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1 Introduction

Systems of singular differential equations have been a matter of increasing interest in theoretical
physics and in some technical areas such as engineering of electric networks or control theory.
The fundamental characteristic of these kinds of systems is that the existence and uniqueness
of solutions are not assured. In particular, this situation arises in mechanics when dynamical
systems described by singular Lagrangians are considered, and also when considering systems
of PDE’s associated with field theories described by singular Lagrangians (such as, for instance,
electromagnetism), as well as in some other applications related to optimal control theories. Fur-
thermore, these systems do not have a nice Hamiltonian description, since not all the momenta
are available and, in general, the equations have no solution everywhere.

Bergmann and Dirac were pioneer in solving the problem for the Hamiltonian formalism of
singular mechanical systems, by developing a constraint algorithm which gives, in the favourable
cases, a final constraint submanifold where admissible solutions to the dynamics exist (in the
sense that the dynamical evolution remains on this manifold) [9]. Their main aim was to apply
this procedure to field theories. Afterwards, a lot of work was done in order to geometrize this
algorithm. The first important step was the work by Gotay et al [15], and its application to the
Lagrangian formalism [13, 14]. Other algorithms were given later, in order to find consistent
solutions of the dynamical equations in the Lagrangian formalism of singular systems (including
the problem of finding holonomic solutions) [3, 21, 42], and afterwards, new geometric algorithms
were developed to be applied both in the Hamiltonian and the Lagrangian formalisms, as well as
to other kinds of more general systems og singular differential equations [17, 19, 20, 37, 41, 44].

The Lagrangian and Hamiltonian descriptions of field theories is the natural extension of
time-dependent mechanics. Therefore, in order to understand the constraint algorithm for field
theories in a covariant formalism, the first step was to develop the algorithmic procedures for
time-dependent systems. This work was provided mainly in [5, 6, 16, 27, 30, 31, 35, 36, 38, 50].

There are several alternative models for describing geometrically first-order classical field the-
ories. From a conceptual point of view, the simplest one is the k-symplectic formalism, which
is the generalization to field theories of the standard symplectic formalism used as the geomet-
ric framework for describing autonomous dynamical systems. In this sense, the k-symplectic
formalism is used to give a geometric description of certain kinds of field theories: in a local
description, those theories whose Lagrangians or Hamiltonians depend on the fields and on
the partial derivatives of the fields, or the corresponding moments, but not on the space-time
coordinates [40]. The foundations of the k-symplectic formalism are the k-symplectic mani-
folds [1, 2, 32]. Historically, it is based on the so-called polysymplectic formalism developed
by Günther [18], who introduced the concept of polysymplectic manifold. Then, k-symplectic
manifolds are polysymplectic manifolds which have Darboux-type coordinates [32]. A natural
extension of this formalism is the k-cosymplectic formalism, where k-cosymplectic manifolds are
used to describe geometrically field theories involving space-time coordinates or analogous ones,
on the Lagrangian or the Hamiltonian [33, 34]. This is the generalization to field theories of the
cosymplectic formalism geometrically describing non-autonomous mechanical systems. One of
the advantages of these formalisms is that one only needs the tangent and cotangent bundle of
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a manifold to develop them.

It is worth noting that G. Sardanashvily et al [12, 47] developed a polysymplectic formalism
for classical field theories which differs from the one proposed by Günther. (See also [22] for
more details on the polysymplectic formalism.) In addition, we must remark that the soldering
form on the linear frames bundles is a polysymplectic form, and its study and applications to
field theory constitute the n-symplectic formalism developped by L. K. Norris [39, 43].

Working within the framework of the k-symplectic description for these theories, we present
in this paper a geometric algorithm for finding the maximal submanifold where there are con-
sistent solutions to the field equations of singular theories. This algorithm is a generalization
of the presymplectic constraint algorithm for presymplectic dynamical systems [15], and gives
an intrinsic description of all the constraint submanifolds. The problem is stated in a generic
way for k-presymplectic Hamiltonian systems, in order to give a solution to both Lagrangian
and Hamiltonian field theories, as well as other possible kinds of systems of partial differential
equations. In this framework, the solutions to these equations are given geometrically by inte-
grable k-vector fields in the manifold where the equations are stated. In this way, a constraint
algorithm can be developed giving a sequence of submanifolds which, in the best case, ends
in some final constraint submanifold where field equations have consistent solutions (k-vector
fields), although not necessarily integrable. The general problem of integrability is not addressed
in this paper, only discussed in the examples. Finally, Lagrangian and Hamiltonian field theo-
ries are particular cases where the above results are applied straightforwardly, although in the
Lagrangian case the problem of finding holonomic solutions must be also analized. In addition,
the unified Lagrangian-Hamiltonian formalism of Skinner–Rusk [49], which was adapted recently
for k-symplectic field theories [45], constitutes a framework where this algorithm is applied in a
very natural way. A description of constraint algorithms for other geometrical models of field
theories (multisymplectic) was made in [10, 11, 28, 29].

The paper is organized as follows. In section 2 k-symplectic structures are reviewed, as well
as the corresponding Hamiltonian systems. Section 3 is devoted to k-presymplectic Hamiltonian
systems and the presymplectic constraint algorithm. In section 4 the particular case of field
theories described by a Lagrangian function is considered, either in Lagrangian or in Hamiltonian
formalism. Finally, the application to the Skinner–Rusk formalism and two examples are studied
in section 5.

Manifolds and maps are assumed to be smooth. Sum over crossed repeated indices is under-
stood.

2 k-symplectic Hamiltonian systems

2.1 k-symplectic manifolds. The bundle of k1-covelocities

Definition 1. A k-symplectic structure on a differentiable manifold M of dimension N =
n + kn is a family (ω1, . . . , ωk;V ), where each ωA is a closed 2-form, and V is an integrable
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nk-dimensional tangent distribution on M such that

(i) ωA|V×V = 0 for each A,

(ii) ∩kA=1 KerωA = {0}.

Then (M,ωA, V ) is called a k-symplectic manifold.

Theorem 1. [1, 32]. Let (ωA, V ) be a k-symplectic structure on M . For every point of M there
exists a neighbourhood U and local coordinates (qi, pAi ) (1 ≤ i ≤ n, 1 ≤ A ≤ k) such that, on U ,

ωA = dqi ∧ dpAi , V =
〈

∂

∂p1
i

, . . . ,
∂

∂pki

〉
i=1,...,n

.

These are called Darboux or canonical coordinates of the k-symplectic manifold.

