a mapping satisfying condition (I). Then the 

sequence { }nx  converges strongly to a fixed point of .T   
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Theorem 4.3.8. Let , , ,{ },{ },{ }n n nX K T xa b  satisfy the hypotheses of Lemma 4.3.5 

and K  be a compact subset of X . Then the sequence { }nx  converges strongly to a 

fixed point of .T   

 

Proof. By Lemma 4.3.5(ii), we have lim ( , ) = 0.n n nd x Tx®¥  Since K  is compact, 

there exists a subsequence { } of { }n nk
x x  such that .nk

x z K® Î  Since T  is a nonself 

mapping satisfying condition (E), we have 

( , ) ( , ) ( , )n n n nk k k k
d x Tz d x Tx d x zm£ +  

for some 1,m ³  for all .kÎ . Letting k ®¥ , we have { }nk
x  converges to .Tz  This 

implies = ,Tz z  that is ( ).z F TÎ  By Lemma 4.3.5(i), we have lim ( , )n nd x z®¥  exists, 

thus z  is the strong limit of the sequence { }nx . Therefore the sequence { }nx  

converges strongly to a fixed point of T . 

 

Lemma 4.3.9. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T K X®  be a nonself mapping satisfying condition (E) with 

( )F T ¹Æ . Let { },  { }n na b  and { }ng  be real sequences in [ ,1 ]e e-  for some 

(0,1)eÎ  and { }nx   be defined by the iteration process (4.3.2). Then,  

(1) lim ( , )n nd x x*®¥  exists for all ( )x F T*Î . 

(2) lim ( , ) = 0n n nd x Tx®¥ .  

 

Proof. (i) Suppose that ( )F T  is nonempty and ( ).x F T*Î  By Lemma 4.3.4, the 

nearest point projection :P X K®  is nonexpansive mapping. By the condition (E) 

for some 1,m ³  we obtain 
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( , ) = ( ((1 ) ), )

             ((1 ) ), )

             (1 ) ( , ) ( , )

             (1 ) ( , ) ( ( , ) ( , ))

              = (1 ) ( , ) ( ,

n n n n n

n n n n

n n n n

n n n n

n n n n

d z x d P x Tx Px

d x Tx x

d x x d Tx x

d x x d Tx x d x x

d x x d x x

g g

g g

g g

g g m

g g

* *

*

* *

* * * *

* *

- Å

£ - Å

£ - +

£ - + +

- + )

             = ( , ).nd x x*

 

Similarly, using by (4.3.9), we have 

( , ) ( , ).n nd y x d x x* *£  

Also, we get  

1( , ) = ( ((1 ) ), )

                ((1 ) , )

                (1 ) ( , ) ( , )

                (1 ) ( , ) ( ( , ) ( , ))

                 = (1 ) ( ,

n n n n n

n n n n

n n n n

n n n n

n n

d x x d P x Ty Px

d x Ty x

d x x d Ty x

d x x d Tx x d y x

d x

a a

a a

a a

a a m

a

* *
+

*

* *

* * * *

- Å

£ - Å

£ - +

£ - + +

- ) ( , )n nx d y xa* *+

 

Using (4.3.10) and (4.3.11), we obtain 1( , ) ( , ).n nd x x d x x* *
+ £  This implies that 

lim ( , )n nd x x*®¥  exists for all ( )x F T*Î . This completes the proof of part (i). 

(ii) Let 

lim ( , ) .n nd x x c*
®¥ =  

If = 0c  then we have lim ( , ) = 0.n n nd x Tx®¥  Let > 0.c  By the same method in the 

proof of Lemma 4.3.5(ii), we obtain 

lim ( , ) = .n nd y x c*
®¥  

Similarly, using by (4.3.13), we have  

lim ( , ) = .n nd z x c*
®¥  

(4.3.9) 

(4.3.10) 

(4.3.11) 

(4.3.12) 

(4.3.13) 

(4.3.14) 
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By Lemma 2.1.15(ii), we get

 

2 2

2

2 2 2

2 2

( , ) = ( ((1 ) ), )

               ((1 ) ), )

               (1 ) ( , ) ( , ) (1 ) ( , )

               (1 ) ( , ) ( ( , ) ( , )) (1

n n n n n

n n n n

n n n n n n n n

n n n n n n

d z x d P x Tx Px

d x Tx x

d x x d Tx x d x Tx

d x x d Tx x d x x

g g

g g

g g g g

g g m g g

* *

*

* *

* * * *

- Å

£ - Å

£ - + - -

£ - + + - - 2

2 2 2

2 2

) ( , )

                = (1 ) ( , ) ( , ) (1 ) ( , )

                = ( , ) (1 ) ( , ) .

n n

n n n n n n n n

n n n n n

d x Tx

d x x d x x d x Tx

d x x d x Tx

g g g g

g g

* *

*

- + - -

- -

 

This gives that 

2 2 2(1 ) ( , ) ( , ) ( , )n n n n n nd x Tx d x x d z xg g * *- £ -  

or 

2 2 2

2 2

2

1
( , ) ( , ) ( , )

(1 )

1
                 ( , ) ( , ) .

n n n n

n n

n n

d x Tx d x x d z x

d x x d z x

g g

e

* *

* *

é ù£ -ë û-

é ù£ -ë û

 

Using (4.3.12) and (4.3.14), we obtain lim ( , ) = 0n n nd x Tx®¥ . This completes the 

proof of part (ii).  

 

We give following theorems related to the strong and D -convergence of the Noor 

iteration process which their proofs are similar arguments of Theorem 4.3.6, 

Theorem 4.3.7 and Theorem 4.3.8, respectively. 

 

Theorem 4.3.10. Let , , ,{ },{ },{ },{ }n n n nX K T xa b g  satisfy the hypotheses of Lemma 

4.3.9. Then the sequence { }nx  D -converges to a fixed point of .T  

 

Theorem 4.3.11. Let , , ,{ },{ },{ },{ }n n n nX K T xa b g  satisfy the hypotheses of Lemma 

4.3.9. If T  satisfies condition (I) then the sequence { }nx  converges strongly to a 

fixed point of .T  
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Theorem 4.3.12. Let , , ,{ },{ },{ },{ }n n n nX K T xa b g  satisfy the hypotheses of Lemma 

4.3.9. If K  is a compact subset of X  then the sequence { }nx  converges strongly to a 

fixed point of .T  

 

Remark 4.3.13. It should be noted that Theorems 4.3.6-4.3.12 contain the 

corresponding theorems proved for a mapping satisfying condition (C). 

 



 

 

 

CHAPTER 5. THE CONVERGENCE RESULTS FOR SOME 

ITERATIVE PROCESSES IN CAT(0) SPACE 

 

 

In this section, the strong and D-convergence theorems of some iteration processes 

are proved in a CAT(0) space. 

 

5.1.  The Strong and D-Convergence of Some Iterative Algorithms for k -Strictly 

Pseudo-Contractive Mappings 

 

In this subsection, we prove the D -convergence theorems of the cyclic algorithm and 

the new multi-step iteration for k -strictly pseudo-contractive mappings and give also 

the strong convergence theorem of the modified Halpern’s iteration for these 

mappings in a CAT(0) space. 

 

Definition 5.1.1. [59] Let H  be a real Hilbert space and let C  be a nonempty closed 

convex subset of H . A mapping :T C H®  is said to be k -strictly pseudo-

contractive if there exists a constant [0,1)kÎ  such that 

2 2 2
( ) ( ) , , .Tx Ty x y k I T x I T y x y C- £ - + - - - " Î

 

 

Remark 5.1.2. [59] The class of k -strictly pseudo-contractive includes the class of 

nonexpansive mappings T  on C  as a subclass. That is, T  is nonexpansive if and 

only if T  is 0 -strictly pseudo-contractive. 

 

Definition 5.1.3. [59] The mapping T  is said to be pseudo-contractive if =1k  and 

T  is said to be strongly pseudo-contractive if there exists a constant (0,1)lÎ  such 

that T Il-  is pseudo-contractive. 
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Remark 5.1.4. [59] The class of k -strictly pseudo-contractive mappings falls into 

the one between classes of nonexpansive mappings and pseudo-contractive 

mappings. 

 

Remark 5.1.5. [60-62] The class of strongly pseudo-contractive mappings is 

independent from the class of k -strictly pseudo-contractive mappings.  

 

Many authors have been devoted the studies on the problems of finding fixed points 

for k -strictly pseudo-contractive mappings (see, [59, 63-65]). Motivated by these 

results, we define the concept of k -strictly pseudo-contractive mapping in a CAT(0) 

space as follows. 

 

Definition 5.1.6. Let C  be a nonempty closed convex subset of a CAT(0) space X . 

A mapping :T C C®  is said to be k -strictly pseudo-contractive if there exists a 

constant [0,1)kÎ  such that 

2 2 2( , ) ( , ) ( ( , ) ( , )) , , .d Tx Ty d x y k d x Tx d y Ty x y C£ + + " Î  

 

Gürsoy, Karakaya and Rhoades [66] introduced a new multi-step iteration in a 

Banach space. We modified this iteration in a CAT(0) space as follows. 

 

Definition 5.1.7. Let C  be a closed convex subset of a CAT(0) space X . For an 

arbitrary fixed order 2,k ³  

0

1 1

1

1 1 2 1 2

2 2 3 2 3

2 2 1 2 1

1 1 1

,

= (1 ) ,

= (1 ) ,

= (1 ) ,

= (1 ) ,

= (1 ) ,  0,

n n n n n

n n n n n

n n n n n

k k k k k

n n n n n

k k k

n n n n n

x C

x y Ty

y y Ty

y y Ty

y y Ty

y x Tx n

a a

b b

b b

b b

b b

+

- - - - -

- - -

Îì
ï

- Åï
ï - Åïï - Åí
ï
ï
ï - Å
ï

- Å ³ïî

 

or, in short, 

(5.1.1) 
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0

1 1

1

1 1

1 1 1

,

= (1 ) ,

= (1 ) , 1,2,..., 2,

= (1 ) ,  0.

n n n n n

i i i i i

n n n n n

k k k

n n n n n

x C

x y Ty

y y Ty i k

y x Tx n

a a

b b

b b

+

+ +

- - -

Îì
ï

- Åï
í

- Å = -ï
ï - Å ³î

 

By taking 3k =  and 2k =  in (5.1.2), we obtain the SP-iteration and the two-step 

iteration, respectively.

 

 

Acedo and Xu [67] introduced a cyclic algorithm in a Hilbert space. We modify this 

algorithm in a CAT(0) space as follows. 

 

Definition 5.1.8. Let 0x CÎ  and { }na  be a sequence in [ , ]a b  for some , (0,1)a bÎ . 

The cyclic algorithm generates a sequence { }nx  in the following way: 

1 0 0 0 0 0

2 1 1 1 1 1

1 1 1 1 1

1 0

= (1 ) ,

= (1 ) ,

= (1 ) ,

= (1 ) ,

N N N N N N

N N N N N

x x T x

x x T x

x x T x

x x T x

a a
a a

a a
a a
- - - - -

+

Å -ì
ï Å -ï
ïï
í Å -ï
ï Å -
ï
ïîî

 

or, in short, 

1 [ ]= (1 ) , 0,n n n n n nx x T x na a+ Å - ³  

where [ ] =n iT T , with = (mod ),0 1i n N i N£ £ - . By taking [ ] =nT T  for all n  in 

(5.1.3), we obtain the Mann iteration. 

 

By using the convergence defined in (2.1.1), we obtain the demiclosedness principle 

for k -strictly pseudo-contractive mappings in a CAT(0) space. 

 

Theorem 5.1.9. Let C  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T C C®  be a k -strictly pseudo-contractive mapping such that 

(5.1.3) 

(5.1.2) 
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1
0,

2
k

é öÎ ÷êë ø
 and ( )F T ¹Æ . Let { }nx  be a bounded sequence in C  such that 

lim =n nx w®¥D-  and lim ( , ) = 0n n nd x Tx®¥ . Then =Tw w . 

 

Proof. By the hypothesis, lim =n nx w®¥D- . From Proposition 2.1.25, we get 

{ }nx ww . Then we obtain ({ }) ={ }nA x w  by Lemma 2.1.22 (see [35]). Since 

lim ( , ) = 0n n nd x Tx®¥ , then we get 

( ) = limsup ( , ) = limsup ( , )n n
n n

x d x x d Tx x
®¥ ®¥

F  

for all x CÎ . In (5.1.4) by taking =x Tw, we have 

2 2

2 2

2 2

2 2

( ) = limsup ( , )

            limsup{ ( , ) ( ( , ) ( , )) }

            limsup ( , ) limsup( ( , ) ( , ))

            = ( ) ( , ) .

