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Abstract 
 

The recently introduced Response Time Variability Problem (RTVP) is a scheduling 
problem that has a broad range of real-life applications, for example, to sequence the 
models to be produced on a mixed-model assembly line. Previous studies include heuristic 
algorithms and mathematical programming models, whose practical limit for obtaining 
optimal solutions is around 40 units to be scheduled. In this paper, we propose and test new 
algorithms that combine heuristic procedures for obtaining initial sequences and several 
local optimization procedures. 
 
Keywords: response time variability, heuristics, scheduling, fair sequences 

 
 
 
1. Introduction 
 
The Response Time Variability Problem (RTVP) can be formulated as follows. Let n  
be the number of products/jobs/messages (in this paper we will only use the term 

“product”). Let id  be the number of units of product i  ( )1,...,i n=  and 
1=

=∑
n

i
i

D d the 

total number of units. These units have to be assigned to D  consecutive time slots of 
equal length, thus constituting a sequence 1 2... Ds s s s=  of length D , where js  is the 

product that occupies the time slot j . For all the products with 2id ≥ , let i
kt  be the 

difference between the numbers of the slots occupied by units 1k +  and k  of product i , 
which we call the distance between these units. Let us assume that 1s  immediately 
follows Ds  (i.e., it is a circular sequence). Therefore, 

i

i
dt  is the distance between the first 

unit of product i  in a cycle and the last unit of the same product in the preceding cycle. 
Let i

i

Dt d=  be the average distance between two consecutive units of product i . For 

all the products with 1id = , 1
it  is equal to it . The objective is to minimise 

( )2

1 1

idn
i
k i

i k
RTV t t

= =

= −∑∑ , which is a weighted variance with weights equal to demands: 

1

n

i i
i

RTV d Var
=

= ⋅∑ , where ( )2

1

1 id
i

i k i
ki

Var t t
d =

= ⋅ −∑ . 

 
This problem has been recently introduced in the literature (Corominas et al., 2007 and 
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Corominas et al., 2009), although the concept of Response Time Variability appears in 
Waldspurger and Weihl (1995) and may arise in many real situations (see Corominas et 
al., 2007) such as isochronous applications or scheduling on a mixed-model, just-in-
time assembly line production (Monden, 1983). Herrmann uses the response time 
variability problem in scheduling of waste collection (Herrmann, 2007). The scheduling 
of advertising slots for television (Bollapragada et al., 2004 and Brusco. 2008) leads to 
a problem closely related to RTVP and also does the design of sales catalogues 
(Bollapragada et al., 2004). 
 
The response time variability is a convenient metric for most of these problems, which 
are often considered as distance-constrained scheduling problems (Han et al., 1996; 
Anily et al., 1998; Dong et al. 1998; Altman et al. 2000; Bar-Noy et al. 2002). The 
distance-constrained models, however, suffer from a serious practical disadvantage, 
which is that there may not be a feasible solution that respects the distance constraints 
and at the same time ensures that tasks are done at given rates. The total response time 
variability metric instead, avoids the feasibility problem but at the same time preserves 
the main idea of having any two consecutive tasks at a distance that remains as constant 
as the existing resources and other competing jobs permit. 
 
Several other measures have been proposed for the regularity or fairness of a sequence 
of products on assembly lines, based either on the difference between ideal and actual 
productions (Miltenburg 1989; Kubiak 1993; Steiner and Yeomans 1993) or on the 
difference between ideal and actual production dates (Inman and Bulfin 1991; Bautista 
et al. 1997). The new measure of regularity is easier to understand by practitioners, 
since it use only a simple concept, the distance, and has the characteristic that the value 
of the measure does not depend on the position of those products of which an only unit 
should be sequenced. 
 
