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1 Introduction

In classical mechanics, Hamilton—Jacobi theory tries to integrate a Hamiltonian system of dif-
ferential equations through an appropriate canonical transformation [3, 18]. The equation to be
satisfied by the generating function of this transformation is a partial differential equation, and
having enough solutions to it finally leads to the integration of the system. The Hamilton—Jacobi
equation is also very close, from the classical side, to the Schrédinger equation of quantum me-
chanics —see for instance [28]. For these reasons, Hamilton—Jacobi theory has been a matter of
continuous interest.

From the viewpoint of geometric mechanics, the intrinsic formulation of Hamilton—Jacobi
equation is also clear [1, 25, 27]. Nevertheless, in a recent paper [8] we presented a new geometric
framework for the Hamilton—Jacobi theory. The motivation for this work was that the usual
formulation of the Hamilton—Jacobi equation heavily relies on the symplectic structure of the
phase space. However, there are interesting integrable systems that have alternative Lagrangian
(and Hamiltonian) formulations; two different Lagrangians for the same dynamics may lead
to two different symplectic structures, and therefore one may wonder about the relevance of a
concrete symplectic structure and its relation with the solutions of the Hamilton—Jacobi problem.
Following this program, we formulated the Hamilton—Jacobi equation both in the Lagrangian
and in the Hamiltonian formalisms of time-independent mechanics, and studied the relations
between the solutions of the Hamilton—Jacobi equation and the symplectic form; we recovered
the usual Hamilton—Jacobi equation as a special case in our generalised framework. Additional
details on the relationship between Hamilton—Jacobi equation and the geometric structures of
mechanics have recently been presented in [9].

Within the Lagrangian formulation, dynamics is described by a second-order vector field
I' defined on the tangent bundle T'QQ of the configuration manifold ). The first step in our
formulation is to describe the integral curves of I' as the canonical liftings of the integral curves
of a family of vector fields X on ). From a geometrical viewpoint, this is pretty simple: each
of these vector fields has to be Xj,-related to I'. The usual formulation of Hamilton—Jacobi
equation corresponds to the case where the image of X is a Lagrangian submanifold of T'Q)
with respect to the symplectic form wy. With some changes, the same formulation can be given
in the Hamiltonian framework; properly speaking, it is in this case that we recover the usual
Hamilton—Jacobi theory.

Our work [8] was mainly devoted to regular autonomous Lagrangians. However, we also
considered the time-dependent case (through the so-called homogeneous formalism) as well as a
special instance of singular Lagrangians: those not yielding Lagrangian constraints. It was clear
that more general situations could be given a similar description, and it is the purpose of this
paper to consider the very important issue of mechanical systems with nonholonomic constraints
—that is, non-integrable constraints depending on the velocities.

Nonholonomic mechanical systems have been discussed since long ago. There are many pa-
pers dealing with geometric aspects of such systems, beginning with [35], and including different
viewpoints as [4, 14, 16, 20, 24, 26, 30] —see also [5, 11, 19, 31, 34]. When a nonholonomic sys-
tem is regular, at the end, there is a well-defined dynamics on the submanifold D C T'Q) defined
by the constraints. Therefore, it seems quite straightforward to apply our previous framework
developed in [8] for the Hamilton—Jacobi theory to the case of nonholonomic mechanical systems,
and, in fact, this has been done in some recent papers as [17, 21, 32], where the Hamiltonian case
and some applications are analyzed in deep, as well as in other instances like classical field theo-
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ries [22]. Note, however, that the relation with the symplectic structure is not so much clear, and
this is one of the points we address in the present paper, where this new geometric perspective
for the Hamilton—Jacobi problem is performed under the Lagrangian formalism. In this sense,
our approach could be considered as complementary to that developed in [17, 21, 32]. As in our
previous work [8], we state the standard classical nonholonomic Hamilton—Jacobi problem as a
particular case of a more general one. Furthermore, we consider two Lagrangian frameworks for
this: a plain formulation on the velocity space and also an intrinsic formulation on the constraint
submanifold (the so-called distributional approach to nonholonomic mechanics). Finally, in the
same lines of our previous paper, we discuss complete solutions for the Hamilton—Jacobi problem
and their relationship with constants of motion.