             

n
n

n n n
n

n n n
n n

Tw d Tx Tw

d x w k d x Tx d w Tw

d x w k d x Tx d w Tw

w kd w Tw

®¥

®¥

®¥ ®¥

F

£ + +

£ + +

F +

 

The (CN) inequality implies that 

2

2 2 21 1 1
, ( , ) ( , ) ( , ) .

2 2 2 4
n n n

w Tw
d x d x w d x Tw d w Tw

Åæ ö £ + -ç ÷
è ø

 

Letting n®¥  and taking limsup on the both sides of the above inequality, we get 

2

2 2 21 1 1
( ) ( ) ( , ) .

2 2 2 4

w Tw
w Tw d w Tw

Åæ öF £ F + F -ç ÷
è ø

 

Since ({ }) ={ }nA x w , we have 

2

2 2 2 21 1 1
( ) ( ) ( ) ( , )

2 2 2 4

w Tw
w w Tw d w Tw

Åæ öF £F £ F + F -ç ÷
è ø

 

which implies that 

2 2 2( , ) 2 ( ) 2 ( ) .d w Tw Tw w£ F - F  

(5.1.5) 

(5.1.4) 

(5.1.6) 
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By (5.1.5) and (5.1.6), we get 2(1 2 ) ( , ) 0.k d w Tw- £  Since 
1

0,
2

k
é öÎ ÷êë ø

, then we have 

=Tw w  as desired. 

 

Now, we prove the D -convergence of the new multi-step iteration for k -strictly 

pseudo-contractive mappings in a CAT(0) space. 

 

Theorem 5.1.10. Let C  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T C C®  be a k -strictly pseudo-contractive mapping such that 

1
0,

2
k

é öÎ ÷êë ø
 and ( )F T ¹Æ . Let { }na  

and { },  1,2,..., 2i

n i kb = -
 
be sequences in [ , ]a b  

for some , (0,1)a bÎ  and <1k b- . Let { }nx  be a sequence defined by (5.1.2). Then 

the sequence { }nx  is D -convergent to a fixed point of T . 

 

Proof. Let ( ).p F TÎ  From (5.1.1), (5.1.2) and Lemma 2.1.15(ii), we have 

2 1 1 2

1

1 2 1 2 1 1 2

1 2 1 2 1 1 2 1 1 2

( , ) = ((1 ) , )

                 (1 ) ( , ) ( , ) (1 ) ( , )

                 (1 ) ( , ) { ( , ) ( , ) } (1 ) ( , )

                  

n n n n n

n n n n n n n n

n n n n n n n n n n

d x p d y Ty p

d y p d Ty p d y Ty

d y p d y p kd y Ty d y Ty

a a

a a a a

a a a a

+ - Å

£ - + - -

£ - + + - -
1 2 1 1 2

1 2

= ( , ) ((1 ) ) ( , )

                 ( , ) .

n n n n n

n

d y p k d y Ty

d y p

a a- - -

£

 

Also, we obtain 

1 2 1 2 1 2 2

1 2 2 1 2 2 1 1 2 2 2

1 2 2 1 2 2 2 2 2 1 1 2 2 2

( , ) = ((1 ) , )

              (1 ) ( , ) ( , ) (1 ) ( , )

              (1 ) ( , ) { ( , ) ( , ) } (1 ) ( , )

               

n n n n n

n n n n n n n n

n n n n n n n n n n

d y p d y Ty p

d y p d Ty p d y Ty

d y p d y p kd y Ty d y Ty

b b

b b b b

b b b b

- Å

£ - + - -

£ - + + - -
2 2 1 1 2 2 2

2 2

= ( , ) ((1 ) ) ( , )

              ( , ) .

n n n n n

n

d y p k d y Ty

d y p

b b- - -

£

 

Continuing the above process we have 

2 1

1( , ) ( , ) ... ( , ) ( , ).k

n n n nd x p d y p d y p d x p-
+ £ £ £ £  (5.1.7) 
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This inequality guarentees that the sequence { }nx  is bounded and lim ( , )n nd x p®¥  

exists for all ( ).p F TÎ  Let lim ( , ) .n nd x p r®¥ =
 
By using (5.1.7), we get 

1lim ( , ) .k

n nd y p r-
®¥ =  

By Lemma 2.1.15(ii), we also have 

1 2 1 1 2

1 2 1 2 1 1 2

1 2 1 2 2

( , ) ((1 ) , )

                 (1 ) ( , ) ( , ) (1 ) ( , )

                 (1 ) ( , ) { ( , ) ( , ) }

                     

k k k

n n n n n

k k k k

n n n n n n n n

k k

n n n n n n

n

d y p d x Tx p

d x p d Tx p d x Tx

d x p d x p kd x Tx

b b

b b b b

b b

b

- - -

- - - -

- -

= - Å

£ - + - -

£ - + +

- 1 1 2

2 1 1 2

(1 ) ( , )

                  = ( , ) ((1 ) ) ( , ) ,

k k

n n n

k k

n n n n n

d x Tx

d x p k d x Tx

b

b b

- -

- -

-

- - -

 

which implies that 

2 2 1 21
( , ) [ ( , ) ( , ) ].

((1 ) )

k

n n n nd x Tx d x p d y p
a b k

-£ -
- -

 

Thus lim ( , ) = 0n n nd x Tx®¥ . To show that the sequence { }nx  is D -convergent to a 

fixed point of T , we prove that ( ) ( )nW x F TD Í  and ( )nW xD  consists of exactly one 

point. Let ( ).nu W xDÎ  Then, there exists a subsequence { }nu  of { }nx  such that 

({ }) ={ }nA u u . By Lemmas 2.1.21 and 2.1.22, there exists a subsequence { }nv  of 

{ }nu  such that lim = .n nv v K®¥D- Î  By Theorem 5.1.9, we have ( )v F TÎ  and by 

Lemma 2.1.23, we have = ( )u v F TÎ . This shows that ( ) ( )nW x F TD Í . Now we 

prove that ( )nW xD  consists of exactly one point. Let { }nu  be a subsequence of { }nx  

with ({ }) ={ }nA u u  and let ({ }) ={ }nA x x . We have already seen that =u v  and 

( )v F TÎ . Finally, since { ( , )}nd x v  is convergent, we have = ( )x v F TÎ  by Lemma 

2.1.23. This shows ( ) { }.nW x xD =  This completes the proof. 

 

Also, we prove the D -convergence of the cyclic algorithm for k -strictly pseudo-

contractive mappings in a CAT(0) space. 

 

Theorem 5.1.11. Let C  be a nonempty closed convex subset of a complete CAT(0) 

space X  and 1N ³  be an integer. Let, for each 0 1,i N£ £ -  :iT C C®  be ik -
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strictly pseudo-contractive mappings for some 
1

0 < .
2

ik£  Let 

= max{ ;0 1}ik k i N£ £ - , { }na  be a sequence in [ , ]a b  for some , (0,1)a bÎ  and 

<k a . Let 1

=0= ( )N

i iF F T-Ç ¹Æ . For 0x CÎ , let { }nx  be a sequence defined by 

(5.1.3). Then the sequence { }nx  is D -convergent to a common fixed point of the 

family 1

=0{ }N

i iT - . 

 

Proof. Let .p FÎ  Using (5.1.1), (5.1.3) and Lemma 2.1.15(ii), we have 

2 2

1 [ ]

2 2 2

[ ] [ ]

2 2 2 2

[ ] [ ]

( , ) = ( (1 ) , )

                 ( , ) (1 ) ( , ) (1 ) ( , )

                 ( , ) (1 ){ ( , ) ( , ) } (1 ) ( , )

               

n n n n n n

n n n n n n n n n n

n n n n n n n n n n n n

d x p d x T x p

d x p d T x p d x T x

d x p d x p kd x T x d x T x

a a

a a a a

a a a a

+ Å -

£ + - - -

£ + - + - -
2 2

[ ]

2

  = ( , ) (1 )( ) ( , )

                 ( , ) .

n n n n n n

n

d x p k d x T x

d x p

a a- - -

£

 

This inequality guarentees that the sequence { }nx  is bounded and lim ( , )n nd x p®¥  

exists for all .p FÎ  By (5.1.8), we also have 

2 2 2

[ ] 1

2 2

1

1
( , ) ( , ) ( , )

(1 )( )

1
                    ( , ) ( , ) .

(1 )( )

n n n n n

n n

n n

d x T x d x p d x p
k

d x p d x p
b a k

a a +

+

é ù£ -ë û- -

é ù£ -ë û- -

 

Since lim ( , )n nd x p®¥  exists, we obtain [ ]lim ( , ) = 0n n n nd x T x®¥ . The rest of the proof 

closely follows the proof of Theorem 5.1.10. 

 

Hu [68] introduced a modified Halpern’s iteration. We modify this iteration in a 

CAT(0) space as follows. 

 

Definition 5.1.12. [69] For an arbitrary initial value 0x CÎ  and a fixed anchor 

,u CÎ  the iterative sequence { }nx  is defined by 

1 = (1 ) ,

= , 0,
1 1

n n n n

n n
n n n

n n

x u y

y x Tx n

a a
b g
a a

+ Å -ì
ï
í Å ³ï - -î

 

(5.1.8) 

(5.1.9) 
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where { },{ },{ }n n na b g  are three real sequences in (0,1)  satisfying =1n n na b g+ + . 

 

Remark 5.1.13. [69] Clearly, the iterative sequence (5.1.9) is a natural generalization 

of the well known iterations. 

(i) If we take = 0nb  for all n  in (5.1.9), then the sequence (5.1.9) is reduced to 

the Halpern’s iteration in [70]. 

(ii) If we take = 0na  for all n  in (5.1.9), then the sequence (5.1.9) is reduced to 

the Mann iteration. 

 

Definition 5.1.14. [71] A continous linear functional m  on ¥¥ , the Banach space of 

bounded real sequences, is called a Banach limit if 1=(1,1,...)= mm  and 

1( ) = ( )n na am m +  for all 1{ }n na ¥
= ¥Ì= ¥ . 

 

Lemma 5.1.15. ([71, Proposition 2]) Let 1 2{ , ,...}a a ¥Î ¥  be such that ( ) 0nam £  for 

all Banach limits m  and 1limsup ( ) 0.n n na a®¥ + - £  Then, limsup 0.n na®¥ £  

 

Lemma 5.1.16. Let C  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T C C®  be a k-strictly pseudo-contractive mapping with [0,1)kÎ  and 

:S C C®  be a mapping defined by = (1 ) ,Sz kz k TzÅ -  for z CÎ . Let u CÎ  be 

fixed. For each [0,1]tÎ , the mapping :tS C C®  defined by 

= (1 ) = (1 )( (1 ) ), for ,tS z tu t Sz tu t kz t Tz z CÅ - Å - Å - Î  

has a unique fixed point tz CÎ , that is, 

= ( ) = (1 ) ( ).t t t tz S z tu t S zÅ -  

 

Proof. As it has been proven in [72], if T  is a k -strictly pseudo-contractive mapping 

with [0,1),kÎ  S  is a nonexpansive mapping such that ( ) = ( )F S F T . Then, from 

Lemma 2.1 in [73], the mapping tS  has a unique fixed point .tz CÎ  

 

(5.1.10) 
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Lemma 5.1.17. Let , ,X C T  and S  be as in Lemma 5.1.16. Then, ( )F T ¹Æ  if and 

only if { }tz  given by (5.1.10) remains bounded as 0t ® . In this case, the following 

statements hold: 

(1) { }tz  converges to the unique fixed point z  of T  which is nearest to u , 

(2) 2 2( , ) ( , )nd u z d u xm£  for all Banach limits m  and all bounded sequences 

{ }nx  with lim ( , ) = 0.n n nd x Tx®¥  

 

Proof. If ( ) ,F T ¹Æ  then we have ( ) = ( ) .F S F T ¹Æ  Also, if lim ( , ) = 0n n nd x Tx®¥ , 

we obtain that 

( , ) = ( , (1 ) ) (1 ) ( , ) 0  as  .n n n n n n nd x Sx d x kx k Tx k d x Tx nÅ - £ - ® ®¥  

Thus, from Lemma 2.2 in [73], the rest of the proof of this lemma can be seen. 