Corominas et al. (2007) studied the computational complexity of the RTVP and proved 
that it is NP-hard. A simple optimization algorithm was proposed for the two-product 
case. In order to solve the RTVP to optimality, a special case of the quadratic 
assignment problem recast as a quadratic integer programming (QIP) problem was 
considered; the QIP is linearized, but the practical limit for obtaining optimal solutions 
is 25 units to be scheduled (i.e., 25D = ). Finally, five heuristics and a local 
optimization exchange procedure were presented. The results showed that, on average, 
much lower RTV values were reached whenever the exchange procedure ran on the 
bottleneck, insertion and random sequences. 
 
Corominas et al. (2009) solved the RTVP to optimality by means of mathematical 
programming. Some special features of the RTVP were analyzed and some new ideas 
for improving the MILP presented in Corominas et al. (2007) were proposed and tested, 
thus solving to optimality instances with up to 40 units to be scheduled. Nevertheless, 
heuristic procedures were still necessary to solve larger instances. 
 
In this paper, we propose and test two new greedy algorithms and compare them with 
the previously published heuristic algorithms and with some variants of them that we 
propose in this paper. Having a good heuristic algorithm is useful either to obtain 
quickly good solutions to the RTVP or to provide an upper bound to exact algorithms. 
 
The rest of this paper is set out as follows. First, Section 2 presents heuristic procedures 



 3 

for obtaining initial sequences. Section 3 introduces the exchange procedures applied to 
obtain local optimums. Section 4 presents the results of the subsequent computational 
experiment. Finally, Section 5 is devoted to conclusions and possible lines for future 
research. 
 
 
2. Heuristic procedures for obtaining initial sequences 
 
In this section, we describe the heuristic procedures used to obtain initial sequences. We 
will call G  the set of products such that 1id = . 
 
2.1 The five heuristic procedures from Corominas et al. (2007) and four variants of 
them 
 
The five heuristics presented in Corominas et al. (2007) are described in the Appendix. 
The two apportionment methods suffer from the fact that they place together, in the 
middle of the sequence, all the units of products belonging to G ; therefore, when the 
number of such products is high the distance between a pair of units of each of the other 
products is obliged to take an excessively great value. This explains that, although the 
quality of the solutions provided by We and Je is often good when 1G ≤ , it is very 

poor when G  is high and there are products with short average distances between its 
units. When this happens, apportionment algorithms yield better results if (such as is 
proposed in Waldspurger and Weihl, 1995) all the products in ( )such that 2G G ≥  are 

combined in a single fictitious product g  with gd G=  which does not intervene in the 
objective function. 
 
Applying this idea to We and Je we obtain two more heuristics that we call procedures 

/ gWe d  and / gJe d . Obviously, algorithms */ gd  are equivalent to * when 1G ≤ . 
 
In fact, out of the five heuristics in Corominas et al. (2007), only In  relies on specific 
properties of the RTVP. It seemed to be worth to explore other variants of using the idea 
of insertion as in In , what gave raise to algorithms In2  and In3 . 
 
In2  is identical to In , except that the order of the products is reversed. In3  is identical 
to In2 , except that, when solving the two-product problems, the first copy of the 
product with the less number of copies is assigned to the first position and the remaining 

copies are placed in the sequence mod iD d  times with a distance 
i

D
d

 
  

 to the last 

position assigned and modi id D d−  times with a distance 
i

D
d

 
  

 to the last position 

assigned. 
 
So far, nine heuristic procedures have been exposed, including the five heuristic 
previously published and four variants of them. Next two subsections describe three 
new heuristics conceived specifically to solve RTVP. 
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2.2. Adaptive Webster ( AWe  and / gAWe d ) 
 
Parametric apportionment algorithms try to allocate the units without regard for the 
position occupied by the preceding unit of the same product. However, concerning 
RTVP, the best (locally) position for a unit of a product is the position that is at the most 
convenient distance (as near as possible to the average distance) from that 
corresponding to its preceding unit. 
 
The algorithm that we call AWe  derives from the previous remark. When a unit of a 
product is allocated, the ideal position for the next unit of the same product is updated. 
For each product ( )1,...,i i n= , we calculate an index ijin  associated with the next unit 
j , 1,..., ij d= , to be sequenced, and the unit j  of product i  with the smallest ijin  value 

is sequenced. Let 1 2i
i

Din
d

=
⋅

 (whose ceiling is the ideal position of unit 1 of product i ). 