The canonical model of a k-symplectic manifold is (T1
k)
∗Q = T∗Q⊕ k. . . ⊕T∗Q, the bundle of

k1-covelocities of an n-dimensional differentiable manifold Q, which has the natural projections

πA : (T1
k)
∗Q → T∗Q ; π1

Q : (T1
k)
∗Q → Q

(q;α1
q , . . . , α

k
q ) 7→ (q;αAq ) ; (q;α1

q , . . . , α
k
q ) 7→ q

.

(T1
k)
∗Q is endowed with the canonical forms

θA = (πA)∗θ, ωA = (πA)∗ω = −(πA)∗dθ = −dθA,

where θ and ω are the Liouville 1-form and the canonical symplectic form on T∗Q.

If (qi) (1 ≤ i ≤ n) are local coordinates on U ⊂ Q, the induced coordinates (qi, pAi ) (1 ≤
A ≤ k) on (π1

Q)−1(U) are given by

qi(q;α1
q , . . . , α

k
q ) = qi(q), pAi (q;α1

q , . . . , α
k
q ) = αAq

(
∂

∂qi

∣∣∣
q

)
.

Then we have
θA = pAi dqi, ωA = dqi ∧ dpAi .

Thus, the triple ((T1
k)
∗Q,ωA, V ), where V = KerTπ1

Q, is a k-symplectic manifold, and the
natural coordinates in (T1

k)
∗Q are Darboux coordinates.

2.2 k-vector fields and integral sections

Let T1
kM = TM⊕ k. . . ⊕TM be the bundle of k1-velocities of a differentiable manifold M . It is

endowed with the natural projections

τA : T1
kM → TM ; τ1

M : T1
kM → M

(q, v1q, . . . , vkq) 7→ (q; vAq) ; (q, v1q, . . . , vkq) 7→ q
(1)

Definition 2. A k-vector field on a manifold M is a section X : M −→ T1
kM of the projec-

tion τ1
M .

Therefore, giving a k-vector field X is the same as giving k vector fields X1, . . . , Xk on M ,
obtained as XA = τA ◦X. We denote X = (X1, . . . , Xk).
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Remark The term k-vector field on M is more often applied to the sections of the bundle
ΛkTM →M , that is, contravariant skew-symmetric tensor fields of order k. The k-vector fields
X = (X1, . . . , Xk) used here lead to a particular class of such tensor fields, the decomposable

ones, X1 ∧ . . . ∧Xk, which can be associated with distributions on M .

Definition 3. An integral section of the k-vector field X = (X1, . . . , Xk) is a map φ : J → M ,
defined on an open set J ⊂ Rk, such that

Tφ ◦ ∂

∂tA
= XA ◦ φ,

where t = (t1, . . . , tk) denote the canonical coordinates of Rk.
Equivalently, an integral section satisfies the equation

φ(1) = X ◦ φ,

where φ(1) : J → T1
kM is the first prolongation of φ to T1

kM defined by

φ(1)(t) =
(
φ(t),Tφ

(
∂

∂t1

∣∣∣
t

)
, . . . ,Tφ

(
∂

∂tk

∣∣∣
t

))
.

A k-vector field X is integrable if every point of M belongs to the image of an integral section
of X.

In coordinates, write XA = Xi
A

∂

∂xi
. The φ is an integral section of X if, and only if, the

following system of partial differential equations holds:

∂φi

∂tA
= Xi

A(φ) .

Proposition 1. A k-vector field X = (X1, . . . , Xk) is integrable if, and only if, [XA, XB] = 0
for each A,B.

This is the geometric expression of the integrability condition of the preceding differential
equation (see, for instance, [26] or [8]).

2.3 Hamiltonian systems

Definition 4. Let (M,ωA, V ) be a k-symplectic manifold, and α ∈ Ω1(M) a closed form.
(M,ωA, V, α) is said to be a k-symplectic Hamiltonian system.

As α is closed, for every point of M there exists a neighbourhood U ⊂ M and a function
H ∈ C∞(U) such that α = dH on U . This function is called a local Hamiltonian function. If α
is exact, then H ∈ C∞(M) is called a (global) Hamiltonian function. These functions are unique
up to a constant on each connected component of M . From now on, we will write α = dH.

The Hamilton–de Donder–Weyl (HDW) equation for a map ψ : J →M (J ⊂ Rk) is

i(ψ(1)
A )ωA = dH ◦ ψ . (2)
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In canonical coordinates this reads

∂ψi

∂tA
=
∂H

∂pAi
,

∂ψAi
∂tA

= −∂H
∂qi

.

where ψ = (ψi, ψAi ). Recall that, according to our conventions, a sum
∑

A is understood
whenever the index A appears twice in upper and lower position.

In order to give an alternative geometrical interpretation of these equations, we introduce the
set Xk

H(M) of those k-vector fields X = (X1, . . . , Xk) on M which are solutions of the geometric

field equation

i(XA)ωA = dH. (3)

For k-symplectic Hamiltonian systems, solutions of equation (3) always exist (this is a con-
sequence of the lemma and the theorem in the next section). They are neither unique, nor
necessarily integrable.

In canonical coordinates of M , writing XA = (XA)i
∂

∂qi
+ (XA)Bi

∂

∂pBi
, equation (3) reads

∂H

∂qi
= −(XA)Ai ,

∂H

∂pAi
= (XA)i.

This geometric field equation for X is an alternative formulation of the HDW equation in
the following sense:

Proposition 2. Let X = (X1, . . . , Xk) be an integrable k-vector field in M . Every integral
section ψ : J →M of X satisfies the HDW equation (2) if, and only if, X ∈ Xk

H(M).

Note however that equations (2) and (3) cannot, in general, be considered as fully equivalent:
a solution to the HDW equations may not be an integral section of some integrable k-vector
field on M . Solutions ψ that are integral sections of some X ∈ Xk

H(M) will be called admissible,
and we will restrict our attention to them.

3 k-presymplectic system and constraint algorithms

3.1 k-presymplectic Hamiltonian systems

To consider singular field theories we have to drop some assumptions in the definition of a k-
symplectic structure. So, a family (ω1, . . . , ωk) ok k closed 2-forms on a smooth manifold M

will be called a k-presymplectic structure; accordingly, (M,ωA) will be called a k-presymplectic
manifold.

The simplest example of a k-presymplectic manifold is provided by any submanifold of a
k-symplectic manifold: the pull-back of the k 2-forms by the inclusion map yields k 2-forms on
the submanifold.

In some particular k-presymplectic manifolds one can find Poisson-like coordinates, but it is
an open question to characterize the necessary and sufficient conditions for these coordinates to
exist.
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Given a closed 1-form α ∈ Ω1(M), (M,ωA, α) is said to be a k-presymplectic Hamiltonian
system. As above, we will write α = dH (locally or globally).