 

Lemma 5.1.18. ([74, Lemma 2.1]) Let { }na  be a sequence of non-negative real 

numbers satisfying the condition 

1 (1 ) , 0,n n n n na a ng g s+ £ - + " ³  

where { }ng  and { }ns  are sequences of real numbers such that 

(1) { } [0,1]ng Ì  and 
1

= ,n
n

g
¥

=

¥å  

(2) either lim 0sup nn
s®¥ £  or 

1

< .n n
n

g s
¥

=

¥å  

Then, lim = 0.n na®¥   

 

Theorem 5.1.19. Let C  be a nonempty closed convex subset of a complete CAT(0) 

space X  and :T C C®  be a k -strictly pseudo-contractive mapping such that 

0 < 1
1

n

n

k
b
a

£ <
-

 and ( )F T ¹Æ . Let { }nx  be a sequence defined by (5.1.9). 

Suppose that { }na ,{ }nb  and { }ng  satisfy the following conditions: 

(C1) lim = 0n na®¥ ,  
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(C2) 
1

= ,n
n

a
¥

=

¥å  

(C3) limn n kb®¥ ¹  and lim 0n ng®¥ ¹ . 

Then the sequence { }nx  converges strongly to a fixed point of T .  

 

Proof. We divide the proof into three steps. In the first step we show that { },  { }n nx y  

and { }nTx  are bounded sequences. In the second step we show that 

lim ( , ) = 0n n nd x Tx®¥  Finally, we show that { }nx  converges to a fixed point ( )z F TÎ  

which is nearest to u . 

First step: Take any ( )p F TÎ , then, from Lemma 2.1.15(ii) and (5.1.9), we have 

2 2 2 2

2

2 2 2 2

2

2 2

( , ) ( , ) ( , ) ( , )
1 1 (1 )

              ( , ) ( ( , ) ( , ) ) ( , )
1 1 (1 )

              = ( , ) ( , )
1 1

     

n n n n
n n n n n

n n n

n n n n
n n n n n n

n n n

n n
n n n

n n

d y p d x p d Tx p d x Tx

d x p d x p kd x Tx d x Tx

d x p k d x Tx

b g b g
a a a

b g b g
a a a

g b
a a

£ + -
- - -

£ + + -
- - -

æ ö
- -ç ÷- -è ø

2         ( , ) .nd x p£

 

Also, we obtain 

2 2 2 2

1

2 2 2

2

2

( , ) ( , ) (1 ) ( , ) (1 ) ( , )

                ( , ) (1 ) ( , ) ( , )
1 1

                    (1 ) ( , )

                = ( , ) (1

n n n n n n n

n n
n n n n n

n n

n n n

n

d x p d u p d y p d u y

d u p d x p k d x Tx

d u y

d u p

a a a a

g ba a
a a

a a

a

+ £ + - - -

ì üæ öï ï£ + - - -í ýç ÷- -ï ïè øî þ
- -

+ 2 2

2

2 2

2 2

) ( , ) ( , )
1

                   (1 ) ( , )

                 ( , ) (1 ) ( , )

                 max{ ( , ) , ( , ) }.

n
n n n n n

n

n n n

n n n

n

d x p k d x Tx

d u y

d u p d x p

d u p d x p

ba g
a

a a

a a

æ ö
- - -ç ÷-è ø

- -

£ + -

£

 

By induction, 

2 2 2

1 0( , ) max{ ( , ) , ( , ) }.nd x p d u p d x p+ £  

(5.1.11) 
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This proves the boundedness of the sequence { }nx , which leads to the boundedness 

of { }nTx  and { }.ny  

Second step: In fact, we have from (5.1.11) (for some appropriate constant > 0M ) 

that 

2 2 2 2

1

2 2 2 2

2 2

( , ) ( , ) (1 ) ( , ) ( , )
1

                = ( ( , ) ( , ) ) ( , ) ( , )
1

                ( , ) ( , ) ,
1

n
n n n n n n n

n

n
n n n n n n

n

n
n n n n n

n

d x p d u p d x p k d x Tx

d u p d x p d x p k d x Tx

M d x p k d x Tx

ba a g
a

ba g
a

ba g
a

+

æ ö
£ + - - -ç ÷-è ø

æ ö
- + - -ç ÷-è ø

æ ö
£ + - -ç ÷-è ø

 

which implies that 

2 2 2

1( , ) ( , ) ( , ) .
1

n
n n n n n n

n

k d x Tx M d x p d x p
bg a
a +

æ ö
- - £ -ç ÷-è ø

 

If 2( , ) 0
1

n
n n n n

n

k d x Tx M
bg a
a

æ ö
- - £ç ÷-è ø

, then 

2( , ) ,

1

n
n n

n
n

n

d x Tx M

k

a
bg
a

£
æ ö

-ç ÷-è ø

 

and hence the desired result is obtained by the conditions (C1) and (C3) . 

If 2( , ) > 0
1

n
n n n n

n

k d x Tx M
bg a
a

æ ö
- -ç ÷-è ø

, then following (5.1.12), we have 

2 2 2 2

0 1 0
=0

( , ) ( , ) ( , ) ( , ) .
1

m
n

n n n n m
n n

k d x Tx M d x p d x p d x p
bg a
a +

é ùæ ö
- - £ - £ê úç ÷-è øë û

å  

That is 

2

=0

( , ) < .
1

n
n n n n

n n

k d x Tx M
bg a
a

¥ é ùæ ö
- - ¥ê úç ÷-è øë û

å  

Thus 

(5.1.12) 
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2( , ) = 0.lim
1

n
n n n n

n
n

k d x Tx M
bg a
a®¥

é ùæ ö
- -ê úç ÷-è øë û

 

Then we get 

lim ( , ) = 0.n n nd x Tx®¥  

Third step: Using the condition (C1) and (5.1.13), we obtain 

1 1( , ) ( , ) ( , )

                ( , ) (1 ) ( , ) ( , )

                ( , ) (1 ) ( , ) ( , )
1

                = ( , ) ( 1) ( , ) 0  as 

n n n n n n

n n n n n n n

n
n n n n n n n

n

n n n n n

d x x d x Tx d Tx x

d u Tx d y Tx d Tx x

d u Tx d x Tx d Tx x

d u Tx d x Tx n

a a

ba a
a

a b

+ +£ +

£ + - +

æ ö
£ + - +ç ÷-è ø

+ + ® .®¥

 

Also, from (5.1.13), we have 

( , ) ( , ) 0 as .
1

n
n n n n

n

d x y d x Tx n
g
a

£ ® ®¥
-

 

Let 0= lim ,t tz z®  where tz  is given by (5.1.10) in Lemma 5.1.16. Then, z  is the 

point of ( )F T  which is nearest to u . By Lemma 5.1.17(2), we have 

2 2( ( , ) ( , ) ) 0nd u z d u xm - £  for all Banach limits m . Let 
2 2( , ) ( , ) .n na d u z d u x= -  

Moreover, since 1lim ( , ) = 0,n n nd x x®¥ +  
we get 

1limsup ( ) 0.n n na a®¥ + - =  

By Lemma 5.1.15, we obtain 

2 2limsup ( ( , ) ( , ) ) 0.n nd u z d u x®¥ - £
 

It follows from the condition (C1) and (5.1.14) that
 

2 2 2 2limsup ( ( , ) (1 ) ( , ) ) limsup ( ( , ) ( , ) )n n n n nd u z d u y d u z d u xa®¥ ®¥- - = -
 

By (5.1.15) and (5.1.16), we have 

2 2limsup ( ( , ) (1 ) ( , ) ) 0.n n nd u z d u ya®¥ - - £  

We observe that 

(5.1.13) 

(5.1.14) 

(5.1.15) 

) 

(5.1.16) 

) 

(5.1.17) 

) 
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2 2 2 2

1

2 2 2

2 2 2

( , ) ( , ) (1 ) ( , ) (1 ) ( , )

                ( , ) (1 ) ( , ) (1 ) ( , )

                = (1 ) ( , ) [ ( , ) (1 ) ( , ) ].

n n n n n n n

n n n n n n

n n n n n

d x z d u z d y z d u y

d u z d x z d u y

d x z d u z d u y

a a a a

a a a a

a a a

+ £ + - - -

£ + - - -

- + - -

 

It follows from the condition (C2) and (5.1.17), using Lemma 5.1.18, that 

lim ( , ) = 0n nd x z®¥ . This completes the proof of Theorem 5.1.19. 

 

We obtain the following corollary as a direct consequence of Theorem 5.1.19. 

 

Corollary 5.1.20. Let ,  X C  and T  be as Theorem 5.1.19. Let { }na  be a real 

sequence in (0,1)  satisfying the conditions (C1) and (C2) of Theorem 5.1.19. For a 

constant ( ,1)kdÎ , an arbitrary initial value 0x CÎ  and a fixed anchor ,u CÎ  let the 

sequence { }nx  be defined by 

1 = (1 )( (1 ) ), 0.n n n n nx u x Tx na a d d+ Å - Å - ³  

Then the sequence { }nx  is strongly convergent to a fixed point of T .  

 

Proof. If, in proof of Theorem 5.1.19, we take = (1 )n nb a d-  and 

= (1 )(1 )n ng a d- - , then we get the desired conclusion. 

 

Remark 5.1.21. Theorem 5.1.19 contains the strong convergence theorems of the 

iterative sequences (5.1.9) and (5.1.18) for nonexpansive mappings in a CAT(0) 

space. Also, this theorem contains the corresponding theorems proved for these 

iterative sequences in a Hilbert space.  

 

5.2.  The Strong and D-Convergence of New Multi-Step and S-Iteration 

Processes 

 

In this subsection, we introduce a new class of mappings and prove the 

demiclosedness principle for mappings of this type in a CAT(0) space. Also, we 

obtain the strong and D -convergence theorems of new multi-step and S-iteration 

processes in a CAT(0) space. 

(5.1.18) 

) 
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Definition 5.2.1. [75] Let T  be a self mapping on a metric space X . The mapping 

T  is called a contractive-like mapping if there exist a constant [0,1)dÎ  and a 

strictly increasing and continuous function :[0, ) [0, )j ¥ ® ¥  with (0) = 0j  such 

that, for all ,x y XÎ , 

( , ) ( , ) ( ( , )).d Tx Ty d x y d x Txd j£ +  

 

Remark 5.2.2. [75] This mapping is more general than those considered by Berinde 

[76, 77], Harder and Hicks [78], Zamfirescu [79], Osilike and Udomene [80]. 

 

By taking =1d  in (5.2.1), we define a new class of mappings as follows. 

 

Definition 5.2.3. [81] The mapping T  is called a generalized nonexpansive mapping 

if there exists a non-decreasing and continuous function :[0, ) [0, )j ¥ ® ¥  with 

(0) = 0j  such that, for all ,x y XÎ , 

( , ) ( , ) ( ( , )).d Tx Ty d x y d x Txj£ +  

 

Remark 5.2.4. For ( )x F TÎ  in (5.2.2), we have 

( , ) = ( , ) ( , ) ( ( , )) = ( , ).d x Ty d Tx Ty d x y d x Tx d x yj£ +  

 

Fact 5.2.5. [81] If X  is an interval of , then ( )F T  is convex. The same is also 

true in each space with unique geodesic for each pair of points (e.g. metric trees or 

CAT(0) spaces).  

 

Remark 5.2.6. In the case ( ) = 0tj  for all [0, )tÎ ¥ , it is easy to show every 

nonexpansive mapping satisfies (5.2.2), but the inverse is not necessarily true. 

 

Example 5.2.7. [81] Let =[0,2],  ( , ) = ,  ( ) =X d x y x y t tj-  and define T  by 

0   if 2,  
( ) =

1   if = 2.

x
T x

x

¹ì
í
î

 

(5.2.2) 

(5.2.1) 
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By taking = 2x  and =1.5y , we have 

( (2), (1.5)) =1<1.5 = (2,1.5) ( (2, (2)))d T T d d Tj+  

but 

( (2), (1.5)) =1 0.5 = (2,1.5).d T T d>  

Therefore T  is a generalized nonexpansive mapping, but T  is not nonexpansive 

mapping.  

 

Remark 5.2.8. Both a contractive-like mapping and a generalized nonexpansive 

mapping doesn’t need to have a fixed point, even if X  is a complete.  

 

Example 5.2.9. [81] Let =[0, ),  ( , ) =X d x y x y¥ -  and define T  by 

1    if 0 0.8,
( ) =

0.6 if 0.8 < < .

x
T x

x

£ £ì
í +¥î

 

It is proved in [66] that T  is a contractive-like mapping. Similarly, one can prove 

that T  is a generalized nonexpansive mapping. But the mapping T  has no fixed 

point. 

 

Remark 5.2.10. By using (5.2.1), it is obvious that if a contractive-like mapping has 

a fixed point then it is unique. However, if a generalized nonexpansive mapping has 

a fixed point then it doesn’t need to have unique.  