Let 1ik  be the position in which the first unit of product i  is sequenced. Thus, 

2 1i i
i

Din k
d

= + , and finally , 1ij i j
i

Din in
d−= +  ( )3j ≥ . In the event of a tie between q  

products, such that ( ) ( )1 ...≤ ≤ qd d : the first product to be sequenced is product (1), the 
last is product (2), the second is product (3), the second-to-last is product (4) and so on 
(that is: ( ) ( ) ( ) ( ) ( ) ( )1 3 5 6 4 2, , ,... , ,d d d d d d ). The objective of this tie-breaking rule is to prevent 

all the products in with 1id =  from being sequenced together. 
 

/ gAWe d  is the combination of AWe  with the use of the fictitious product g . 
 
2.3. Opportunity cost (Oc ) 
 
Consider that a partial sequence has built up and including position k . Given a product, 
if we compare the cost of allocating a unit of it to position 1+k  and the cost of 
allocating it to position 2+k , the difference between the latter and the former can be 
called the opportunity cost of allocating the unit to position 2+k  (instead of allocating 
it to position 1+k ). It is reasonable, then, to allocate to position 1+k  the product with a 
greater opportunity cost. As this cost cannot be calculated exactly without an optimizing 
algorithm, the decision can be taken on the basis of an estimation of it, i.e., the value of 
parameter iψ , equal to ( , 2 ) ( , 1)+ − +PLB i k PLB i k , where ( ), 2+PLB i k  and 

( ), 1+PLB i k , are lower bounds on the objective function when a unit of product i  is 
placed at positions 2+k  (without being placed at position 1+k ) or at position 1+k , 
respectively. 
 
In the explanation, that follows, of the way to calculate ( ), 1+PLB i k , indexes ( ), 1+i k  
are omitted for the sake of simplicity. 
 
As introduced in Corominas et al. (2007), a decomposition vector of D  into id  

components can be defined as follows: ( )1,..., ii dλ λ λ=  of id  positive integers that add 
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up to D  and 1 ...
idλ λ≥ ≥ . The components of vector iλ  are the distances between the 

id  units of product i . Thus, the minimum value of RTV  for product i , iRTV , can be 

obtained when mod iD d  and modi id D d−  components of iλ  are equal to 
i

D
d
 
 
 

 and 

i

D
d
 
 
 

, respectively. For example, let 24D = , 4n = , ( )9,7,5,3d =  and 

( )2.67,3.43,4.8,8t = . The decomposition vectors ( )1 3,3,3,3,3,3,2,2,2λ = , 

( )2 4,4,4,3,3,3,3λ = , ( )3 5,5,5,5,4λ =  and ( )4 8,8,8λ =  provide the minimum values of 

iRTV  ( )1,..., 4i = . A lower bound on the value of iRTV , iRTVLB , and a lower bound on 
the value of RTV , RTVLB , can be defined as follows: 

( ) ( )
2 2

mod mod
      

= ⋅ − + − ⋅ −               
i i i i i i

i i

D DRTVLB D d t d D d t
d d

 and 

1=
=∑

n

i
i

RTVLB RTVLB : 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

6 3 2.67 3 2 2.67 3 4 3.43 4 3 3.43

4 5 4.8 1 4 4.8 0 8 8 3 8 8 4.51

   = ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − + ⋅ − =   

RTVLB
 

 
In this case, however, a lower bound, PLB , is needed for a partial solution, that is, a 
solution in which one unit of product has been assigned to each of the first k  positions. 
 
A bound for a partial solution, PS , can be obtained by adding, for all the products with 

2id ≥ , the sum of RTVPS (the value associated with the distances between the units of 
the product allocated in [1,…, k ], if any) and REMRTV  (a bound corresponding to the 
assignment of the remaining units, if any, to the free positions). 
 