Then we can also consider the Hamilton–de Donder–Weyl equation i(ψ(1)
A )ωA = dH ◦ψ, and

also the set Xk
H(M) of k-vector fields X that satisfy the geometric field equation i(XA)ωA = dH.

For k-presymplectic systems the existence of solutions of this equation is not assured every-
where on M . We will analyze the existence of solutions on a certain submanifold of M .

3.2 Statement of the problem

The problem we wish to solve arises from the Lagrangian and Hamiltonian k-presymplectic
formalisms in field theories, although other kinds of systems could also be stated in this way.

Statement. Let (M,ωA,dH) be a k-presymplectic Hamiltonian system. We want to find a
submanifold C of M and integrable k-vector fields X = (X1, . . . , Xk) ∈ Xk(M) such that

i(XA)ωA ≈
C

dH (4)

(this means equality on the points of C) and

X is tangent to C

(this means that X1, . . . , Xk are tangent to C).

As stated in the introduction, we will focus on the consistency of the equation and will not
address the integrability condition in generality.

Given a submanifold C of M , with natural embedding C : C ↪→ M , let Tk
1C : T1

kC →
T1
kM be the natural extension of C to the k-tangent bundles, and denote its image as T1

kC =
Tk

1C(T1
kC).

We can define the map

[k : T1
kM → T∗M

(p; vp1 , . . . , vpk
) 7→ (p, i(vAp)ωAp )

(5)

and denote by (TC)⊥[k the annihilator of the image of T1
kC by [k; that is,

(TC)⊥[k = [[k(T1
kC)]0 = {up ∈ TM | ∀(vp1, . . . , vpk) ∈ T 1

kC, 〈
∑

i(vpA)ωAp , up〉 = 0}.

We call (TC)⊥[k the k-presymplectic orthogonal complement of T1
kC in T1

kM .

In particular, for C = M we have:

Lemma 1. (TM)⊥[k = {(p, up) ∈ TM | up ∈
k⋂

A=1

KerωAp }

(Proof ) For every p ∈ M and (vp1, . . . , vpk) ∈ (T1
k)pM , if up ∈

⋂k
A=1 KerωAp , then we have

(i(vAp)ωAp )(up) = − i(vAp) i(up)ωAp = 0, and therefore up ∈ (TpM)⊥[k .
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Conversely, if up ∈ (TpM)⊥[k , then (i(vAp)ωAp )(up) = 0 for every (vp1, . . . , vpk) ∈ (T1
k)pM .

Then taking any (vp1, 0, . . . , 0) with vp1 6= 0 we conclude that up ∈ Kerω1
p; and analogously for

the others.

The main result is the following:

Theorem 2. Let C be a submanifold of M . The following conditions are equivalent:

• there exists a k-vector field X = (X1, . . . , Xk) ∈ Xk(M), tangent to C, such that equation
(4) holds

• i(Yp)(dH)p = 0 for every p ∈ C, Yp ∈ (TpC)⊥[k . (6)

(Proof ) (=⇒) If there exists a k-vector field X = (X1, . . . , Xk) ∈ Xk(M), tangent to C such
that equation (4) holds, then, for every p ∈ C and Yp ∈ (TpC)⊥[k ,

0 = [i(XAp)ωAp ](Yp) = i(Yp) i(XAp)ωAp = i(Yp)(dH)p .

(⇐=) If (6) holds, then

(dH)p ∈ [(TC)⊥[k ]0 = [[[k(T1
kC)]0]0 = [k(T1

kC),

and hence there exists (Xp1, . . . , Xpk) ∈ (T1
k)pC such that (4) holds.

3.3 k-presymplectic constraint algorithm

The application of the above result leads to an algorithmic procedure which gives a sequence of
subsets . . . ⊂ Cj ⊂ . . . C2 ⊂ C1 ⊂M . We will assume that:

Assumption. Every subset Cj of this sequence is a regular submanifold of M .

These submanifolds are sequentially obtained from the analysis of the consistency of a linear
equation, namely eq. (4) at each point:

i(XAp)ωAp = (dH)p.

First, C1 ↪→M is the submanifold of M where this equation is consistent:

C1 = {p ∈M | ∃Xp such that i(XAp)ωAp = (dH)p}.

So, there exist k-vector fields X on M which satisfy equation (4) on the sumbanifold C1. How-
ever, in general these X may not be tangent to C1. Therefore, we consider the submanifold

C2 = {p ∈ C1 | ∃Xp ∈ T1
k(C1) such that i(XAp)ωAp = (dH)p} ,

and so on. Following this process, we obtain a sequence of constraint submanifolds

. . . ↪→ Cj ↪→ . . . C2 ↪→ C1 ↪→M
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where, taking into account Theorem 2, each submanifold Cj is geometrically defined by

Cj = {p ∈ Cj−1 | i(Yp)(dH)p = 0 for every Yp ∈ (TpCj−1)⊥[k}.

For every j ≥ 1, Cj is called the jth constraint submanifold.

If we denote by X(Cj)⊥[k the set of vector fields Y in M such that Yp ∈ (TpCj)⊥[k , then one
can obtain constraint functions {ξµ} defining each Cj from a local basis {Z1, . . . , Zr} of vector
fields of X(Cj−1)⊥[k by setting ξµ = i(Zµ)dH.

The technical procedure to obtain these constraints is the following:

• To obtain a local basis {Z1, . . . , Zr} of vector fields of
⋂k
A=1 KerωA.

• To apply Theorem 2 to obtain a set of independent constraint functions ξµ = i(Zµ)dH,
defining C1 ↪→M .

• To calculate X = (X1, . . . , Xk), solutions to (4) on C1.

• To impose the tangency condition of X1, . . . , Xk on the constraints ξµ.

• To iterate the last item until no new constraints appear.

This is the k-presymplectic constraint algorithm. We have two possibilities:

• There exists an integer j > 0 such that Cj+1 = Cj ≡ Cf . In this case, Cf is called the final

constraint submanifold, and there exist a family of k-vector fields Xf = (Xf
1 , . . . , X

f
k ) in

M , tangent to Cf , such that (3) holds on Cf , that is,

[i(Xf
A)ωA − dH]|Cf

= 0. (7)

This is the situation which is interesting to us.

• There exists an integer j > 0 such that Cj = ∅. This means that the equations have no
solution on a submanifold of M .