 

Example 5.2.11. [81] Let  be the real line with the usual absolute metric and let 

=[ 1,1]K - . Define a mapping :T K K®  by 

, if [0,1],
( ) =

, if [ 1,0).

x x
T x

x x

Îì
í- Î -î

 

Now, we show that T  is a nonexpansive mapping. In fact, if , [0,1]x yÎ  or 

, [ 1,0)x yÎ - , then we have 

= .Tx Ty x y- -  
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If [0,1]xÎ  and [ 1,0)yÎ -  or [ 1,0)xÎ -  and [0,1]yÎ , then we have 

= .Tx Ty x y x y- + £ -  

This implies that T  is a nonexpansive mapping and so T  is a generalized 

nonexpansive mapping with ( ) = 0tj  for all [0, )tÎ ¥ . But ( ) ={ ;0 1}.F T x K xÎ £ £  

 

By using the convergence defined in (2.1.1), we obtain the demiclosedness principle 

for the new class of mappings in a CAT(0) space. 

 

Theorem 5.2.12. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X  and let :T K K®  be a generalized nonexpansive mapping with 

( ) .F T ¹Æ  Let { }nx  be a bounded sequence in K  such that lim =n nx w®¥D-  and 

lim ( , ) = 0n n nd x Tx®¥ . Then =Tw w .  

 

Proof. By the hypothesis, lim =n nx w®¥D- . From Proposition 2.1.25, we get 

{ }nx ww . Then we obtain ({ }) ={ }nA x w  by Lemma 2.1.22. Since 

lim ( , ) = 0n n nd x Tx®¥  then we have 

( ) = limsup ( , ) = limsup ( , )n n
n n

x d x x d Tx x
®¥ ®¥

F  

for all x KÎ . By taking =x Tw in (5.2.3), we have 

( ) = limsup ( , )

           limsup{ ( , ) ( ( , ))}

           limsup ( , ) limsup ( , )

           = limsup ( , )

           = ( ).

n
n

n n n
n

n n n
n n

n
n

Tw d Tx Tw

d x w d x Tx

d x w d x Tx

d x w

w

j

j

®¥

®¥

®¥ ®¥

®¥

F

£ +

æ ö£ + ç ÷
è ø

F

 

The rest of the proof closely follows the pattern of Proposition 3.14 in Nanjaras and 

Panyanak [35]. Hence =Tw w  as desired.  

 

(5.2.3) 
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Now, we prove the D -convergence of the new multi-step iteration process for the 

new class of mappings in a CAT(0) space. 

 

Theorem 5.2.13. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be a generalized nonexpansive mapping with ( )F T ¹Æ  and 

let { }nx  be a sequence defined by (5.1.2) such that { },  { } [0,1],i

n na b Ì  

=1,2,..., 2i k -  and 
1{ } [ , ]k

n a bb - Ì  for some , (0,1)a bÎ . Then the sequence { }nx  D -

converges to the fixed point of T .  

 

Proof. Let ( ).p F TÎ  From (5.1.2), (5.2.2) and Lemma 2.1.15(i), we have 

1 1

1

1 1

1 1

1

( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) { ( , ) ( ( , ))}

               = ( , ).

n n n n n

n n n n

n n n n

n

d x p d y Ty p

d y p d Ty p

d y p d y p d p Tp

d y p

a a

a a

a a j

+ - Å

£ - +

£ - + +
 

Also, we obtain 

1 1 2 1 2

1 2 1 2

1 2 1 2

2

( , ) = ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) { ( , ) ( ( , ))}

             = ( , ).

n n n n n

n n n n

n n n n

n

d y p d y Ty p

d y p d Ty p

d y p d y p d p Tp

d y p

b b

b b

b b j

- Å

£ - +

£ - + +
 

Continuing the above process, we have 

1 2 1

1( , ) ( , ) ( , ) ... ( , ) ( , ).k

n n n n nd x p d y p d y p d y p d x p-
+ £ £ £ £ £  

This implies that lim ( , )n nd x p®¥  exists for all ( ).p F TÎ  Let lim ( , ) =n nd x p r®¥ . 

By using (5.2.4), we get 

1lim ( , ) = .k

n nd y p r-
®¥  

By Lemma 2.1.15(ii), we also have 

(5.2.4) 
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1 2 1 1 2

1 2 1 2 1 1 2

1 2 1 2

( , ) = ((1 ) , )

                 (1 ) ( , ) ( , ) (1 ) ( , )

                 (1 ) ( , ) { ( , ) ( ( , ))}

                      

k k k

n n n n n

k k k k

n n n n n n n n

k k

n n n n

n

d y p d x Tx p

d x p d Tx p d x Tx

d x p d x p d p Tp

b b

b b b b

b b j

b

- - -

- - - -

- -

- Å

£ - + - -

£ - + +

- 1 1 2

2 1 1 2

(1 ) ( , )

                 = ( , ) (1 ) ( , ) ,

k k

n n n

k k

n n n n n

d x Tx

d x p d x Tx

b

b b

- -

- -

-

- -

 

which implies that 

2 2 1 21
( , ) [ ( , ) ( , ) ].

(1 )

k

n n n nd x Tx d x p d y p
a b

-£ -
-

 

Thus lim ( , ) = 0n n nd x Tx®¥ . To show that the sequence { } nx D -converges to a fixed 

point of ,T  we prove that ( ) ( )nW x F TD Í  and ( )nW xD  consists of exactly one point. 

Let ( ).nu W xDÎ  Then, there exists a subsequence { }nu  of { }nx  such that 

({ }) ={ }.nA u u  By Lemmas 2.1.21 and 2.1.22, there exists a subsequence { }nv  of 

{ }nu  such that lim = .n nv v K®¥D- Î  By Theorem 5.2.12, ( ).v F TÎ  By Lemma 

2.1.23, we have = ( ).u v F TÎ  This shows that ( ) ( ).nW x F TD Í  Now, we prove that 

( )nW xD  consists of exactly one point. Let { }nu  be a subsequence of { }nx  with 

({ }) ={ }nA u u  and let ({ }) ={ }.nA x x  We have already seen that =u v  and ( ).v F TÎ  

Finally, since { ( , )}nd x v  converges, by Lemma 2.1.23, = ( ).x v F TÎ  This shows that 

( ) ={ }.nW x xD  This completes the proof.  

 

We give following theorem related to the D -convergence of the S-iteration process 

for the new class of mappings in a CAT(0) space. 

 

Theorem 5.2.14. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be a generalized nonexpansive mapping with ( )F T ¹Æ  and 

let { }nx  be a sequence defined by (4.1.1) such that { },{ } [ , ]n n a ba b Ì  for some 

, (0,1)a bÎ . Then the sequence { }nx  D -converges to the fixed point of T .  

 

Proof. Let ( ).p F TÎ  Using (4.1.1), (5.2.2) and Lemma 2.1.15(i), we have 
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1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ){ ( , ) ( ( , ))} { ( , ) ( ( , ))}

               = (1 ) ( , ) ( , ).

n n n n n

n n n n

n n n n

n n n n

d x p d Tx Ty p

d Tx p d Ty p

d x p d p Tp d y p d p Tp

d x p d y p

a a
a a
a j a j
a a

+ - Å

£ - +

£ - + + +

- +

 

Also, we obtain 

( , ) = ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) { ( , ) ( ( , ))}

             = ( , ).

n n n n n

n n n n

n n n n

n

d y p d x Tx p

d x p d Tx p

d x p d x p d p Tp

d x p

b b
b b
b b j

- Å

£ - +

£ - + +
 

From (5.2.5) and (5.2.6), we have 1( , ) ( , ).n nd x p d x p+ £  This implies that 

lim ( , )n nd x p®¥  exists for all ( ).p F TÎ  Let 

lim ( , ) = .n nd x p r®¥  

Now, we prove that lim ( , ) = .n nd y p r®¥  By (5.2.5), we have 

1( , ) (1 ) ( , ) ( , ).n n n n nd x p d x p d y pa a+ £ - +  

This gives that 

1( , ) ( , ) ( , ) ( , )n n n n n nd x p d x p d y p d x pa a +£ + -  

or 

1

1

1
( , ) ( , ) [ ( , ) ( , )]

1
            ( , ) [ ( , ) ( , )].

n n n n

n

n n n

d x p d y p d x p d x p

d y p d x p d x p
a

a +

+

£ + -

£ + -

 

This gives liminf ( , ).n nr d y p®¥£  By (5.2.6) and (5.2.7), we obtain 

limsup ( , ) .n nd y p r®¥ £  Then, we get 

lim ( , ) = .n nd y p r®¥  

By Lemma 2.1.15(ii), we also have 

(5.2.5) 

(5.2.6) 

(5.2.7) 
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2 2

2 2 2

2 2 2

2

( , ) = ((1 ) , )

              (1 ) ( , ) ( , ) (1 ) ( , )

              (1 ) ( , ) { ( , ) ( ( , ))} (1 ) ( , )

              = ( , ) (1 ) ( ,

n n n n n

n n n n n n n n

n n n n n n n n

n n n n

d y p d x Tx p

d x p d Tx p d x Tx

d x p d x p d p Tp d x Tx

d x p d x Tx

b b

b b b b

b b j b b

b b

- Å

£ - + - -

£ - + + - -

- - 2) ,n

 

which implies that 

2 2 21
( , ) [ ( , ) ( , ) ].

(1 )
n n n nd x Tx d x p d y p

a b
£ -

-
 

Thus lim ( , ) = 0n n nd x Tx®¥ . The rest of the proof follows the pattern of the above 

theorem.  

 

Now, we prove the strong convergence theorem of the new multi-step iteration 

process for a contractive-like mapping in a CAT(0) space. 

 

Theorem 5.2.15. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be a contractive-like mapping with ( )F T ¹Æ  and let { }nx  be 

a sequence defined by (5.1.2) such that { } [0,1),na Ì  
=0

=n
n

a
¥

¥å  and { } [0,1),i

nb Ì  

=1,2,..., 1i k - . Then the sequence { }nx  converges strongly to the unique fixed point 

of T .  

 

Proof. Let p  be the unique fixed point of T . From (5.1.2), (5.2.1) and Lemma 

2.1.15(i), we have 

1 1

1

1 1

1 1

1 1

( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) { ( , ) ( ( , ))}

               = (1 ) ( , ) ( , )

               = [1 (1 )] (

n n n n n

n n n n

n n n n

n n n n

n

d x p d y Ty p

d y p d Ty p

d y p d y p d p Tp

d y p d y p

d y

a a

a a

a a d j

a a d

a d

+ - Å

£ - +

£ - + +

- +

- - 1 , ).n p

 

Also, we obtain 
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1 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

( , ) = ((1 ) , )

            (1 ) ( , ) ( , )

            (1 ) ( , ) { ( , ) ( ( , ))}

            = (1 ) ( , ) ( , )

           = [1 (1 )] ( , )

n n n n n

n n n n

n n n n

n n n n

n n

d y p d y Ty p

d y p d Ty p

d y p d y p d p Tp

d y p d y p

d y p

b b

b b

b b d j

b b d

b d

- Å

£ - +

£ - + +

- +

- - .

 

In a similar fashion, we can get 

2 2 3( , ) 1 (1 )] ( , ).n n nd y p d y pb d£ - -  

Continuing the above process we have 

1 2 2 1

1( , ) [1 (1 )][1 (1 )][1 (1 )]...[1 (1 )] ( , ).k k

n n n n n nd x p d y pa d b d b d b d- -
+ £ - - - - - - - -  

In addition, we obtain 

1 1 1

1 1

1 1

1 1

( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) { ( , ) ( ( , ))}

               = (1 ) ( , ) ( , )

             

k k k

n n n n n

k k

n n n n

k k

n n n n

k k

n n n n

d y p d x Tx p

d x p d Tx p

d x p d x p d p Tp

d x p d x p

b b

b b

b b d j

b b d

- - -

- -

- -

- -

- Å

£ - +

£ - + +

- +
1  = [1 (1 )] ( , ).k

n nd x pb d-- -

 

From (5.2.8) and (5.2.9), we have 

1 2

1

2 1

0

=0

(1 )

=0

( , ) [1 (1 )][1 (1 )][1 (1 )]...

                   [1 (1 )][1 (1 )] ( , )

               [1 (1 )] ( , )

              [1 (1 )] ( , )

             

n n n n

k k

n n n

n n

n

j

j

n

j

d x p

d x p

d x p

d x p

e

d

a d b d b d

b d b d
a d

a d

+

- -

- -

£ - - - - - -

- - - -

£ - -

£ - -

£

Õ

å
0( , ).

j

d x p

a

 

Using the fact that 0 <1,  [0,1]jd a£ Î  and 
=0

= ,n
n

a
¥

¥å  we get that 

(1 )

=0lim = 0.

n

j

j
n e

d a- -

®¥

å
 

(5.2.8) 

(5.2.9) 

(5.2.10) 
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This together with (5.2.10) implies that 1lim ( , ) = 0.n nd x p®¥ +  Consequently 

( )nx p F T® Î  and this completes the proof.  