The paper is organised as follows. In section 2 we give a short account of nonholonomic
mechanics. The Hamilton—Jacobi problem for Lagrangian nonholonomic systems is presented in
section 3 in both the general and the restricted (standard) versions. Section 4 is devoted to the
study of the same problem in an intrinsic formulation. Local coordinate expressions are given
in section 5 by using quasivelocities. Complete solutions are studied in section 6. Finally, a
detailed example, the nonholonomic free particle, is presented in section 7.

2 Nonholonomic Lagrangian systems

We consider an n-dimensional manifold @, its tangent bundle 7g: TQ — @, and a constraint
submanifold, which we assume to be a vector subbundle D C T'Q of rank r. We consider the an-
nihilator D° C T*Q and the set D° C T*(TQ) defined by Do = {aoTrg e TH(TQ) | a € D°};
this is a vector bundle over T'Q), whose fibre at a point v € T'Q), such that 7g(v) = ¢, is more
explicitly described as

@Vg ={ A\ € T;(TQ) | there exists ag € D such that A\, = ag o T7q | .

Given a Lagrangian function L € C*°(T'Q), we consider the nonholonomic system defined
by the Lagrangian L and the linear constraints given by D, that is, only velocities in D are
admissible. The Lagrange—d’Alembert principle states that the dynamics of the system is given
by the integral curves (with initial condition in D) of the vector fields I' € X(T'Q) tangent to D
that satisfy the second-order condition and the Lagrange—d’Alembert equation (see for instance
[24]) N

(irwp — dEL)|p € Sec(D°) , (1)

where wy, is the Lagrange 2-form associated with L. This expression means that, on the points
of D, the 1-form irwy — dE}, takes its values in the codistribution Do,

From now on we assume that L is a regular Lagrangian, which means either that its fibre
derivative (Legendre transformation) FL: TQ — T*Q is a local diffeomorphism, that the La-
grange 2-form wy, is a symplectic form, or that its fibre Hessian F2L = G*: TQ — T*Q @ T*Q
is everywhere a nondegenerate bilinear form. Given u,v,w € T,@Q, the fibre Hessian of the La-
grangian can also be expressed as GL(v,w) = wr(9,w)), where © € T,,TQ is any vector which
projects onto v, and w) is the vertical lift of w on the point u.

The nonholonomic system (L,D) is said to be regular if there is a unique solution to
Lagrange—d’Alembert equation. Here uniqueness must be understood as follows: two solutions
are considered equal if they coincide when restricted to D.
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There are several equivalent ways to ensure regularity of the constrained system. We define
the subundle 72D c TD — D by

TPD={VveTD |Trq(V)eD} .

We also consider the restriction GE® of the fibre Hessian G* to the distribution D. Then (see
for instance [12]):

Theorem 1 The following properties are equivalent:
1. The constrained Lagrangian system (L, D) is regular,
2. Ker GFP = {0}.
3. TTQ|p =TPD o (TPD)*,
where (TPD) denotes the orthogonal complement of T D with respect to the symplectic form wr,.

In the regular case, the constrained dynamics can be found by projection of the free dynamics
according to the decomposition given in item 3. It follows that the dynamical vector field is a
SODE on D, that is, I' is tangent to D and T'rg(I'(v)) = v for every v € D.

3 The Lagrangian Hamilton—Jacobi problem for honholonomic
systems

As in our previous paper [8], we decompose the study of the Hamilton—Jacobi problem for a
nonholonomic Lagrangian system in two pieces: first, we consider a general setting to describe
the solutions of the nonholonomic dynamics I' on D in terms of the solutions of a family of
first-order differential equations; second, we study the interplay of these first-order vector fields
with the corresponding symplectic structure, and impose additional conditions on them in or-
der to simplify the problem. All this is performed in the Lagrangian formalism —the case of
Hamiltonian formalism can be developed in quite a similar way.