4 k-symplectic field theory

4.1 The bundle of k1-velocities

The Lagrangian formalism of k-symplectic field theories uses the bundle of k1-velocities of a
manifold as phase space. First we introduce the canonical structures which this manifold is
endowed with.

Let T1
kQ = TQ⊕ k. . . ⊕TQ be the bundle of k1-velocities of Q, with natural projections

τA : T1
kQ→ TQ and τ1

Q : T1
kQ→ Q, given in (1).

If (qi) are local coordinates on U ⊂ Q, the induced coordinates (qi, viA) on (τ1
Q)−1(U) are

qi(v1q, . . . , vkq) = qi(q) , viA(v1q, . . . , vkq) = vAq(qi) .



X. Gràcia, R. Mart́ın, N. Román-Roy — Constraint algorithm for k-presymplectic systems 10

For Zq ∈ TqQ, its vertical A-lift at (v1q, . . . , vkq) ∈ T1
kQ is the vector (Zq)VA , tangent to the

fiber (τ1
Q)−1(q) ⊂ T1

kQ, given by

(Zq)VA(v1q, . . . , vkq) =
d

ds

∣∣∣
s=0
(v1q, . . . , v(A−1)q, vAq + sZq, v(A+1)q, . . . , vkq)

If Zq = ai
∂

∂qi

∣∣∣
q
, then (Zq)VA(v1q, . . . , vkq) = ai

∂

∂viA

∣∣∣
(v1q ,...,vkq)

.

The canonical k-tangent structure on T 1
kQ is the set (S1, . . . , Sk) of tensor fields of type (1, 1)

defined by
SA(wq)(Zwq) = (Twq(τ

1
Q)(Zwq))

VA(wq) ,

for wq = (v1q, . . . , vkq) ∈ T 1
kQ, Zwq ∈ Twq(T 1

kQ).

In coordinates we have SA = ∂
∂vi

A
⊗ dqi.

The Liouville vector field ∆ ∈ X(T1
kQ) is the infinitesimal generator of the flow ψ : R ×

T1
kQ −→ T1

kQ

ψ(s; v1q, . . . , vkq) = (esv1q, . . . , esvkq).

Observe that ∆ = ∆1 + . . . + ∆k, where each ∆A ∈ X(T1
KQ) is the infinitesimal generator of

the flow ψA : R× T1
kQ −→ T1

kQ

ψA(s; v1q, . . . , vkq) = (v1q, . . . , v(A−1)q, e
svAq, v(A+1)q, . . . , vkq)

In local coordinates we have ∆ =
∑k

A=1 ∆A = viA
∂

∂viA
.

Now we want to characterize the integrable k-vector fields on T 1
kQ such that their integral

sections are first prolongations φ(1) of maps φ : Rk → Q. Remember that a k-vector field in T 1
kQ

is a section Γ : T 1
kQ −→ T 1

k (T 1
kQ) of the canonical projection τT 1

kQ
: T 1

k (T 1
kQ) → T 1

kQ. Then:

Definition 5. A second order partial differential equation (sopde) is a k-vector field Γ =
(Γ1, . . . ,Γk) on T 1

kQ which is also a section of the projection T 1
k τ : T 1

k (T 1
kQ) → T 1

kQ; that is,

T 1
k τ ◦ Γ = IdT 1

kQ
,

or, what is equivalent, Twqτ · ΓA(wq) = vAq, for wq = (v1q, . . . , vkq) ∈ T 1
kQ.

If the local expression of the k-vector field Γ = (ΓA) on T 1
kQ is ΓA = (ΓA)i

∂

∂qi
+(ΓA)iB

∂

∂viB
,

then Γ is a sopde iff (ΓA)i = viA:

ΓA(qi, viA) = viA
∂

∂qi
+ (ΓA)iB

∂

∂viB
,

where (ΓA)iB are functions locally defined in T 1
kQ.

If ψ : Rk → T 1
kQ is an integral section of Γ = (Γ1, . . . ,Γk), locally given by ψ(t) = (ψi(t), ψiB(t)),

then from the last expression and Definition 3 we deduce

∂ψi

∂tA

∣∣∣
t
= ψiA(t) ,

∂ψiB
∂tA

∣∣∣
t
= (ΓA)iB(ψ(t)) .



X. Gràcia, R. Mart́ın, N. Román-Roy — Constraint algorithm for k-presymplectic systems 11

Proposition 3. Let Γ = (Γ1, . . . ,Γk) be an integrable sopde. If ψ is an integral section of Γ

then ψ = φ(1), where φ(1) is the first prolongation of the map φ = τ ◦ ψ : Rk ψ→ T 1
kQ

τ→ Q, and
φ is a solution of the system of second order partial differential equations

∂2φi

∂tA∂tB
(t) = (ΓA)iB

(
φi(t),

∂φi

∂tC
(t)
)
. (8)

Conversely, if φ : Rk → Q is any map satisfying (8), then φ(1) is an integral section of Γ =
(Γ1, . . . ,Γk).

From (8) we deduce that if Γ is an integrable sopde then (ΓA)iB = (ΓB)iA.

Finally, using the canonical k-tangent structure of T 1
kQ, we have that a k-vector field Γ =

(Γ1, . . . ,Γk) on T 1
kQ is a sopde if, and only if, SA(ΓA) = ∆A (A fixed).

4.2 k-symplectic Lagrangian field theory

Let L ∈ C∞(T1
kQ) be a Lagrangian function. We define the Lagrangian forms

θAL = t(SA) ◦ dL ∈ Ω1(T1
kQ) , ωAL = −dθAL ∈ Ω2(T1

kQ) .

and the Lagrangian energy function

EL = ∆(L)− L ∈ C∞(T1
kQ) .

They have local expressions θAL =
∂L

∂viA
dqi, ωAL = dqi ∧ d

(
∂L

∂viA

)
, EL = viA

∂L

∂viA
− L.

We introduce the Legendre map of L, which is its fibre derivative FL : T1
kQ −→ (T1

k)
∗Q. It

can be defined as follows: for q ∈ Q, uq ∈ TqQ, (v1q, . . . , vkq) ∈ (T1
k)qQ,

[FL(v1q, . . . , vkq)]A(uq) =
d

ds
L(v1q, . . . , vAq + suq, . . . , vkq)|s=0.

Locally, FL(qi, viA) =
(
qi,

∂L

∂viA

)
. Furthermore, we have that θAL = FL∗(θA), ωAL = FL∗(ωA).

Definition 6. The Lagrangian L is regular if the following equivalent conditions hold:

1.

(
∂2L

∂viA∂v
j
B

)
is everywhere nonsingular.