 

Remark 5.2.16. In Theorem 5.2.15, the condition 
=0

=n
n

a
¥

¥å  may be replaced with 

=0

=i

n
n

b
¥

¥å  for a fixed =1,2,..., 1.i k - .  

 

We give the strong convergence theorem of the S-iteration process for a contractive-

like mapping on a CAT(0) space as follows. 

 

Theorem 5.2.17. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be a contractive-like mapping with ( )F T ¹Æ  and let { }nx  be 

a sequence defined by (4.1.1) such that { },{ } [0,1]n na b Ì . Then the sequence { }nx  

converges strongly to the unique fixed point of T .  

 

Proof. Let p  be the unique fixed point of T . From (5.1.2), (5.2.1) and Lemma 

2.1.15(i), we have 

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ){ ( , ) ( ( , ))} { ( , ) ( ( , ))}

               = (1 ) ( , ) ( , ).

n n n n n

n n n n

n n n n

n n n n

d x p d Tx Ty p

d Tx p d Ty p

d x p d p Tp d y p d p Tp

d x p d y p

a a
a a
a d j a d j
a d a d

+ - Å

£ - +

£ - + + +

- +

 

Similarly, we obtain 

( , ) = ((1 ) , )

            (1 ) ( , ) ( , )

            (1 ) ( , ) { ( , ) ( ( , ))}

            = (1 ) ( , ) ( , )

            = (1 (1 )) ( , )

            ( ,

n n n n n

n n n n

n n n n

n n n n

n n

n

d y p d x Tx p

d x p d Tx p

d x p d x p d p Tp

d x p d x p

d x p

d x

b b
b b
b b d j
b b d
b d

- Å

£ - +

£ - + +

- +

- -

£ ).p

 

Then from (5.2.11) and (5.2.12), we get that 

(5.2.11) 

(5.2.12) 
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1

1

0

( , ) (1 ) ( , ) ( , )

               (1 ) ( , ) ( , )

               ( , )

                

               ( , ).

n n n n n

n n n n

n

n

d x p d x p d y p

d x p d x p

d x p

d x p

a d a d
a d a d

d

d

+

+

£ - +

£ - +

£

£

 

If (0,1)dÎ , we obtain 1lim ( , ) = 0.n nd x p®¥ +  Thus we have ( )nx p F T® Î . If 

= 0,d  the result is clear. This completes the proof. 

 

5.3.  The Strong Convergence of Modified S-Iteration Process for Asymptotically 

Quasi-Nonexpansive Mappings 

 

In this subsection, we prove the strong convergence theorems of the modified S-

iteration process for asymptotically quasi-nonexpansive mappings on a CAT(0) 

space. 

 

Agarwal, O’Regan and Sahu [15] introduced the modified S-iteration process which 

is independent of those of the modified Mann iteration [82] and the modified 

Ishikawa iteration [83]. We give this iteration process in a CAT(0) space as follows. 

 

Definition 5.3.1. [84] Let K  be a nonempty closed convex subset of a complete 

CAT(0) space X , :T K K®  be an asymptotically quasi-nonexpansive mapping 

with ( )F T ¹Æ . The sequence { }nx  is defined by 

1

1

,

= (1 ) ,

= (1 ) , .

n n

n n n n n

n

n n n n n

x K

x a T x a T y

y b x b T x n

+

Îì
ï - Åí
ï - Å Îî .

 

By taking =nT T  for all nÎ  in (5.3.1), we obtain the S-iteration process. 

 

Lemma 5.3.2. [85] Let { }na  and { }nu  be two sequences of positive real numbers 

satisfying 

1 (1 )n n na u a+ £ +  

(5.3.1) 
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for all .nÎ . If 
=1

< ,n
n

u
¥

¥å  then limn na®¥  exists.  

 

Theorem 5.3.3. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be an asymptotically quasi-nonexpansive mapping with 

( )F T ¹Æ  and { }nu  be a non-negative real sequence with 
=1

< .n
n

u
¥

¥å  Suppose that 

{ }nx  is defined by the iteration process (5.3.1). If 

liminf ( , ( )) = 0  or limsup ( , ( )) = 0,n n
n n

d x F T d x F T
®¥ ®¥

 

then the sequence { }nx  converges strongly to a fixed point of T .  

 

Proof. Let ( ).p F TÎ  Since T  is an asymptotically quasi-nonexpansive mapping, 

there exists a sequence { } [0, )nu Î ¥  with lim = 0n nu®¥  and such that 

( , ) (1 ) ( , )n

nd T x p u d x p£ +  

for all x KÎ  and ( ).p F TÎ  By combining this inequality and Lemma 2.1.15(i), we 

get 

( , ) = ((1 ) , )

             (1 ) ( , ) ( , )

             (1 ) ( , ) (1 ) ( , )

             = (1 ) ( , ).

n

n n n n n

n

n n n n

n n n n n

n n n

d y p d b x b T x p

b d x p b d T x p

b d x p b u d x p

b u d x p

- Å

£ - +

£ - + +

+

 

Also, 

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 )(1 ) ( , ) (1 ) ( , )

               (1 )(1 ) ( , ) (1 )(1 ) ( , )

               

n n

n n n n n

n n

n n n n

n n n n n n

n n n n n n n n

d x p d a T x a T y p

a d T x p a d T y p

a u d x p a u d y p

a u d x p a u b u d x p

+ - Å

£ - +

£ - + + +

£ - + + + +
2

2

(1 )(1 ) ( , ) (1 ) ( , )

               = (1 )(1 ) ( , )

               (1 )(1 ) ( , )

               = (1 ) ( , ).

n n n n n n

n n n n n n

n n n

n n

a u d x p a u d x p

u a a a u d x p

u u d x p

u d x p

£ - + + +

+ - + +

£ + +

+

 

(5.3.2)

(5.3.3) 



80 
 

 

When 0x³  and 1 ,xx e+ £  we have ( )2 21 .xx e+ £  Thus, 

2

1 1

2 1
1

1

2

=

( , ) (1 ) ( , )

                ( , )

                ...

                ( , ).

n m n m n m

un m
n m

n m

uk

k n
n

d x p u d x p

e d x p

e d x p

+ + - + -

+ -
+ -

+ -

£ +

£

£

£
å

 

Let 

1
2

= = .

n m
uk

k ne M

+ -å
 Thus, there exits a constant > 0M  such that 

( , ) ( , )n m nd x p Md x p+ £  

for all ,n mÎ  and ( ).p F TÎ  By (5.3.3), 

2

1( , ) (1 ) ( , )n n nd x p u d x p+ £ + . 

This gives 

2 2

1( , ( )) (1 ) ( , ( )) = (1 2 ) ( , ( )).n n n n n nd x F T u d x F T u u d x F T+ £ + + +  

Since 
=1

< ,n
n

u
¥

¥å  we have 2

=1

(2 ) <n n
n

u u
¥

+ ¥å . Lemma 5.3.2 and

liminf ( , ( )) = 0n
n

d x F T
®¥

 or limsup ( , ( )) = 0n
n

d x F T
®¥

 gives that 

lim ( , ( )) = 0.n
n

d x F T
®¥

 

Now, we show that { }nx  is a Cauchy sequence in .K  Since lim ( , ( )) = 0,n
n

d x F T
®¥

 for 

each > 0,e  there exists 1n Î  such that 

( , ( )) <
1

nd x F T
M

e
+

 

for all 1> .n n  Thus, there exists 1 ( )p F TÎ  such that 

1 1( , ) < for all >
1

nd x p n n
M

e
+

 

and we obtain that 

(5.3.4) 
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1 1

1 1

1

( , ) ( , ) ( , )

                 ( , ) ( , )

                 = ( 1) ( , )

                 < ( 1) =
1

n m n n m n

n n

n

d x x d x p d p x

Md x p d x p

M d x p

M
M

e e

+ +£ +

£ +

+

+
+

 

for all 1, > .m n n  Therefore, { }nx  is a Cauchy sequence in .K  Since the set K  is 

complete, the sequence { }nx  must be convergence to a point in .K  Let 

lim = .n nx p K®¥ Î  Here after, we show that p  is a fixed point. By lim = ,n nx p®¥  

for all 1 > 0,e  there exists 2n Î  such that 

1

1

( , ) <
2(2 )

nd x p
u

e
+

 

for all 2> .n n  From (5.3.4), for each 1 > 0,e  there exists 3n Î  such that 

1

1

( , ( )) <
2(4 3 )

nd x F T
u

e
+

 

for all 3> .n n  In particular, 1

3
1

inf{ ( , ) : ( )}<
2(4 3 )

nd x p p F T
u

e
Î

+
. Thus, there must 

exist ( )p F T*Î  such that 

1
33

1

( , ) < for all > .
2(4 3 )

nd x p n n
u

e*

+
 

From (5.3.5) and (5.3.6), 

3 3 3 3

3 3 3

1 1 3 3 3

1 3

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

             ( , ) 2 ( , ) ( , ) ( , )

             (1 ) ( , ) 2(1 ) ( , ) ( , ) ( , )

             (1 ) ( ,

n n n n

n n n

n n n

n

d Tp p d Tp p d p Tx d Tx p d p x d x p

d Tp p d Tx p d x p d x p

u d p p u d x p d x p d x p

u d p x

* * * *

* * *

* * *

£ + + + +

£ + + +

£ + + + + +

£ + 1 13 3

3 3

1 13 3

1 1
1 1 1

1 1

) (1 ) ( , ) 2(1 ) ( , )

                 ( , ) ( , )

             = (2 ) ( , ) (4 3 ) ( , )

             < (2 ) (4 3 ) = .
2(2 ) 2(4 3 )

n n

n n

n n

u d x p u d x p

d x p d x p

u d x p u d x p

u u
u u

e e e

* *

*

*

+ + + +

+ +

+ + +

+ + +
+ +

 

(5.3.5) 

(5.3.6) 
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Since 1e  is arbitrary, so ( , ) = 0,d Tp p  i.e., = .Tp p  Therefore, ( ).p F TÎ  This 

completes the proof.  

 

Remark 5.3.4. Let the hypotheses of Theorem 5.3.3 be satisfied and :T K K®  be 

an asymptotically nonexpansive or quasi-nonexpansive mapping. Since the class of 

asymptotically quasi-nonexpansive mappings includes quasi-nonexpansive mappings 

and asymptotically nonexpansive mappings, then the sequence { }nx  converges 

strongly to a fixed point of T .  

 

Now, we give the following corollaries which have been proved by Theorem 5.3.3. 

 

Corollary 5.3.5. Under the hypotheses of Theorem 5.3.3, T  satisfies the following 

conditions:  

(1) lim ( , ) = 0.n n nd x Tx®¥  

(2) If the sequence { }nz  in K  satisfies lim ( , ) = 0,n n nd z Tz®¥  then 

liminf ( , ( )) = 0  or limsup ( , ( )) = 0.n n
n n

d z F T d z F T
®¥ ®¥

 

Then the sequence { }nx  converges strongly to a fixed point of T . 

 

Proof. It follows from the hypotheses that lim ( , ) = 0.n n nd x Tx®¥  From (2), 

liminf ( , ( )) = 0  or limsup ( , ( )) = 0,n n
n n

d x F T d x F T
®¥ ®¥

 

Therefore, the sequence { }nx  must converge to a fixed point of T  by Theorem 5.3.3.  

 

Corollary 5.3.6. Under the hypothesis of Theorem 5.3.3, T  satisfies the following 

conditions: 

(1) lim ( , ) = 0.n n nd x Tx®¥  

(2) There exists a function :[0, ) [0, )f ¥ ® ¥  which is right-continuous at 0 , 

(0) = 0f  and ( ) > 0f r  for all > 0r  such that 

( , ) ( ( , ( ))) for all .d x Tx f d x F T x K³ Î  
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Then the sequence { }nx  converges strongly to a fixed point of T . 

 

Proof. It follows from the hypotheses that 

lim ( ( , ( ))) lim ( , ) = 0.n n n
n n

f d x F T d x Tx
®¥ ®¥

£  

That is, lim ( ( , ( ))) = 0.n
n

f d x F T
®¥

 Since :[0, ) [0, )f ¥ ® ¥  is right-continuous at 0  

and (0) = 0f , therefore we have lim ( , ( )) = 0.n
n

d x F T
®¥

 Thus, liminf ( , ( )) = 0n
n

d x F T
®¥

 

and limsup ( , ( )) = 0.n
n

d x F T
®¥

 By Theorem 5.3.3, the sequence { }nx  converges 

strongly to q , a fixed point of T . This completes the proof.  