Let i  be a product, with 2id ≥ , whose units have not all been assigned in the partial 
solution PS . Three cases must be distinguished: 
 
- Case 1. No unit of product i  has been assigned in the k  time slots: We must 

distribute D  time slots among id  distances between two units of product i , 
guaranteeing that one distance be greater than or equal to 1+k . 

- Case 2. Only one unit of product i  has been assigned to position h  (≤ k ): We must 
distribute D  time slots among id  distances, guaranteeing that one distance be 
greater than or equal to 1− +k h  and another be greater than or equal to h . 

- Case 3. p  units of product i  have been assigned in the k  time slots, the first in the 
sequence in position fh  and the last one in position lh : We must distribute 
− +l fD h h  time slots among 1− +id p  distances, but guarantee that one distance be 

greater than or equal to 1− +lk h  and another be greater than or equal to fh . Case 2 
can be reduced to Case 3 taking into account that = =f lh h h  and 1=p . Case 1 can 
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be reduced to Case 3 taking into account that 0= = =f lh h h  and 1=p . 
 
Thus, the problem consists in distributing − +l fD h h  “units of distance” among 

1− +id p  distances ( )1,..., 1= − +i
j it j d p , taking into account that two distances are 

lower bounded by 1− +lk h  and fh , respectively, and the others are lower bounded by 
1, with the objective of minimizing a function of the discrepancy between the distances 
and the average distance it . Thus, it is the apportionment problem with lower bounds. 
Bautista et al. (2001) propose a general optimization procedure for a convex, 
nonnegative (symmetric or not) discrepancy function and such that ( )0 0f = . For the 
discrepancy function considered here (the quadratic discrepancy), the resulting 
procedure is as follows: 
 

1 1= − +i
lt k h  

2
i

ft h=  
for 3j =  to 1− +id p  

1i
jt =  

next j  

for 1j =  to − + − iD k p d  ( ) ( ) ( )( )1 1f l l f iD h k h h h d p= − + − + − − − − −  

find ( )*
*

1 max(2, 1)
min

≤ ≤ − +
=

i

i i
ss s d p

s t t  

* * 1i i
s s

t t= +  
next j  

 
For the instance defined by 4n =  and ( )9,7,5,3d =  and the partial solution 

( )1,3,2,1,1,3,3,3,1,,,,,,,,,,,,,,,PS = , we have: 
 

( ) ( ) ( ) ( ) ( )2 2 2 2 21 4 2.67 1 3 2.67 1 1 2.67 1 4 4.8 2 1 4.8 34.187PSRTV    = ⋅ − + ⋅ − + ⋅ − + ⋅ − + ⋅ − =   
 
And, applying the procedure described above, the distances (3,3,3,3,2,2), (7,3,3,3,3,3,2), 
(9,9) and (10,7,7) are obtained for products 1, 2, 3 and 4, respectively. The value 
corresponding to these distances, REMRTV , is: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2 2

4 3 2.67 2 2 2.67 1 7 3.43 5 3 3.43 1 2 3.43

2 9 4.8 1 10 8 2 7 8 58.327

REMRTV    = ⋅ − + ⋅ − + ⋅ − + ⋅ − + ⋅ −   
   + ⋅ − + ⋅ − + ⋅ − =   

 
And, finally, 34.187 58.327 92.51= + = + =PS REMPLB RTV RTV  
 
When breaking ties, products are selected in descending order of i . 
 
 
3. Local optimization procedures 
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This section describes twelve position-exchange procedures for local optimisation that 
have been applied to the heuristic initial sequences introduced in Section 2. 
 