2. The second fibre derivative FL : T1
kQ −→ (T1

k)
∗Q⊗ (T1

k)
∗Q is everywhere nonsingular.

3. FL is a local diffeomorphism.

4. (T1
kQ,ω

A
L , V = KerTτ1

Q) is a k-symplectic manifold.

The Lagrangian L is called hyperregular if FL is a global diffeomorphism.
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We must point out that, in field theories, the notion of regularity is not uniquely defined (for
other approaches see, for instance, [4, 7, 23, 24, 25]).

Our purpose, however, is the study of singular Lagrangians, i.e., those which are not regular.
Following [13], we will deal with singular Lagrangians satisfying some regularity conditions:

Definition 7. A singular Lagrangian L is almost-regular if

1. P := FL(T1
kQ) is a closed submanifold of (T1

k)
∗Q.

2. FL is a submersion onto its image.

3. The fibres FL−1(p), for every p ∈ P, are connected submanifolds of T1
kQ.

If L is regular, (T1
kQ,ω

A
L , EL) is a k-symplectic Lagrangian system, otherwise it is a k-

presymplectic Lagrangian system. Therefore, (T1
kQ,ω

A
L ,dEL) is a k-symplectic or a k-presymplectic

Hamiltonian system, depending on the regularity of L.

In a natural chart of T1
kQ we have the Euler–Lagrange (EL) equations for L, which are

∂

∂tA

(
∂L

∂viA

∣∣∣
ϕ(t)

)
=
∂L

∂qi

∣∣∣
ϕ(t)

, viA(ϕ(t)) =
∂ϕi

∂tA
, (9)

whose solutions are maps ϕ : Rk → T1
kQ that are first prolongations to T1

kQ of maps φ =
τ1
Q ◦ ϕ : Rk → Q; that is, ϕ are holonomic. We will show that these equations can be given a

geometric interpretation using the k-presymplectic structure.

Indeed, consider a map ϕ : Rk → T1
kQ which is holonomic. Then the Euler–Lagrange equa-

tions for ϕ can be also written as
i(ϕ(1)

A )ωAL = dEL . (10)

As in our general discussion on k-presymplectic Hamiltonian systems, a convenient way to
represent the solutions of these equations can be set in terms of k-vector fields. Let us introduce
the set Xk

L(T1
kQ) of k-vector fields Γ = (Γ1, . . . ,Γk) in T1

kQ which are solutions of

i(ΓA)ωAL = dEL . (11)

If ΓA = (ΓA)i
∂

∂qi
+ (ΓA)iB

∂

∂viB
locally, then (11) is equivalent to

(
∂2L

∂qi∂vjA
− ∂2L

∂qj∂viA

)
(ΓA)j − ∂2L

∂viA∂v
j
B

(ΓA)jB = vjA
∂2L

∂qi∂vjA
− ∂L

∂qi

∂2L

∂vjB∂v
i
A

(ΓA)i =
∂2L

∂vjB∂v
i
A

viA . (12)

If, in addition, Γ is required to be a sopde, i.e. (ΓA)i = viA, then the above equations are
equivalent to

∂2L

∂qj∂viA
vjA +

∂2L

∂viA∂v
j
B

(ΓA)jB =
∂L

∂qi
.



X. Gràcia, R. Mart́ın, N. Román-Roy — Constraint algorithm for k-presymplectic systems 13

These equations imply that, if Γ is an integrable sopde, its integral sections are holonomic and
they are solutions to the EL-equations.

If L is regular, solutions to (11) always exist, although they are neither unique, nor necessarily
integrable. However, if Γ is integrable, then the second group of equations (12) imply that its
integral sections are holonomic and they are solutions to the EL-equations. Hence Γ is a sopde.

If L is not regular then, in general, equations (11) have no solutions everywhere in T1
kQ but,

in the most favourable situations, they do in a submanifold of T1
kQ which is obtained by applying

the k-presymplectic constraint algorithm developed in Section 3.3. Nevertheless, solutions to
equations (11) are not necessarily sopde’s (unless it is required as an additional condition). In
addition, if they are integrable, their integral sections are not necessarily holonomic, and thus
they are not solutions to the EL-equations (9). The geometric analysis of this problem must
be done in a separate way. (For the multisymplectic formalism of field theories, a study of this
problem can be found in [29]).

4.3 k-symplectic Hamiltonian field theory

The Hamiltonian formalism of k-symplectic regular field theories uses the bundle of k1-covelocities
of a manifold as phase space.

So, consider the k-symplectic manifold ((T1
k)
∗Q,ωA, V ), and let H ∈ C∞((T1

k)
∗Q) be a

Hamiltonian function. Then ((T1
k)
∗Q,ωA,dH) is a k-symplectic Hamiltonian system.

In particular, if (T1
kQ,ω

A
L ,dEL) is a Lagrangian system, then:

• If L is hyperregular, we may define the Hamiltonian H = EL◦FL−1, and ((T1
k)
∗Q,ωA,dH)

is the k-symplectic Hamiltonian system associated with L.

• If L is almost-regular, let P be the image of the Legendre map, and 0 : P ↪→ (T1
k)
∗Q the

corresponding embedding, and denote by FL0 : T1
kQ→ P the restriction of the Legendre

map defined by 0◦FL0 = FL. Then, the condition of almost-regularity implies that there
exists H0 ∈ C∞(P) such that (FL0)∗(H0) = EL. Furthermore, we can define ωA0 = ∗0(ω

A).
With these definitions, the triple (P, ωA0 ,dH0) is the k-presymplectic Hamiltonian system

associated with L, and the corresponding Hamiltonian field equation (3) is

i(X0
A)ωA0 = dH0

where X0 = (X0
1 , . . . , X

0
k) (if it exists) is a k-vector field on P. Once again, in general, this

equation has no solutions everywhere in P but, in the most favourable situations, they do
in a submanifold of P which is obtained applying the k-presymplectic constraint algorithm
developed in Section 3.3.
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5 Applications and examples

5.1 The Skinner–Rusk unified formalism for k-symplectic field theory

The so-called Skinner–Rusk formalism [48, 49] was developed in order to give a geometrical
unified formalism for describing mechanical systems. It incorporates all the characteristics of
Lagrangian and Hamiltonian descriptions of these systems. This formalism has been generalized
to the k-symplectic description of first-order field theories in [45]. Next we outline the main
features of this formalism.

Let us consider the direct sum T 1
kQ ⊕ (T 1

k )∗Q (of vector bundles over Q), with coordinates
(qi, viA, p

A
i ), and denote by pr1 : T 1

kQ ⊕ (T 1
k )∗Q → T 1

kQ and pr2 : T 1
kQ ⊕ (T 1

k )∗Q → (T 1
k )∗Q the

canonical projections. In this manifold, we have some canonical structures.