 

Now, we give the following theorem which has a different hypothesis from Theorem 

5.3.3. 

 

Theorem 5.3.7. Let K  be a nonempty closed convex subset of a complete CAT(0) 

space X , :T K K®  be an asymptotically quasi-nonexpansive mapping with 

( )F T ¹Æ  and { }nu  be a non-negative real sequence with 
=1

< .n
n

u
¥

¥å  Suppose that 

{ }nx  is defined by the iteration process (5.3.1). If T  is demi-compact and 

lim ( , ) = 0n n nd x Tx®¥ , then the sequence { }nx  converges strongly to a fixed point of 

T .  

 

Proof. From the hypothesis, we have lim ( , ) = 0n n nd x Tx®¥ . Also, since T  is demi-

compact, there exists a subsequence { }nk
x  of { }nx  such that .nk

x p K® Î  Hence, 

( , ) = lim ( , ) = 0.n nk kk
d p Tp d x Tx

®¥
 

Thus, ( ).p F TÎ  By (5.3.3), 

2 2

1( , ) (1 ) ( , ) = (1 2 ) ( , ).n n n n n nd x p u d x p u u d x p+ £ + + +  
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By Lemma 5.3.2, lim ( , )n nd x p®¥  exists and ( )nk
x p F T® Î  gives that 

( ).nx p F T® Î  This completes the proof. 

 



 

 

 

CHAPTER 6. SOME CONVERGENCE RESULTS FOR TOTAL 

ASYMPTOTICALLY NONEXPANSIVE 

MAPPINGS 

 

 

In this section, the strong and D -convergence theorems for total asymptotically 

nonexpansive mappings are proved. 

 

6.1.  The Strong and D -Convergence of Some Iterative Algorithms in CAT(0) 

Spaces  

 

In this subsection, we get some results which are related to the strong and D -

convergence of the modified S-iteration and the modified two-step iteration for total 

asymptotically nonexpansive mappings on a CAT(0) space. 

 

Thianwan [16] introduce the two-step iteration process in a Banach space. We give 

the modified two-step iteration process in a CAT(0) space as follows. 

 

Definition 6.1.1. Let K  be a nonempty bounded closed convex subset of a complete 

CAT(0) space X , :T K K®  be a total asymptotically nonexpansive and uniformly 

L-Lipschitzian mapping. The sequence { }nx  is defined by 

1

1

,

= (1 ) ,

= (1 ) ,  .

n

n n n n n

n

n n n n n

x K

x a y a T y

y b x b T x n

+

Îì
ï

- Åí
ï - Å Îî .

 

If = 0nb  for each nÎ , then (6.1.1) is reduced to the modified Mann iteration 

process. By taking =nT T  for all nÎ  in (6.1.1), we obtain the two-step iteration 

process. 

 

(6.1.1) 
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Chang et al. [7] proved demiclosedness principle for total asymptotically 

nonexpansive mappings in CAT(0) spaces as follows. 

 

Lemma 6.1.2. ([7, Theorem 2.8]) Let K  be a closed convex subset of a complete 

CAT(0) space X  and let :T K K®  be a total asymptotically nonexpansive and 

uniformly L-Lipschitzian mapping. Let { }nx  be a bounded sequence in K  such that 

lim ( , ) = 0n n nd x Tx®¥  and lim = .n nx w®¥D-  Then = .Tw w   

 

The following lemma is crucial in the study of iteration processes in metric spaces. 

 

Lemma 6.1.3. ([86, Lemma 2]) Let { }na , { }nb  and { }nd  be sequences of non-

negative real numbers satisfying the inequality 

1 (1 ) .n n n na a bd+ £ + +  

If 
=1

<n
n

d
¥

¥å  and 
=1

<n
n

b
¥

¥å , then limn na®¥  exists.  

 

We prove the D -convergence theorem of the modified S-iteration process in a 

CAT(0) space. 

 

Theorem 6.1.4. Let K  be a nonempty bounded closed convex subset of a complete 

CAT(0) space X , :T K K®  be a total asymptotically nonexpansive and uniformly 

L-Lipschitzian mapping with ( )F T ¹Æ  and let { }nx  be a sequence defined by 

(5.3.1). If the following conditions are satisfied: 

(i) 
=1 =1 =1

< ,  < ,  < ;n n n
n n n

v am
¥ ¥ ¥

¥ ¥ ¥å å å  

(ii) there exists a constant > 0M*  such that ( ) , 0;r M r rz *£ ³  

(iii) { }nb  is the sequence in [0,1];  

(iv) 
=1

sup{ ( , ) : }<n

n

d z T z z B
¥

Î ¥å  for each bounded subset B  of K ; 
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(v) there exist constants , (0,1)b cÎ  with 
1

0 < (1 )
2

b c- £  such that { } [ , ].na b cÌ   

Then the sequence { }nx  D -converges to a fixed point of T . 

 

Proof. We divide the proof of Theorem 6.1.4 into three steps. 

Step I. First we prove that lim ( , )n
n

d x p
®¥

 exists for each ( )p F TÎ . In fact for each 

( )p F TÎ , by Lemma 2.1.15(i), we have 

( , ) = ((1 ) , )

            (1 ) ( , ) ( , )

            (1 ) ( , ) { ( , ) ( ( , )) }

            (1 ) ( , )

            (1 ) ( , ) .

n

n n n n n

n

n n n n

n n n n n n n

n n n n n

n n n

d y p d b x b T x p

b d x p b d T x p

b d x p b d x p v d x p

b v M d x p b

v M d x p

z m

m

m

*

*

- Å

£ - +

£ - + + +

£ + +

£ + +

 

Also, we obtain 

1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ){ ( , ) ( ( , )) } ( , )

               (1 ){(1 ) ( , ) } {(1 ) ( , ) }

 

n n

n n n n n

n n

n n n n

n n n n n n n

n n n n n n n n

d x p d a T x a T y p

a d T x p a d T y p

a d x p v d x p a Ld y p

a v M d x p a L v M d x p

z m

m m

+

* *

- Å

£ - +

£ - + + +

£ - + + + + +

              ={(1 )(1 ) (1 )} ( , ) (1 ( 1))

               ={1 ( 1) (1 ( 1))} ( , ) (1 ( 1)) .

n n n n n n n

n n n n n n

a v M a L v M d x p a L

a L v M a L d x p a L

m

m

* *

*

- + + + + + -

+ - + + - + + -

 

It follows from condition (i) and Lemma 6.1.3 that lim ( , )n
n

d x p
®¥

 exists. 

Step II. Next we prove that 

lim ( , ) = 0.n n
n

d x Tx
®¥

 

In fact, it follows from Step I that for all ( ),  lim ( , )n
n

p F T d x p
®¥

Î  exists, so we can 

assume that lim ( , ) = .n
n

d x p r
®¥

 Since 

(6.1.2) 
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( , ) = ( , )

                ( , ) ( ( , ))

                (1 ) ( , )

                (1 ){(1 ) ( , ) }

                = (1 )(1 ) ( , ) (2 ) ,

n n n

n n

n n n n

n n n

n n n n n

n n n n n

d T y p d T y T p

d y p v d y p

v M d y p

v M v M d x p

v M v M d x p v M

z m

m

m m

m

*

* *

* * *

£ + +

£ + +

£ + + + +

+ + + +

 

then we have limsup ( , ) .n

n
n

d T y p r
®¥

£  Similarly, we obtain limsup ( , ) .n

n
n

d T x p r
®¥

£  On 

the other hand, since 

1lim ((1 ) , ) = lim ( , ) = ,n n

n n n n n
n n

d a T x a T y p d x p r+®¥ ®¥
- Å  

by Lemma 2.1.16, we have 

lim ( , ) = 0.n n

n n
n

d T x T y
®¥

 

Since 

1( , ) ((1 ) , ) ( , )n n n n n n

n n n n n n n n n nd x T x d a T x a T y T x a d T y T x+ £ - Å £  

from (6.1.3), we obtain 

1lim ( , ) = 0.n

n n
n

d x T x+®¥
 

From condition (iv), we have 

lim ( , ) = 0.n

n n
n

d x T x
®¥

 

Hence from (6.1.4) and (6.1.5), we get 

1lim ( , ) = 0.n n
n

d x x +®¥
 

Since T  is a uniformly L-Lipschitzian mapping, from (6.1.5) and (6.1.6) we have 

that 

1 1 1 1

1 1 1 1

1

1 1 1 1

1

1 1 1

( , ) ( , ) ( , ) ( , ) ( , )

                ( , ) ( , ) ( , ) ( , )

                = (1 ) ( , ) ( , ) ( , )

n n n n

n n n n n n n n n n

n n

n n n n n n n n

n n

n n n n n n

d x Tx d x x d x T x d T x T x d T x Tx

d x x d x T x Ld x x Ld T x x

L d x x d x T x Ld T x x

+ + + +
+ + + +

+
+ + + +

+
+ + +

£ + + +

£ + + +

+ + + ®0 as .n®¥

 

The equation (6.1.2) is proved. 

(6.1.3) 

(6.1.4) 

(6.1.5) 

(6.1.6) 
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Step III. To show that the sequence { } nx D -converges to a fixed point of ,T  we 

prove that ( ) ( )nW x F TD Í  and ( )nW xD  consists of exactly one point. Let ( ).nu W xDÎ  

Then, there exists a subsequence { }nu  of { }nx  such that ({ }) ={ }.nA u u  By Lemmas 

2.1.21 and 2.1.22, there exists a subsequence { }nv  of { }nu  such that

lim = .n nv v K®¥D- Î  By Lemma 6.1.2, ( ).v F TÎ  Since { ( , )}nd u v  converges, by 

Lemma 2.1.23, = ( ).u v F TÎ  This shows that ( ) ( ).nW x F TD Í  Now we prove that 

( )nW xD  consists of exactly one point. Let { }nu  be a subsequence of { }nx  with 

({ }) ={ }nA u u  and let ({ }) ={ }.nA x x  We have already seen that =u v  and ( ).v F TÎ  

Finally, since { ( , )}nd x v  converges, by Lemma 2.1.23, = ( ).x v F TÎ  This shows that 

( ) ={ }.nW x xD  This completes the proof.  

 

Now we give an example of such mappings which are total asymptotically 

nonexpansive and uniformly L-Lipschitzian as in Theorem 6.1.4. 

 

Example 6.1.5. Let  be the real line with the usual absolute metric and let 

=[ 1,1]K - . Define two mappings , :T S K K®  by 

2sin ,   if [0,1]
,    if [0,1]2

( ) =    and   ( ) =
, if [ 1,0).

2sin , if [ 1,0)
2

x
x

x x
T x S x

x x x
x

ì- Îï Îìï
í í- Î -îï Î -
ïî

 

It is proved in [87, Example 3.1] that both T  and S  are asymptotically nonexpansive 

mappings. Therefore they are total asymptotically nonexpansive and uniformly L-

Lipschitzian mappings. Additionally, ( ) ={0}F T  and ( ) ={ ;0 1}F S x K xÎ £ £ . 

 

We give the characterization of strong convergence for the modified S-iteration 

process in a CAT(0) space as follows. 

 

Theorem 6.1.6. Let , , ,{ },{ },{ }n n nX K T a b x  satisfy the hypotheses of Theorem 6.1.4. 

Then the sequence { }nx  converges strongly to a fixed point of T  if and only if 

liminf ( , ( )) = 0.n
n

d x F T
®¥
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Proof. Necessity is obvious. Conversely, suppose that liminf ( , ( )) = 0n
n

d x F T
®¥

. As 

proved in Teorem 6.1.4 (Step I), for all ( )p F TÎ ,  

1( , ) {1 ( 1) (1 ( 1))} ( , ) (1 ( 1)) .n n n n n n nd x p a L v M a L d x p a L m*
+ £ + - + + - + + -  

This implies that 

1( , ( )) {1 ( 1) (1 ( 1))} ( , ( )) (1 ( 1)) .n n n n n n nd x F T a L v M a L d x F T a L m*
+ £ + - + + - + + -  

By Lemma 6.1.3, lim ( , ( ))n nd x F T®¥  exists. Thus by hypothesis 

lim ( , ( )) = 0.n nd x F T®¥  The conclusion now follows from Theorem 3.1.5.  