3.1 General Lagrangian nonholonomic Hamilton—Jacobi problem

Following the same lines as in [8], we formulate the Hamilton—-Jacobi problem in this way:

Statement 1 (General Lagrangian nonholonomic Hamilton—-Jacobi problem) Given
a regular nonholonomic Lagrangian system (L, D), with dynamics given by a SODE vector field
I' € X(D), the general Lagrangian nonholonomic Hamilton—Jacobi problem consists in finding
the vector fields X : Q — TQ such that, if v: R — Q is an integral curve of X, then y: R — TQ
takes values in D C TQ and it is an integral curve of T'; that is,

Xoy=4% = Fo;y:X.oy and 4(t) € D for eacht € R.

Any of such X is said to be a solution to the general Lagrangian nonholonomic Hamilton—Jacobi
problem.

Theorem 2 A vector field X € X(Q) is a solution to the general Lagrangian nonholonomic
Hamilton—Jacobi problem if, and only if, X € Sec(D) andT o X =TX o X.
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Proof Let X € X(Q) be a solution to the general nonholonomic Hamilton-Jacobi problem.
For every ¢ € @, let v be the integral curve of X starting at ¢; that is, ¥ = X o~y and 7(0) = q.
Then 7 = 4 is a solution to the constrained problem; that is, n(0) € D and n =T on. From the
first one we have that X(¢) = X(7(0)) = 4(0) = n(0) € D. As ¢ is arbitrary, it follows that X
takes values in D. Moreover,

(Lo X)(g) = (T'o X 07)(0) = (T o )(0) = 0(0) = 5 (0) = (X 07)(0)
= (TX 04)(0) = (TX 0 X 07)(0) = (TX 0 X)(g),
from which it follows that 'o X =TX o X.

Conversely, let X be a vector field taking values in D such that o X =TX o X. If v is an
integral curve of X then n = X o+ is an integral curve of I':

d
Fon:FoXo*y:TXoXory:TXo*’y:a(Xofy):ﬁ_

In addition, as n(0) = X (v(0)) € D, it follows that n starts at D, and hence it is a solution to
the constrained dynamics. [

We can rewrite the above statement as follows: a vector field X is a solution to the general
nonholonomic Hamilton-Jacobi problem if Im (X) is a submanifold of D and I' is tangent to this
submanifold. Conversely, if N is an n-dimensional submanifold of D, transverse to the fibers
and invariant under I', then locally there exists X € X(Q) such that N = X (Q) and it is a local
solution to the general Hamilton—Jacobi problem.

Remark 1 As in the unconstrained case (when D = T'Q) the above result can be stated in a
more general framework, and in fact, it can be applied to any vector field on D which satisfies
the second-order condition.

The SODE I' being the solution of the Lagrange-d’Alembert equation (1), we can take the
pullback of such equation by X, and then obtain an equation that does not involve I' explicitly.

Theorem 3 A wvector field X € X(Q) is a solution to the general Lagrangian nonholonomic
Hamilton—Jacobi problem if, and only if, X € Sec(D) and ix(X*wr) — d(X*EL) € Sec(D°).

Proof We will use the following preliminary results:
1. If A e ﬁ’, then A = a o T'rg for o € D°, and we have that X*\ = a. In fact,
(X*N\v) =(aoT1g, TX(v)) = (o, TQ(T X (v))) = (e, v)
for every v € T'Q). We will write symbolically this equation as X *Do = Pe.

2. Given a vector field X € X(Q), let Y be the vector field along X defined by Y =T 0 X —
TX o X. Consider the one-form « in @) given by

a = [X*(irwg —dEL)] — [ix(X*wr) — d(X*EL)] .
A straighforward calculation (see [8]) leads to

ag(v) =wr(X(q) (Y(), TX(v), qeQ,veT,Q.
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3. If X is a section of D, then for every ¢ € @Q there exists v € D such that Y (q) = ¢V (X (q),v),
where ¢V denotes the vertical lift in Q. Indeed, it is clear that Y take values in the vertical
bundle, so that, for every ¢ € Q there exists v € T,Q such that Y (q) = £V (X (q),v). We
have just to prove that v is in D. On the one hand I'|p is tangent to D, so that I'o X
takes values in T'D, and on the other hand, TX o X also takes values in TD, therefore
we get that Y (q) € T'x(q)D. Taking into account that linear constraints for D are given
by the linear functions & associated with 1-forms « taking values in D°, we have that, for
every o € Sec(D°),

0=Y(g9)a = £"(X(q),v)& = (ag, v),

and hence v € D.