First, if ((ω0)1, . . . , (ω0)k) is the canonical k-symplectic structure on (T 1
k )∗Q, its pull-back

through pr2 yields a k-presymplectic structure (Ω1, . . . ,Ωk) on T 1
kQ⊕ (T 1

k )∗Q: the 2-forms are
defined by ΩA = (pr2)∗(ω0)A.

We can also define the so-called coupling function C : T 1
kQ⊕ (T 1

k )∗Q −→ R by

C(v1q, . . . , vkq, α
1
q , . . . , α

k
q ) := 〈αAq , vAq〉.

Now, consider a Lagrangian L ∈ C∞(T 1
kQ). We can define a Hamiltonian function H ∈

C∞(T 1
kQ⊕ (T 1

k )∗Q) as H = C − pr∗1(L):

H(v1q, . . . , vkq, α
1
q , . . . , α

k
q ) = C(v1q, . . . , vkq, α

1
q , . . . , α

k
q )− L(v1q, . . . , vkq),

which in local coordinates reads H = αAi v
i
A − L(qi, viA).

Then
(
T 1
kQ⊕ (T 1

k )∗Q,ΩA,H
)

is a k-presymplectic Hamiltonian system; where ∩kA=1ΩA is

locally generated by the vector fields
{

∂

∂viA

}
. We look for the solutions of its HDW equation

which are integral sections ψ : Rk → T 1
kQ ⊕ (T 1

k )∗Q of some integrable k-vector field Z =
(Z1, . . . , Zk) on T 1

kQ⊕ (T 1
k )∗Q, satisfying

ıZA
ΩA = dH . (13)

This equation gives various kinds of information. In fact, writing locally each ZA as

ZA = (ZA)i
∂

∂qi
+ (ZA)iB

∂

∂viB
+ (ZA)Bi

∂

∂pBi
,

equation (13) amounts to the following conditions:

pAi =
∂L

∂viA
◦ pr1 , (ZA)i = viA , (ZB)Bi =

∂L

∂qi
◦ pr1 .

The first group of equations are algebraic rather than differential, and they define a sub-
manifold ML of T 1

kQ ⊕Q (T 1
k )∗Q where the equation (13) has solution. These constraints can

also be obtained by computing i
(

∂

∂viA

)
dH, as noted in the discussion of the k-presymplectic
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constraint algorithm. Observe that the submanifold ML is just the graph of the Legendre
map FL defined by the Lagrangian L, and hence it is diffeomorphic to T 1

kQ. We denote by
 : ML → T 1

kQ⊕Q (T 1
k )∗Q the natural embedding.

The second group of equations are a holonomy condition which means that the k-velocity
part of the integral sections of the k-vector field Z is the lift of a section φ : Rk → Q.

The third group of equations establishes some relations among some of the coefficients (ZA)Bi
of the vector fields ZA.

Given a solution Z = (Z1, . . . , Zk) of equation (13), the vector fields ZA are tangent to the

submanifold ML if, and only if, the functions L
ZA

(
pBj −

∂L

∂vjB
◦ pr1

)
vanish at the points of

ML, for every A,B, j (the symbol L denotes the Lie derivative). Taking into account the above
results, this is equivalent to

(ZA)Bj =
∂2L

∂vjB∂q
i
viA +

∂2L

∂vjB∂v
i
C

(ZA)iC . (14)

In general, equations (13) have not a unique solution. If L is regular, taking into account
the above results, one can define local k-vector fields (Z1, . . . , Zk) on a neighborhood of each
point in ML which are solutions to (13). The vector field ZA may be locally given by

(ZA)i = viA , (ZA)Bi =
1
k

∂L

∂qi
δBA ,

with (ZA)iB given by equation (14). Then, using a partition of the unity, one can construct global
k-vector fields which are solutions to (13). When the Lagrangian L is singular one cannot assure
the existence of consistent solutions for equation (13). Then, in the best cases, the constraint
algorithm will provide a constraint submanifold Pf where these solutions exist.

If Z is an integrable k-vector field solution to (13), then every integral section of Z is of
the form ψ = (ψL, ψH), with ψL = pr1 ◦ ψ : Rk → T 1

kQ, and as ψ takes values in ML then
ψH = FL ◦ ψL; in fact,

ψH(t) = (pr2 ◦ ψ)(t) = (ψi(t), ψAi (t)) =
(
ψi(t),

∂L

∂viA

∣∣∣
ψL(t)

)
= (FL ◦ ψL)(t) .

Furthermore, it can be proved (see [45]) that ψL is the canonical lift φ(1) of the projected section
φ = τQ ◦ pr1 ◦ψ : Rk → Q, which is a solution to the Euler-Lagrange field equations, and that, if
L is regular, then ψH = FL ◦ψL is a solution to the Hamilton-De Donder-Weyl field equations,
where the Hamiltonian H is locally given by H ◦FL = EL. In the almost-regular case, this last
result also holds, but the sections ψ, ψL and ψH take values not on ML, T 1

kQ and (T 1
k )∗Q, but

in the final constraint submanifold Pf and on the projection submanifolds pr1(Pf ) ↪→ T 1
kQ and

pr2(Pf ) ↪→ (T 1
k )∗Q, respectively.

In this way, every constraint, differential equation, etc. in the unified formalism can be
translated to the Lagrangian or the Hamiltonian formalisms by restriction to the first or the

second factors of the product bundle. In particular, the constraint conditions pAi −
∂L

∂viA
◦pr1 = 0

generate, by pr2-projection, the primary constraints of the Hamiltonian formalism for singular
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Lagrangians (i.e., the image of the Legendre transformation, FL(T 1
kQ) ⊂ (T 1

k )∗Q), and they are
the primary Hamiltonian constraints.

5.2 Example 1

Let us study a simple example, the electromagnetic field in 2 dimensions. The base manifold
is Q = R2, with local coordinates (q1, q2), and k = 2. The induced coordinates on T1

2R2 are
(q1, q2, v1

1, v
1
2, v

2
1, v

2
2). The electromagnetic field Lagrangian is L = 1

2(v1
2 + v2

1)
2 (see [25]).

The canonical 2-tangent structure on T1
2R2, (S1, S2), is S1 = ∂

∂v11
⊗ dq1 + ∂

∂v21
⊗ dq2 and

S2 = ∂
∂v12

⊗ dq1 + ∂
∂v22

⊗ dq2, and the Liouville vector field reads as ∆ = ∆1 + ∆2 = v1
1

∂

∂v1
1

+

v2
1

∂

∂v2
1

+ v1
2

∂

∂v1
2

+ v2
2

∂

∂v2
2

.