 

Theorem 6.1.7. ([88, Theorem 3]) Let , , ,{ },{ },{ }n n nX K T a b x  satisfy the hypotheses 

of Theorem 6.1.4 and let T  be a mapping satisfying condition (I). Then the sequence 

{ }nx  converges strongly to a fixed point of .T   

 

Remark 6.1.8. Theorems 6.1.4, 6.1.6, 6.1.7 contain the some results of Khan and 

Abbas [48, Theorems 1-3] since each nonexpansive mapping is a total asymptotically 

nonexpansive mapping.  

 

Now, we give the D -convergence theorem of the modified two-step iteration process 

in a CAT(0) space. 

 

Theorem 6.1.9. Let , , ,{ }nX K T b  satisfy the hypotheses of Theorem 6.1.4, { }na  be a 

sequence in [0,1]  and let { }nx  be a sequence defined by (6.1.1). If the conditions (i)-

(iv) in Theorem 6.1.4 are satisfied, then the sequence { }nx  D -converges to a fixed 

point of T .  

 

Proof. First we will prove that lim ( , )n
n

d x p
®¥

 exists for all ( )p F TÎ . As proved in 

Theorem 6.1.4, we have 

( , ) (1 ) ( , ) .n n n nd y p v M d x p m*£ + +  

Since T  is a uniformly L-Lipschitzian mapping, from (6.1.7) we have 

(6.1.7) 
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1( , ) = ((1 ) , )

               (1 ) ( , ) ( , )

               (1 ) ( , ) ( , )

               = (1 ( 1)) ( , )

              (1 ( 1)){(1 ) ( , ) }

         

n

n n n n n

n

n n n n

n n n n

n n

n n n n

d x p d a y a T y p

a d y p a d T y p

a d y p a Ld y p

a L d y p

a L v M d x p m

+

*

- Å

£ - +

£ - +

+ -

£ + - + +

     ={1 ( 1) (1 ( 1))} ( , ) (1 ( 1)) .n n n n n na L v M a L d x p a L m*+ - + + - + + -

 

It follows from Lemma 6.1.3 that lim ( , )n
n

d x p
®¥

 exists. Next we prove that 

lim ( , ) = 0.n n
n

d x Tx
®¥

 From condition (iv), we have 

lim ( , ) = lim ( , ) = 0.n n

n n n n
n n

d x T x d y T y
®¥ ®¥

 

By the above equality, we get 

( , ) ( , ) ( , ) ( , ) 0 as .n n n n

n n n n n n n n nd T x T y Ld x y Lb d x T x Ld x T x n£ £ £ ® ®¥  

Since 

1( , ) ((1 ) , ) (1 ) ( , )n n n n

n n n n n n n n n nd x T y d a y a T y T y a d y T y+ £ - Å £ -  

from (6.1.8), we obtain 

1lim ( , ) = 0.n

n n
n

d x T y+®¥
 

From (6.1.8), (6.1.9) and (6.1.10) we have that 

1 1( , ) ( , ) ( , ) ( , ) 0 as .n n n n

n n n n n n n nd x x d x T x d T x T y d T y x n+ +£ + + ® ®¥  

The rest of the proof follows the pattern of the Theorem 6.1.4. 

 

Remark 6.1.10. Theorem 6.1.9 contains the main result of Chang et. al. [7, Theorem 

3.5] since the modified two-step iteration is reduced to the modified Mann iteration. 

Also, Theorem 6.1.9 contains the main result of Nanjaras and Panyanak [35, 

Theorem 5.7] since each asymptotically nonexpansive mapping is a total 

asymptotically nonexpansive mapping.  

 

(6.1.8) 

(6.1.9) 

(6.1.10) 
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We give following theorems related to the strong convergence of the modified two-

step iteration process which their proofs are similar arguments of Theorem 6.1.6 and 

Theorem 6.1.7, respectively. 

 

Theorem 6.1.11. Let , , ,{ },{ },{ }n n nX K T a b x  satisfy the hypotheses of Theorem 

6.1.9. Then the sequence { }nx  converges strongly to a fixed point of T  if and only if 

liminf ( , ( )) = 0.n
n

d x F T
®¥

 

 

Theorem 6.1.12. Let , , ,{ },{ },{ }n n nX K T a b x  satisfy the hypotheses of Theorem 6.1.9 

and let T  be a mapping satisfying condition (I). Then the sequence { }nx  converges 

strongly to a fixed point of .T   

 

6.2.  The Strong and D -Convergence of Modified SP-Iteration Scheme in 

Hyperbolic Spaces  

 

In this subsection, we prove some strong and D -convergence theorems of the 

modified SP-iteration process for approximating a fixed point of total asymptotically 

nonexpansive mappings in hyperbolic spaces. 

 

The following iteration process is a translation of the SP-iteration from Banach 

spaces to hyperbolic spaces. 

 

Definition 6.2.1. [89] Let K  be a nonempty, closed and convex subset of a complete 

uniformly convex hyperbolic space X  with monotone modulus of uniform 

convexity and :T K K®  be a uniformly L-Lipschitzian and total asymptotically 

nonexpansive mapping. The sequence { }nx  is defined by 

1

1

,

= ( , , ),

= ( , , ),

= ( , , ),    .

n

n n n n

n

n n n n

n

n n n n

x K

x W y T y

y W z T z

z W x T x n

a

b

g

+

Îì
ï
ï
í
ï
ï Îî .

 (6.2.1) 
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Remark 6.2.2. ([90, Theorem 3.1]) Every total asymptotically nonexpansive 

mapping defined on a nonempty bounded closed convex subset of a complete 

uniformly convex hyperbolic space always has a fixed point. 

 

We give D -convergence of the modified SP-iterative sequence { }nx  defined by 

(6.2.1) for total asymptotically nonexpansive mappings in hyperbolic spaces. 

 

Theorem 6.2.3. Let K  be a nonempty, closed and convex subset of a complete 

uniformly convex hyperbolic space X  with monotone modulus of uniform 

convexity h . Let :T K K®  be a uniformly L-Lipschitzian and total asymptotically 

nonexpansive mapping with ( )F T ¹Æ . If the following conditions are satisfied: 

(i) 
=1

<n
n

v
¥

¥å  and 
=1

< ;n
n

m
¥

¥å  

(ii) there exist constants , (0,1)a bÎ  such that { },{ },{ } [ , ];n n n a ba b g Ì   

(iii) there exists a constant > 0M  such that ( ) ,  0,r Mr rz £ " ³  

Then the sequence { }nx  defined by (6.2.1), D -converges to a fixed point of T .  

 

Proof. We divide our proof into three steps. 

Step 1. First we prove that the following limits exist: 

lim ( , ) for each ( ) and lim ( , ( )).n n
n n

d x p p F T d x F T
®¥ ®¥

Î  

Since T  is a total asymptotically nonexpansive mapping, by the condition (iii), we 

get 

( , ) = ( ( , , ), )

            (1 ) ( , ) ( , )

            (1 ) ( , ) { ( , ) ( ( , )) }

            = ( , ) ( ( , ))

            (1 ) ( , )

n

n n n n

n

n n n n

n n n n n n n

n n n n n n

n n n n n

d z p d W x T x p

d x p d T x p

d x p d x p v d x p

d x p v d x p

v M d x p

g

g g
g g z m

g z g m
g g m

£ - +

£ - + + +

+ +

£ + +

 

and 

(6.2.2) 

(6.2.3) 
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( , ) = ( ( , , ), )

             (1 ) ( , ) ( , )

             (1 ) ( , ) { ( , ) ( ( , )) }

             (1 ) ( , ) .

n

n n n n

n

n n n n

n n n n n n n

n n n n n

d y p d W z T z p

d z p d T z p

d z p d z p v d z p

v M d z p

b

b b
b b z m
b b m

£ - +

£ - + + +

£ + +

 

Substituting (6.2.3) into (6.2.4) and simplifying it, we have 

{ }( , ) (1 ) (1 ) ( , )

             (1 ( )) ( , ) ( ).

n n n n n n n n n n

n n n n n n n n n n n n n

d y p v M v M d x p

v M v M d x p v M

b g g m b m
b g b g m b g b g

£ + + + +

£ + + + + + +
 

Similarly, we obtain 

1( , ) (1 ) ( , ) .n n n n n nd x p v M d y pa a m+ £ + +  

Combining (6.2.5) and (6.2.6), we have 

1( , ) (1 ) ( , ) ,  1 and ( ),n n n nd x p d x p n p F Ts x+ £ + + " ³ Î  

and so 

1( , ( )) (1 ) ( , ( )) ,  1,n n n nd x F T d x F T ns x+ £ + + " ³  

where = ( ( ))n n n n n n n n n n n n n n n nv M v M v Ms a b g a b b g a g a b g+ + + + + +  and 

= ( )n n n n n n n n n n n n n n nv M v Mx a b g a b b g a g a b g+ + + + + + . By virtue of the condition 

(i), 

=1 =1

<  and < .n n
n n

s x
¥ ¥

¥ ¥å å  

By Lemma 6.1.3, lim ( , ( ))n nd x F T®¥  and lim ( , )n nd x p®¥  exist for each ( )p F TÎ . 

Step 2. Next we prove that lim ( , ) = 0.n n nd x Tx®¥  In fact, it follows from (6.2.2) that 

lim ( , )n nd x p®¥  exists for each given ( ).p F TÎ  We may assume that 

lim ( , ) = .n nd x p r®¥  The case = 0r  is trivial. Next, we deal with the case > 0r . 

Taking limsup on both sides in the inequality (6.2.5), we have 

limsup ( , ) .n
n

d y p r
®¥

£  

Since 

(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 
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( , ) ( , ) ( ( , ))

                 (1 ) ( , ) ,  1,  

n

n n n n n

n n n

d T y p d y p v d y p

v M d y p n

z m
m

£ + +

£ + + " ³
 

we have 

limsup ( , ) .n

n
n

d T y p r
®¥

£  

In addition, 

1lim ( , ) = lim ( ( , , ), ) = .n

n n n n
n n

d x p d W y T y p ra+®¥ ®¥
 

With the help of (6.2.8)-(6.2.10) and Lemma 2.2.10, we have 

lim ( , ) = 0.n

n n
n

d y T y
®¥

 

On the other hand, since 

1 1( , ) ( , ) ( , )

               (1 ) ( , ) (1 ) ( , )

n n

n n n n

n

n n n n n n

d x p d x T y d T y p

d y T y v M d y pa m
+ +£ +

£ - + + +
 

we have liminf ( , ) .n nd y p r®¥ ³  Combined with (6.2.8), it yields that 

lim ( , ) = .n nd y p r®¥  This implies that 

lim ( ( , , ), ) = .n

n n n
n

d W z T z p rb
®¥

 

Taking limsup on both sides in the inequality (6.2.3), we have 

limsup ( , ) .n
n

d z p r
®¥

£  

Since 

( , ) ( , ) ( ( , ))

                (1 ) ( , ) ,  1,

n

n n n n n

n n n

d T z p d z p v d z p

v M d z p n

z m
m

£ + +

£ + + " ³
 

we have 

limsup ( , ) .n

n
n

d T z p r
®¥

£  

With the help of (6.2.12)-(6.2.14) and Lemma 2.2.10, we have 

(6.2.9) 

(6.2.10) 

(6.2.11) 

(6.2.12) 

(6.2.13) 

(6.2.14) 
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lim ( , ) = 0.n

n n
n

d z T z
®¥

 

By the same method, we can also prove that 

lim ( , ) = 0.n

n n
n

d x T x
®¥

 

By (6.2.11), we get 

1( , ) ( ( , , ), ) ( , ) 0  as .n n

n n n n n n n n nd x y d W y T y y d y T y na a+ £ £ ® ®¥  

In a similar way, we have 

( , ) ( , ) 0  as n

n n n n nd y z d z T z nb£ ® ®¥ 

and 

( , ) ( , ) 0  as .n

n n n n nd z x d x T x na£ ® ®¥  

It follows that 

1 1( , ) ( , ) ( , ) ( , ) 0 as .n n n n n n n nd x x d x y d y z d z x n+ +£ + + ® ®¥  

Since T  is uniformly L-Lipschitzian, therefore we obtain 

1 1 1 1

1 1 1 1

1

1 1 1

( , ) ( , ) ( , ) ( , ) ( , )

                (1 ) ( , ) ( , ) ( , ).

n n n n

n n n n n n n n n n

n n

n n n n n n

d x Tx d x x d x T x d T x T x d T x Tx

L d x x d x T x Ld T x x

+ + + +
+ + + +

+
+ + +

£ + + +

£ + + +
 

Hence, (6.2.16) and (6.2.17) imply that 

lim ( , ) = 0.n n
n

d x Tx
®¥

 