Bearing this in mind, the proof of the theorem is as follows:
[«<] Let X € Sec(D) such that ix(X*wr) — d(X*EL) € Sec(D°). As irwy, — dEL € Sec(D°),
then X*(irwr, — dEL) € Sec(D°), and hence

a = [X*(ipr — dEL)] — [ix(X*wL) — d(X*EL)] S SeC(DO).

The vector field Y along X is vertical, and at every point is the vertical lift of an element in D:
for every ¢ € @, there exists v € D such that Y(q) = ¢V (X(q),v). Then for every w € D we
have that

0= ay(w) = WL (X (@)(E" (X(q), ), T,X (w)) = G (v.w) = G2 (v, ).

G is regular, we have that v = 0, and hence

Since this equation holds for every w € D and
Y = 0, which proves the statement.

[=] If X € Sec(D) and 'o X =TX o X, then Y = 0, and hence o = 0. Therefore
ix(X*u}L) — d(X*EL) = X*(i[‘wL — dEL) S Sec(@o).

This completes the proof. [ |

3.2 Restricted nonholonomic Lagrangian Hamilton—Jacobi problem

As in the unconstrained case, to solve the generalized Lagrangian nonholonomic Hamilton—
Jacobi problem can be a difficult task; thus it is convenient to consider a simplified, and hence
less general, problem.

We have seen that X € X(Q) is a solution to the generalized problem if, and only if, the
difference ix (X*wr) — d(X*Ep) takes values in D°. So we can look for solutions satisfying that
both terms ix (X*wy) and d(X*Ep) are in D°. Furthermore the condition ix (X*wy) € Sec(D®)
can be ensured by imposing that

(X*w1)(D, D) =0,

or equivalently (X*wr)(D,-) € Sec(D°). We will plainly say that the restriction of X*wr, to D
vanishes.

Another possibility could be to impose that (X*wr)(D,:) = 0; but this is a less general
condition. An additional justification for our choice will be provided in the next section.

In this way, we can state the following restricted Lagrangian nonholonomic Hamilton—Jacobi
problem:
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Statement 2 (Restricted Lagrangian nonholonomic Hamilton—Jacobi problem) Given
a regular nonholonomic Lagrangian system (L, D), find those solutions X to the generalized La-
grangian nonholonomic Hamilton—Jacobi problem such that the restriction of X*wr, to D wvan-
ishes.

As a consequence, it follows that if X is a solution to the Lagrangian nonholonomic Hamilton—
Jacobi problem, then d(X*E7) € Sec(D°).

Proposition 1 A vector field X € X(Q) is a solution to the Lagrangian nonholonomic Hamilton—
Jacobi problem if, and only if,

1. X € Sec(D),
2. (X*wL)’® = 0,
3. d(X*EL)|p = 0.

Proof  The direct statement is obvious. For the converse, we have that X € Sec(D) and both
ix(X*wr) and d(X*EL) take their values in D°, so that ix(X*wy) — d(X*Ep) € Sec(D°), and
by Theorem 3 the statement holds. [ |

Remark 2 It is important to point out that every solution to the general (restricted) La-
grangian Hamilton—Jacobi problem for the unconstrained system which takes values on D is,
automatically, a solution to the general (restricted) Lagrangian nonholonomic Hamilton—Jacobi
problem. This may be helpful when looking for solutions as we will see in an example later on.