The Lagrangian forms are

θ1
L = dL ◦ S1 = (v1

2 + v2
1)dq

2 , θ2
L = dL ◦ S2 = (v1

2 + v2
1)dq

1,

ω1
L = −dθ1

L = dq2 ∧ dv1
2 + dq2 ∧ dv2

1 , ω2
L = −dθ2

L = dq1 ∧ dv1
2 + dq1 ∧ dv2

1,

and the Lagrangian energy function is

EL = ∆(L)− L = (v1
2 + v2

1)
2 − 1

2
(v1

2 + v2
1)

2 =
1
2
(v1

2 + v2
1)

2.

Since Kerω1
L ∩ Kerω2

L =
〈

∂

∂v1
1

,
∂

∂v2
2

〉
, L is not regular and (T1

2R2, (ω1
L, ω

2
L),dEL) is a 2-

presymplectic Hamiltonian system.

The field equation is
i(X1)ω1

L + i(X2)ω2
L = dEL

for a 2-vector field X = (X1, X2) on T1
2R2.

If we write in coordinates

X1 = (X1)1
∂

∂q1
+ (X1)2

∂

∂q2
+ (X1)11

∂

∂v1
1

+ (X1)12
∂

∂v1
2

+ (X1)21
∂

∂v2
1

+ (X1)22
∂

∂v2
2

,

X2 = (X2)1
∂

∂q1
+ (X2)2

∂

∂q2
+ (X2)11

∂

∂v1
1

+ (X2)12
∂

∂v1
2

+ (X2)21
∂

∂v2
1

+ (X2)22
∂

∂v2
2

,

then the field equation reads as

(X1)2(dv1
2+dv2

1)−((X1)12+(X1)21)dq
2+(X2)1(dv1

2+dv2
1)−((X2)12+(X2)21)dq

1 = (v1
2+v

2
1)(dv

1
2+dv2

1).

We obtain that

(X1)2 + (X2)1 = v1
2 + v2

1, (X1)12 + (X1)21 = 0, (X2)12 + (X2)21 = 0.

Since dEL ∈ (Kerω1
L ∩Kerω2

L)0, there are no constraints and the equation has solutions at the
whole manifold T1

2R2. The general solution has the form

X1 = (X1)1
∂

∂q1
+ (v2

1 +A)
∂

∂q2
+B

∂

∂v1
1

+ C
∂

∂v1
2

− C
∂

∂v2
1

+D
∂

∂v2
2

,
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X2 = (v1
2 −A)

∂

∂q1
+ (X2)2

∂

∂q2
+ E

∂

∂v1
1

+ F
∂

∂v1
2

− F
∂

∂v2
1

+G
∂

∂v2
2

,

where (X1)1, (X2)2, A,B,C,D,E, F and G are arbitrary functions.

In order that the integral sections of solutions be holonomic,

(X1)1 = v1
1, (X2)2 = v2

2, A = 0, C = E and D = −F,

and, furthermore, we must also demand that [X1, X2] = 0.

Now we will study the Hamiltonian formalism. Let (q1, q2, p1
1, p

2
1, p

1
2, p

2
2) be the induced

coordinates on (T1
2)
∗R2. The Legendre map FL : T1

2R2 −→ (T1
2)
∗R2 locally reads

FL(q1, q2, v1
1, v

1
2, v

2
1, v

2
2) = (q1, q2, p1

1 = 0, p2
1 = v1

2 + v2
1, p

1
2 = v1

2 + v2
1, p

2
2 = 0).

The image of FL, P := FL(T1
kQ) = {p1

1 = 0, p2
1 = 0, p2

1 = p1
2}, is a submanifold of (T1

2)
∗R2.

Let 0(q1, q2, p) = (q1, q2, 0, p, p, 0) be the natural embedding and FL0 : T1
kQ → P the restric-

tion of the Legendre map. We have the Hamiltonian function H0 = 1
2p

2 (which is such that
(FL0)∗H0 = EL), and the 2-forms

ω1
0 = ∗0ω

1 = ∗0(dq
1 ∧ dp1

1 + dq2 ∧ dp1
2) = dq2 ∧ dp,

ω2
0 = ∗0ω

2 = ∗0(dq
1 ∧ dp2

1 + dq2 ∧ dp2
2) = dq1 ∧ dp.

With these definitions, (P, ω1
0, ω

2
0 dH0) is the 2-presymplectic Hamiltonian system associated

with L. The corresponding Hamiltonian field equation is

i(Y1)ω1
0 + i(Y2)ω2

0 = dH0,

where Y = (Y1, Y2) is a 2-vector field on P.

If, in coordinates,

Y1 = (Y1)1
∂

∂q1
+ (Y1)2

∂

∂q2
+ (Y1)0

∂

∂p
,

Y2 = (Y2)1
∂

∂q1
+ (Y2)2

∂

∂q2
+ (Y2)0

∂

∂p
,

the equation is
(Y1)2dp− (Y1)0dq2 + (Y2)1dp− (Y2)0dq1 = pdp

and we obtain
(Y1)2 + (Y2)1 = p, (Y1)0 = 0, (Y2)0 = 0.

Since Kerω1
0 ∩ Kerω2

0 = {0}, there are no constraints and the equation has solutions at the
whole manifold P. The general solution has the form

Y1 = (Y1)1
∂

∂q1
+
(

1
2
p+A

)
∂

∂q2
,

Y2 =
(

1
2
p−A

)
∂

∂q1
+ (Y2)2

∂

∂q2
,

where (Y1)1, (Y2)2 and A are arbitrary functions on P.
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5.3 Example 2

In this example we consider two independent variables (t, s) ∈ R2, thus k = 2. The field compo-
nents (dependent variables) are (q, e) ∈ Q = Rd × R+. The corresponding natural coordinates
of ⊕2TQ are written (q, e; qt, qs, et, es), and those of ⊕2T∗Q are (q, e; pt, ps, πt, πs).

We consider as Lagrangian function

L =
1
2e

(qt)2 +
1
2
m2e− τ

2
(qs)2,

with m, τ parameters, and for instance (qt)2 is the square of qt with respect to the Euclidean
inner product of Rd. From L we compute the Lagrangian energy

EL =
1
2e

(qt)2 −
τ

2
(qs)2 −

1
2
m2e

and the Legendre map FL : ⊕2 TQ→ ⊕2T∗Q:

FL(q, e, qt, qs, et, es) =
(
q, e,

1
e
qt,−τqs, 0, 0

)
.