Step 3. Now we prove the sequence { }nx  D -converges to a fixed point of T . In fact, 

for each ( ),p F TÎ  lim ( , )n nd x p®¥  exists. This implies that the sequence { }nx  is 

bounded. Hence by virtue of Lemma 2.2.9, { }nx  has a unique asymptotic center 

({ }) ={ }.K nA x x  Let { }nu  be any subsequence of { }nx  such that ({ }) ={ }.K nA u u  

Then, by (6.2.18), we have 

lim ( , ) = 0.n n
n

d u Tu
®¥

 

(6.2.15) 

(6.2.16) 

(6.2.17) 

(6.2.18) 

(6.2.19) 
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We claim that ( ).u F TÎ  In fact, we define a sequence { }mz  in K  by = m

mz T u . So, 

we calculate 

1

1

=1

1

=1

( , ) ( , ) ( , ) ... ( , )

             ( , ) ( ( , )) ( , )

             (1 ) ( , ) ( , ).

m m m m

m n n n n n n

m
i i

n n n n n n
i

m
i i

n n n n n
i

d z u d T u T u d T u T u d Tu u

d u u v d u u d T u T u

v M d u u d T u T u

z m

m

-

-

-

£ + + +

£ + + +

£ + + +

å

å

 

Since T  is uniformly L-Lipschitzian, from (6.2.20), we have 

( , ) (1 ) ( , ) ( , ).m n n n n n nd z u v M d u u mLd Tu um£ + + +  

Taking limsup on both sides of the above estimate and using (6.2.19), we have 

( ,{ }) = limsup ( , ) limsup ( , ) = ( ,{ }).m n m n n n
n n

r z u d z u d u u r u u
®¥ ®¥

£  

This implies that ( ,{ }) ( ,{ }) 0m n nr z u r u u- ®  as m®¥ . It follows from Lemma 

2.2.11 that lim = .m

m T u u®¥  Utilizing the uniform continuity of T , we have that 

1= (lim ) = lim = .m m

m mTu T T u T u u+
®¥ ®¥  

Hence ( ).u F TÎ  Moreover, lim ( , )n nd x u®¥  exists by (6.2.2). Suppose that .x u¹  

By the uniqueness of asymptotic centers, we have 

limsup ( , ) < limsup ( , )

                       limsup ( , )

                       < limsup ( , )

                       = limsup ( , )

n n
n n

n
n

n
n

n
n

d u u d u x

d x x

d x u

d u u

®¥ ®¥

®¥

®¥

®¥

£
 

a contradiction. Hence = .x u  Since { }nu  is an arbitrary subsequence of { },nx  

therefore ({ }) ={ }nA u u  for all subsequences { }nu  of { }nx , that is, { }nx  D -converges 

to ( )x F TÎ . The proof is completed.  

 

We now discuss the strong convergence of the modified SP-iteration for total 

asymptotically nonexpansive mappings in hyperbolic spaces. 

(6.2.20) 
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Theorem 6.2.4. Let , ,K X T  and { }nx  be the same as in Theorem 6.2.3. Suppose that 

the conditions (i)-(iii) in Theorem 6.2.3 are satisfied. Then { }nx  converges strongly 

to some ( )p F TÎ  if and only if liminf ( , ( )) = 0.n nd x F T®¥   

 

Proof. Necessity is obvious. Conversely, suppose that liminf ( , ( )) = 0.n nd x F T®¥  It 

follows from (6.2.2) that lim ( , ( ))n nd x F T®¥  exists. Thus by hypothesis 

lim ( , ( )) = 0.n nd x F T®¥  Next, we show that { }nx  is a Cauchy sequence. In fact, it 

follows from (6.2.7) that for any ( )p F TÎ  

1( , ) (1 ) ( , ) ,  1,n n n nd x p d x p ns x+ £ + + " ³  

where 
=1

<n
n

s
¥

¥å  and 
=1

< .n
n

x
¥

¥å  Hence for any posititve integers ,n m , we have 

1 1 1( , ) ( , ) ( , ) (1 ) ( , ) ( , ).n m n n m n n m n m n m nd x x d x p d p x d x p d x ps x+ + + - + - + -£ + £ + + +  

Since for each 0,  1 ,xx x e³ + £  we have 

1
1 1

1 2 1
2 2 1

1 1 2

= = 1 = 2

( , ) ( , ) ( , )

                ( , ) ( , )

                ...

               ( , )

n m
n m n n m n m n

n m n m n m
n m n m n m n

n m n m n m

i i

i n i n i n
n n

d x x e d x p d x p

e d x p e d x p

e d x p e e

s

s s s

s s

x

x x

x

+ -
+ + - + -

++ - + - + -
+ - + - + -

+ - + - + -

+ +

£ + +

£ + + +

£

£ + +
å å å

1

1
2 1

1

=

...

                   ( , )

               (1 ) ( , ) ,

i

n

n m
n m n m n

n m

n i
i n

e d x p

N d x p N

s

s

x

x x

x

+

+ -
+ - + -

+ -

+

+ + +

£ + + å

 

where =1= < .
i

iN e
s

¥

¥å
 Therefore we have 

1

=

( , ) (1 ) ( , ( )) 0  as , .
n m

n m n n i
i n

d x x N d x F T N n mx
+ -

+ £ + + ® ®¥å  

This shows that { }nx  is a Cauchy sequence in K . Since K  is a closed subset in a 

complete hyperbolic space X , it is complete. We can assume that { }nx  converges 

strongly to some point p K*Î . It is easy to prove that ( )F T  is closed subset in K , 



99 
 

 

so is ( )F T . Since lim ( , ( )) = 0n nd x F T®¥ , we obtain ( ).p F T*Î  This completes the 

proof.  

 

Remark 6.2.5. In Theorem 6.2.4, the condition liminf ( , ( )) = 0n nd x F T®¥  may be 

replaced with limsup ( , ( )) = 0n nd x F T®¥ . 

 

Example 6.2.6. Let  be the real line with the usual absolute metric and let 

=[ 1,1]K - . Define two mappings 1 2, :T T K K®  by 

1 2

2sin ,   if [0,1]
,    if [0,1]2

( ) =    and   ( ) =
, if [ 1,0).

2sin , if [ 1,0)
2

x
x

x x
T x T x

x x x
x

ì- Îï Îìï
í í- Î -îï Î -
ïî

 

It is proved in [87, Example 3.1] that both 1T  and 2T  are asymptotically 

nonexpansive mappings with =1,  1nk n" ³ . Therefore they are total asymptotically 

nonexpansive mappings with = = 0,  1,  ( ) = ,  0n nv n t t tm z" ³ " ³ . Additionally, 

they are uniformly L-Lipschitzian mappings with =1L . Clearly, 1( ) ={0}F T  and 

2( ) ={ ;0 1}F T x K xÎ £ £ . Set  

= , =  and =  for all 1.
2 1 3 1 4 1

n n n

n n n
n

n n n
a b g ³

+ + +
 

Thus, the conditions of Theorem 6.2.3 are fulfilled. Therefore the results of Theorem 

6.2.3 and Theorem 6.2.4 can be easily seen.  

 

Example 6.2.7. Let  be the real line with the usual absolute metric and let 

=[0, )K ¥ . Define two mappings 1 2, :S S K K®  by 1( ) = sinS x x  and 2( ) = .S x x It 

is proved in [91, Example 1] that both 1S  and 2S  are total asymptotically 

nonexpansive mappings with 
2 3

1 1
= ,  = ,  1.n nv n

n n
m " ³  Additionally, they are 

uniformly L-Lipschitzian mappings with =1L . Clearly, 1( ) ={0}F S  and 

2( ) ={ ;0 < }F S x K xÎ £ ¥ . Let { },  { }n na b  and { }ng  be the same as in (6.2.21). 

(6.2.21) 
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Similarly, the conditions of Theorem 6.2.3 are satisfied. So, the results of Theorem 

6.2.3 and Theorem 6.2.4 also can be received.  

 

Theorem 6.2.8. Under the assumptions of Theorem 6.2.3, if T  is demi-compact, 

then { }nx  converges strongly to a fixed point of T   

 

Proof. It follows from (6.2.2) that { }nx  is a bounded sequence. Also, by (6.2.18), we 

have lim ( , ) = 0n n nd x Tx®¥ . Then, by demi-compactness of T , there exists a 

subsequence { }nk
x  of { }nx  such that { }nk

x  converges strongly to some point p KÎ . 

Moreover, by the uniform continuity of T , we have 

( , ) = lim ( , ) = 0.n nk kk
d p Tp d x Tx

®¥
 

This implies that ( )p F TÎ . Again, by (6.2.2), lim ( , )n nd x p®¥  exists. Hence p  is 

the strong limit of the sequence { }nx . As a result, { }nx  converges strongly to a fixed 

point p  of T .  

 

Theorem 6.2.9. Under the assumptions of Theorem 6.2.3, if T  satisfies condition (I), 

then { }nx  converges strongly to a fixed point of .T   

 

Proof. By virtue of (6.2.2), lim ( , ( ))n nd x F T®¥  exists. Further, by the condition (I) 

and (6.2.18), we have lim ( , ( )) = 0.n nd x F T®¥  Now Theorem 6.2.4 implies that { }nx  

converges strongly to a point p  in ( )F T .  

 

Remark 6.2.10. Theorems 6.2.3-6.2.9 contain the corresponding theorems proved 

for asypmtotically nonexpansive mappings when = 1,n nv k -  = 0,nm  1,n" ³  

( ) = ,t tz  0.t" ³  

 



 

 

 

CHAPTER 7. RESULTS AND SUGGESTIONS  

 

 

In this section, the results obtained from the previous sections of thesis will be 

summarized. The third, fourth, fifth and sixth sections of this thesis equipped with 

original works. 

 

In the first part of third section, we prove the strong and D -convergence theorems of 

SP-iteration for nonexpansive mappings on CAT(0) spaces. Since SP-iteration is 

reduced to the new multi-step and the Mann iterations, then these results extend and 

generalize some works in the literature. In the second part of third section, we get 

some results on the strong and D -convergence of the iteration process of Khan et. al. 

[47] for nonexpansive mappings in uniformly convex hyperbolic spaces. Moreover, 

we give an example to support our reults. These results generalize some results 

which is given in [24, 47, 48]. 

 

There are three parts in the fourth chapter. In the first part of it, we study the S-

iteration process for mappings satisfying condition (C) which are weaker than 

nonexpansive mappings in CAT(0) spaces and generalize some results of Khan and 

Abbas [48]. In the second part of this chapter, we present the strong and D -

convergence theorems of the new three-step iteration for mappings satisfying 

condition (C) in CAT(0) spaces. Since every nonexpansive mapping satisfies 

condition (C) and the new three-step iteration is reduced to the new two-step 

iteration, S-iteration and SP-iteration processes, then these results extend and 

improve some results in the literature. In the last part of it, we study the S-iteration 

and the Noor iteration processes for nonself mappings satisfying condition (E) in 

CAT(0) spaces. These results generalize some results of Khan and Abbas [48], 

Razani and Salahifard [92] and Razani and Shabani [93].  
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In the first part of fifth section, we prove the D -convergence theorems of the cyclic 

algorithm and the new multi-step iteration for k-strictly pseudo-contractive mappings 

and give also the strong convergence theorem of the modified Halpern’s iteration for 

these mappings in a CAT(0) space. In the second part of it, we introduce a new class 

of mappings and examine the properties of these mappings with some examples. We 

prove the D -convergence theorems of the new multi-step iteration and S-iteration 

processes for mappings of this type in a CAT(0) space. Also, we present the strong 

convergence theorems of these iteration processes for contractive-like mappings in a 

CAT(0) space. In the last part of it, we give the strong convergence theorems of the 

modified S-iteration process for asymptotically quasi-nonexpansive mappings in a 

CAT(0) space. These results presented in this section extend and improve some 

works for a CAT(0) space in the literature. 

 

In the first part of chapter 6, we get some results which are related to the strong and 

D -convergence theorems of the modified S-iteration and the modified two-step 

iteration processes for total asymptotically nonexpansive mappings in a CAT(0) 

space. Also, an example which satisfies our main result, have been given. These 

results extend and improve the corresponding ones announced by Chang et. al. [7], 

Nanjaras and Panyanak [35] and Khan and Abbas [48] and many others. In the 

second part of this chapter, we prove some strong and D -convergence theorems of 

the modified SP-iteration process for total asymptotically nonexpansive mappings in 

hyperbolic spaces by employing recent technical results of Khan et. al. [46]. 

Moreover, we give some examples to support our results. These results generalize 

some recent results given in [17, 56]. 

 

These results related to CAT(0) space can be generalized to CAT(k ) spaces and 

hyperbolic spaces. They can be researched in the future. 
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