The twelve procedures result from combining three neighbourhoods (N1: swapping two 
consecutive units; N2: swapping any pair of units; N3: a unit of a product i  is removed 
from the position it occupies and inserted between a pair of consecutive positions 
provided that there is no another unit of i  between the initial position of the unit and the 
position in which is inserted); two rules for replacing the current solution with a new 
one (R1: is replaced with the first neighbour that is better that current solution; R2: is 
replaced with the best neighbour, provided it is better than the current solution) and two 
stopping rules: 
 
F1: When there is not a neighbour better than the current solution, the algorithm 
considers, as a candidates for replacing the current solution, the neighbours for which 
the net improvement is 0 and, to avoid cycling, such that the maximum distance is not 
increased for either of two products being exchanged and at least one of the maximum 
distances actually decreases. If there are not such neighbours, the algorithm stops. 
 
F2: This stopping rule differs from the preceding one only in that considers also as 
candidates the neighbours for which the net improvement is 0 and such that the 
minimum distance does not decrease for either of the two products being exchanged 
and, moreover, at least one of the minimum distances actually increases. 
 
The local optimisation procedure proposed in Corominas et al. (2007) is N1/R1/F1. 
 
4. Computational experiment 
 
A computational experiment was carried out to evaluate the effectiveness of the exposed 
in Section 2 and 3. 
 
600 instances were used. They are generated as follows: 200 instances for three 
combinations of D  and n . The combinations of D  and n  are as follows: a) for 
instances 001 to 200, D  is randomly selected from a uniform distribution between 25 
and 50 and n  is randomly selected from a uniform distribution between 3 and 15; b) for 
instances 201 to 400, D  is randomly selected from a uniform distribution between 50 
and 100 and n  is randomly selected from a uniform distribution between 3 and 30; and 
c) for instances 401 to 600, D  is randomly selected from a uniform distribution 
between 100 and 200 and n  is randomly selected from a uniform distribution between 3 
and 65. For all the instances, id  values are randomly selected from a uniform 

distribution between 1 and 1
2.5

D n− + 
  

; since the id  values have to fulfil 
1

n

i
i

d D
=

=∑ , if 

1

n

i
i

d D
=

<∑  a product i  is randomly selected and 1i id d= +  (until 
1

n

i
i

d D
=

=∑ ) and if 

1

n

i
i

d D
=

>∑  a product i  with 1id >  is randomly selected and 1i id d= −  (until 

1

n

i
i

d D
=

=∑ ). 
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The data were ordered as follows: 1 ... nd d≥ ≥ . Moreover, when various products with 

1id =  are combined in a single fictitious product g , it is placed in the last position of 
the list for procedures / gxxx d . 
 
The heuristic algorithms were implemented in JAVA and the computational experiment 
was carried out on a PC Pentium IV, CPU 3.40 GHz with 512 Mb of RAM. 
 
For each of the 600 instances, we had 12 algorithms for the initial sequence and 12 local 
optimisation procedures. Therefore, 86,400 tests were carried out. 
 
The results were analyzed by considering the set of 600 instances (which we will call 
TS ), among them the set of 462 instances with 2G ≥  (which we will call SG ) and the 

set of 138 instances with 1G ≤  (which we will call SG ). 
 
First, we analyzed the results obtained by calculating the initial sequences using the 
proposed procedures (that is, without using an exchange procedure). Table 1 shows the 
results obtained for the 600 instances of TS  and Table 2 shows the results obtained for 
sets SG  and SG . The notation used in Tables 1 and 2 is as follows: RTV , the average 
of the RTV  values for the instances considered; NBS , the number of best solutions 
obtained; max∆ , ave∆ , min∆ , maximal, average and minimal deviation from the best 
value, respectively (the deviation of a lgaRTV  value is calculated as 

( )lg min

min
100 aRTV RTV

RTV
−

⋅ ); and CT , average computing time (in seconds). 