It is clear that the primary Hamiltonian constraint submanifold P0 ⊂ ⊕2T∗Q is described
by the primary hamiltonian constraints

πt ≈
P0

0, πs ≈
P0

0.

This also shows that the Lagrangian L is almost-regular.

Hamiltonian formalism

Using (q, e, pt, ps) as coordinates on the submanifold P0, its 2-presymplectic structure —the
pull-back ot the canonical 2-symplectic structure of ⊕2T∗Q— is given by ωt0 = dq ∧ dptq and
ωs0 = dq ∧ dpsq —in these expressions a summation over the invisible vector indices of q and the
momenta is implicit. Then

Kerωt0 ∩ Kerωs0 =
〈
∂

∂e

〉
.

The Hamiltonian function on P0 is

H0 =
e

2
(pt)2 − 1

2
m2e− 1

2τ
(ps)2.

Consider X = (Xt, Xs), a 2-vector field on P0:

Xt = Ft
∂

∂q
+ ft

∂

∂e
+ F tt

∂

∂pt
+ F st

∂

∂ps

Xs = Fs
∂

∂q
+ fs

∂

∂e
+ F ts

∂

∂pt
+ F ss

∂

∂ps

(where the capital F ’s are also vector functions). The Hamiltonian field equation for it is
i(Xt)ωt0 + i(Xs)ωs0 = dH0:

Ftdpt + Fsdps − (F tt + F ss )dq = e ptdpt − ps

τ
dps +

1
2
(
(pt)2 −m2

)
de ,
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which partly determines the coefficients of X:

Ft = e pt , Fs = −1
τ
ps , F tt + F ss = 0 ,

and imposes as a consistency condition the secondary hamiltonian constraint

1
2
(
(pt)2 −m2

)
≈
P1

0;

this can also be obtained as ξ = i

(
∂

∂e

)
dH = 1

2((pt)2 −m2) ≈ 0.

Imposing the tangency of X to P1 yields no more constraints and determines partly some
coefficients of X:

L
Xt
ξ = ptF tt ≈ 0, L

Xs
ξ = ptF ts ≈ 0,

from which the final dynamics on P1 is given by

Xt = e pt
∂

∂q
+ ft

∂

∂e
+ F tt

∂

∂pt
+ F st

∂

∂ps

Xs = −1
τ
ps
∂

∂q
+ fs

∂

∂e
+ F ts

∂

∂pt
− F tt

∂

∂ps
,

with ft, fs, F st arbitrary functions, and F tt , F
t
s arbitrary but orthogonal to pt.

Consider the particular case of d = 1 —the q variable is just a scalar. The submanifold P1

is given by the constraint pt = m (or pt = −m). Then, in coordinates (q, e, ps), the dynamics
reads

Xt = me
∂

∂q
+ ft

∂

∂e
+ F st

∂

∂ps

Xs = −1
τ
ps
∂

∂q
+ fs

∂

∂e
.

The analysis of the integrability of the 2-vector field X = (Xt, Xs) relies on the computation of

[Xt, Xs] = −
(

1
τ
F st +mfs

)
∂

∂q
+
(
L
Xt
fs − L

Xs
ft

) ∂

∂e
−
(
L
Xs
F st

) ∂

∂ps
.

Setting it to zero determines F st = −τmfs and a set of two nonlinear PDEs for fs, ft:

−1
τ
ps
∂fs
∂q

+ fs
∂fs
∂e

= 0 ,

me
∂fs
∂q

+ ft
∂fs
∂e

− τmfs
∂fs
∂ps

+
1
τ
ps
∂ft
∂q

− fs
∂ft
∂e

= 0 .

Certainly there are solutions to this equations, as for instance the one given by ft = fs = 0.
However, it does not seem easy to give an explicit description of the whole set of these solutions.

Finally, once one has an integrable 2-vector field X, a map ψ : R2 → P1, (t, s) 7→ (q, e, ps), is
an integral section iff it satisfies

∂q

∂t
= me,

∂q

∂s
= −p

s

τ
,

∂e

∂t
= ft,

∂e

∂s
= fs,

∂ps

∂t
= F st ,

∂ps

∂s
= 0.
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Lagrangian formalism

The Lagrangian analysis can be performed in a similar way. Let us describe it more briefly.
Using natural coordinates (q, e; qt, et, qs, es) on ⊕2TQ, the 2-presymplectic structure induced

by L is described by ωt =
1
e

dq ∧ dqt −
1
e2
qt dq ∧ de and ωs = −τ dq ∧ dqs. Then

Kerωt ∩ Kerωs =
〈
∂

∂et
,
∂

∂et
, e
∂

∂e
+ qt

∂

∂qt

〉
.

An arbitrary 2-vector field X = (Xt, Xs) on ⊕2TQ reads

Xt = Ft
∂

∂q
+ ft

∂

∂e
+ Ftt

∂

∂qt
+ Fts

∂

∂qs
ftt

∂

∂et
+ fts

∂

∂es
,

Xs = Fs
∂

∂q
+ fs

∂

∂e
+ Fst

∂

∂qt
+ Fss

∂

∂qs
fst

∂

∂et
+ fss

∂

∂es
.

If it has to satisfy the second-order condition, one has moreover

Ft = qt, Fs = qs ft = et, fs = es.

The field equation for it is i(Xt)ωt + i(Xs)ωs = dEL (maybe on a certain submanifold).
This determines some of the coefficients and defines just one primary Lagrangian constraint,

χ =
1
2

(
(qt)2

e2
−m2

)
. The tangency to this submanifold does not yield new constraints, and

some functions in X remain arbitrary. This happens regardless of whether we impose the second-
order condition or not, the only difference being in the number of remaining arbitrary functions.

Acknowledgments

We acknowledge the financial support of the Ministerio de Educación y Ciencia, projects MTM2005–
04947, MTM2008–00689/MTM and MTM2008–03606–E/MTM.

References

[1] A. Awane, “k-symplectic structures”, J. Math. Phys. 33 (1992) 4046–4052.

[2] A. Awane, M. Goze, Pfaffian systems, k-symplectic systems, Kluwer Acad. Publ., Dordrecht, 2000.

[3] C. Batlle, J. Gomis, J.M. Pons, N. Román-Roy, “Equivalence between the Lagrangian and Hamil-
tonian formalism for constrained systems”, J. Math. Phys. 27(12) (1986) 2953–2962.

[4] D.E. Betounes, “Extension of the classical Cartan form”, Phys. Rev. D 29 (4) (1984) 599–606.
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