 
 RTV  NBS  max∆  ave∆  min∆  CT  
Bo  1702.7 22 47788 1609 0 0.0301 
Ra  10113.8 0 174837 9166 653 0.0005 
We  3170.1 29 141308 3223 0 0.0043 

/ gWe d  185.6 51 2400 121 0 0.0024 
Je  3425.2 19 157809 3560 0 0.0023 

/ gJe d  240.5 21 2400 181 0 0.0021 
In  362.6 32 9499 336 0 0.0013 
In2  3484.6 25 146775 3533 0 0.0006 

3In  3872.8 18 168428 3974 0 0.0007 
AWe 3106.9 31 133872 3134 0 0.0034 

/ gAWe d  172.2 55 2500 106 0 0.0028 
Oc  100.6 499 160 4 0 0.3279 

Table 1. Results, without using a local optimisation procedure, for the set TS . 
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   SG       SG     

 RTV  NBS  max∆  ave∆  min∆  CT  RTV  NBS  max∆  ave∆  min∆  CT  
Bo  2188.9 0 47788 2060 16 0.0301 75.0 22 1551 100 0 0.0123 
Ra  12620.3 0 174837 10806 793 0.0005 1722.6 0 21067 3678 653 0.0002 
We  4101.0 0 141308 4171 10 0.0053 53.7 29 454 51 0 0.0009 

/ gWe d  225.0 22 2400 142 0 0.0028 53.7 29 454 51 0 0.0009 
Je  4430.2 0 157809 4602 16 0.0028 60.8 19 551 70 0 0.0003 

/ gJe d  294.2 2 2400 215 0 0.0024 60.8 19 551 70 0 0.0008 
In  399.9 24 4312 298 0 0.0017 237.8 8 9499 464 0 0.0001 
In2  4503.7 0 146775 4558 19 0.0007 72.7 25 914 100 0 0.0001 
In3  5009.1 0 168428 5135 38 0.0009 68.7 18 746 84 0 0.0001 
AWe  4019.6 0 133872 4058 18 0.0040 51.1 31 373 40 0 0.0015 

/ gAWe d  208.3 24 2500 126 0 0.0035 51.1 31 373 40 0 0.0006 
Oc  119.1 398 160 3 0 0.4155 38.6 101 116 7 0 0.0346 

Table 2. Results, without using a local optimisation procedure, for sets SG  and SG . 
 
For the 600 instances of set TS , the procedure that yields better solutions is Oc and this 
is true, too, for sets SG  and SG . Oc  gives the best values of RTV , NBS , max∆ , ave∆  
and min∆ . However, the average computing time is many times greater for Oc  than for 
the other procedures, especially for the instances belonging to SG . However, the 
solutions obtained with this heuristic require, when the exchange procedures are 
applied, less time than solutions obtained with others. 
 
Next, we analyze the overall results (see Table 3) of the local optimisation procedures 
(that is, the average results obtained by applying them to the sequences obtained with all 
the heuristics described in Section 2) for set TS . 
 

 RTV  NBS  max∆  ave∆  min∆  CT  
N1/R1/F1  120.4 625 1676  238 0 1.35 
N1/R1/F2  119.7 629 1672 236 0 1.36 
N1/R2/F1  148.7 623 2094 315 0 1.86 
N1/R2/F2  146.8 634 2091 311 0 1.88 
N2/R1/F1  114.5 640 1722 222 0 25.32 
N2/R1/F2  114.1 643 1724 222 0 25.43 
N2/R2/F1  113.1 640 1800 216 0 11.70 
N2/R2/F2  112.3 638 1800 215 0 11.91 
N3/R1/F1  53.01 1162 603 56 0 72.98 
N3/R1/F2  53.00 1127 602 57 0 73.05 
N3/R2/F1  63.5 925 738 81 0 18.66 
N3/R2/F2  63.1 924 738 82 0 18.92 

Table 3. Overall results for the 12 exchange procedures for set ST . 
 
Although F2  obtains slightly better RTV  values than F1does, the number of best 
solutions obtained with F1  was slightly greater than that obtained with F2 . The 
calculation times for the two stopping rules were very similar. Exchange algorithm R1  
provided usually better results than R2  and required generally a longer calculation 
time. The use of neighbourhood N3  provides the most significant improvements, 
although it requires a longer calculation time. 
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Finally, we analyze the obtained results for the 144 combinations that result from 
applying the 12 local optimization procedures to each of the 12 initial sequences. For 
simplicity, we only show the best results. Concerning RTV , NBS  and ave∆  of set TS , 
the best local optimization was always 3 / 1/ 1N R F , followed closely by N3/R1/F2 . 
However, as shown in Table 4, none of the initial sequences consistently provided the 
best value for these parameters. 
 

  3 / 1/ 1N R F    3 / 1/ 2N R F   
 RTV  NBS  ave∆  CT  RTV  NBS  ave∆  CT  

/ gAWe d  42,46 155 27,24 12,06 42,40 154 27,29 12,17 
Oc  42,14 134 27,26 5,18 42,26 122 28,54 5,25 

Table 4. Results for set TS . 
 
For set SG , the best local optimization procedure was again 3 / 1/ 1N R F , followed 
closely by N3/R1/F2 . In this case, the initial sequence provided by Oc  gave the best 
value for these parameters (see Table 5). 
 

  3 / 1/ 1N R F    3 / 1/ 2N R F   
 RTV  NBS  ave∆  CT  RTV  NBS  ave∆  CT  

/ gAWe d  45,08 92 30,17 15,60 45,06 91 30,36 15,74 
Oc  44,54 92 29,96 6,69 44,69 79 31,56 6,78 

Table 5. Results for set SG . 
 
For set SG , all of the exchange procedures yielded very similar results and none of 
them was consistently the best for all analyzed values. 1 2N /R /F2  and Oc  provided the 
best value for RTV  (33,25); local optimization procedures 2 1N /R /F2  and 3 2N /R /F2  
and heuristics AWe  and / gAWe d  (which, obviously, are equivalent for the instances 
belonging to SG ) provided the best value for NBS  (64). Finally,  1 2 1N /R /F  and  Oc  
provided the best ave∆  value (14,07). 
 
When 2G ≥ , we recommend using the heuristic procedure obtained by applying the 
local optimization procedure 3 / 1/ 1N R F  to the initial sequence obtained by Oc . When 
there are less than two products with 1id =  ( )1G ≤ , we recommend applying 

1 2N /R /F2  to the initial sequence obtained by Oc  in order to obtain the best value of 
RTV , applying 2 1N /R /F2  to the initial sequence given by AWe  in order to obtain the 
best value of NBS  and applying 1 2 1N /R /F  to the initial sequence provided by Oc  in 
order to obtain the best ave∆  value. When the previous recommendations are applied, an 

overall RTV  value of 41,94 is obtained, as opposed to RTV  value of 42,14 obtained 
when all 600 instances are considered together (Table 4). 
 
 
5. Conclusions 
 
This paper discusses ways of solving the Response Time Variability Problem (RTVP) 
using heuristic algorithms. The RTVP, recently defined in the literature, is a scheduling 
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problem with a broad range of real-life applications that is very difficult to solve to 
optimality. A previous study developed a RTVP position-exchange heuristic to 
improving greedy initial sequences. Mathematical programming models for solving it to 
optimally have also been tested (although the practical limit for obtaining optimal 
solutions is around 40 units to be scheduled). 
 
This paper proposes and tests new heuristic algorithms that combine heuristic 
procedures for obtaining initial sequences with several exchange procedures. 
 
The results of a computational experiment show that the proposed heuristic procedures 
for obtaining initial sequences and exchange procedures are superior to the heuristic 
algorithms published in the literature. We recommend the following: first, the instances 
to be solved should be classified based on whether the number of products with 1id =  is 

2≥ . Next, if 2G ≥ , use Oc  + 3 / 1/ 1N R F . If 1G ≤ ,  use Oc  + 1 2N /R /F2   in order 

to obtain the best value of RTV ,  AWe  + 2 1N /R /F2   to obtain the best value of NBS  
and  Oc  + 1 2 1N /R /F  to obtain the best ave∆  value. 
 
Future research may focus on designing a branch and bound procedure for the RTVP. 
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Appendix: The five heuristics presented in Corominas et al. (2007) 
 
a) Bottleneck sequences ( Bo ) 
 
Bo  is a procedure that obtains an optimal sequence for the bottleneck problem. If we 
call itx  the number of units of product i  allocated in slots [1,…, t ] the bottleneck 
problem consists in minimize 

,
max · /−it ii t

x t d D  (see Steiner and Yeomans 1993 and 

Moreno and Corominas 2006). 
 
b) Random sequences ( Ra ) 
 
Procedure Ra  obtains a sequence by randomizing the bottleneck sequence as follows: 
for each position 1k  in 1...D , take a random number 2k  in the range 1...D  and swap 

[ ]1S k  with [ ]2S k , where [ ]S k  indicates the unit scheduled in position k  of the 
sequence. 
 
c) Two parametric methods for the apportionment problem: Webster’s and Jefferson’s 
sequences (We  and Je) 
 
The parametric method of apportionment (to apportion the seats of a House among the 
states, Balinski and Young 1982) is as follows. Let ikx  be the number of copies of 
product i  in the sequence of length k , 0,1,...k = ; assume 0 0ix = , 1,...,i n= ; the 
product to be sequenced in position 1k +  can be computed as follows: 

* arg max i
i

ik

di
x δ

 
=  + 

, where 0 1δ≤ ≤ . In the event of a tie, products are selected in 

descending order of i . 
 
Webster’s and a Jefferson’s sequences are obtained, respectively with 0,5δ =  and 

1δ = . 
 
d) Insertion sequences ( In ) 
 
Assume that 1 ...≤ ≤ nd d  and consider 1n −  two-product problems ( )2 2 1,P d d= , 

2

3 3
1

, j
j

P d d
=

 
=  
 

∑ , …, 
1

1
,

n

n n j
j

P d d
−

=

 
=  
 

∑ . In each of the problems nP , 1nP − , …, 3P , the first 

product is the original one, that is n , 1n − , …, 3 , respectively, and the second product 
is the same fictitious product for all the problems, denoted by *. Let sequences nS , 1nS − , 
…, 2S  be the optimal solution to problems nP , 1nP − , …, 2P , respectively. They can be 
obtained by the optimal algorithm proposed for the two-product case described in 
Corominas et al. (2007), which is introduced in the next paragraph. Notice that 
sequence iS , ,...,3i n= , is made up of the product i  and the fictitious product *. The 
sequence for the original problem is then built recursively by first replacing * in nS  
with 1nS −  to obtain 'nS  (notice that 'nS  is made up of products n , 1n −  and *). Next, * 
are replaced by 2nS −  in 'nS  to obtain a sequence ''nS  made up of products n , 1n − , 
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2n −  and *. Finally, sequence 2S  replaces all of the remaining instances of *. 
 
A simple algorithm for obtaining an optimal solution for the two-product case ( 2n = ) is 
presented in Corominas et al. (2007). Let 1 2d d<  (the case 1 2d d=  is trivial). Consider 
a sequence that begins with product 1 assigned to any position in the sequence and has 

each subsequent copy of product 1 at either a distance 
1

D
d

 
  

 or a distance 
1

D
d

 
  

 

from the last one; the number of times the distances 
1

D
d

 
  

 and 
1

D
d

 
  

 need to be used 

in this sequence are 1modD d  and 1 1modd D d− , respectively. The empty positions are 
then filled with the copies of product 2 (and distances equal to 2 and 1 must occur 
exactly 2modD d  and 2 2modd D d−  times, respectively, in the sequence). The result is 
a sequence that minimizes the value of RTV . Obviously, there are several possibilities 
for selecting the position for units of both products, fulfilling the previous conditions. 
For the insertion sequence In , the positions for unit j  of product 1 ( )11,...,j d=  are 

equal to their ideal positions, which are defined as 
1

2 1
2

j
r

 ⋅ −
 ⋅ 

 where 1
1

dr D= . 

 
 
 