A particular important case is that of bracket-generating distributions (also known as com-
pletely nonholonomic distributions). A distribution D C T'Q is bracket-generating if the smallest
Lie subalgebra Lp C X(Q) containing Sec(D) is the full X(Q). In other words, we can get a
family of vector fields in the distribution D such that every vector v € T, can be obtained as
a linear combination of the values at g of such vector fields together with repeated brackets. In
this case we have the following simplification (see [32]):

Proposition 2 Assume that D C TQ is a bracket-generating distribution. A wvector field X €
X(Q) is a solution to the Lagrangian nonholonomic Hamilton—Jacobi problem if, and only if,

1. X € Sec(D),
2. (X*wL)|@ =0,
8. X*E, = constant.

Proof We just have to prove that, for a bracket-generating distribution, the condition d(X*Ey) €
Sec(D°) is equivalent to X*FEy, = constant. The result is true for any function f in @, our case
being f = X*Ey.

Let f be a smooth function on a manifold @ such that df € Sec(D°). We first prove that f
is constant on the orbits of the family Fp of local vector fields taking values in D. Indeed, given
a point g in the orbit, any other point ¢; of the orbit is of the form ¢; = (@bt)ik 0---0 ¢ffl)(q0) for
some vector fields X; € Fp and times t; € R. Therefore we can get such point by concatenation
of a finite number of curves of the form C : t € [0,T] — ¢;X(q), with ¢ a point in the orbit and



J.F. Carinena et al: Hamilton—Jacobi theory for nonholonomic systems 8

X € Fp. Integrating df along a curve C of such type we get on one hand fc df = f(¢5(q))—f(q)
and on the other [, df = fOT(df, X)px (g dt = fOTOdt = 0. Therefore f(¢5(q)) = f(q) and f is
constant along the orbit.

Finally, for a bracket-generating distribution, Chow—Rashevsky theorem (see for instance
[2]) ensures that there is only one orbit, the full manifold @. Therefore, if df takes its values
in D°, then f is a constant function on Q. [

In the general case, provided that the distribution associated with the Lie algebra Lo is of
constant rank, we can restrict our dynamical system to each one of the orbits (which are the
integral manifolds of the distribution associated with Lq, and hence immersed submanifolds of
@), thus obtaining a Lagrangian system with nonholonomic constraints defined by a bracket-
generating distribution. Hence X™*E, is constant on every orbit of L.

4 The Hamilton—Jacobi problem in the intrinsic formalism

In the above sections we have been using the standard Lagrangian formalism of nonholonomic
constrained problems. Next we develope the theory using the intrinsic Lagrangian formalism
(also called the distributional approach). This will allow us to justify the choice made for
stating the Lagrangian nonholonomic Hamilton—Jacobi problem. The distributional approach
was initiated by Bocharov and Vinogradov [7] and further developed by Sniatycki and coworkers
[4, 34]. Similar equations, within the more general framework of Lie algebroids, appear also
in [12].

4.1 Intrinsic Lagrangian formalism for nonholonomic systems

In the above standard Lagrangian formalism of nonholonomic constrained problems, the theory
is developed on the whole T'Q) by introducing the constraint forces. But it is clear that only the
values in D are relevant: while the theory depends on the value of the Lagrangian in an open
neighbourhood of D, the final dynamics is defined only on the submanifold D. Therefore it is
interesting to develop the theory intrinsically in D.

Recall that we defined the rank 2r vector subbundle 72D — D of T'D by

TPD={VeTD | Trg(V)eD},

and that item 3 in Theorem 1 expresses the fact that the nonholonomic Lagrangian system is
regular if, and only if, 72D is a symplectic subbundle of T(TQ)|p, that is, 72D N (TPD)+ =
{0}. Therefore, the restriction WP of the symplectic form wy, to the subbundle 72D is regular,
and hence the pair (’Z'DD,UJLD) is a symplectic vector bundle.

Similarly, we denote by P the restriction of dE;, to TPD. It follows that there exists a
unique T' € Sec(7PD) such that

ipwt? = eLP, (2)

From the definition of w”® and e® one obtains that the section I' here is just the restriction
to D of the dynamical vector field I' of the last section, and it is a SODE in the sense that
T1o(I'(v)) = v, for every v € D. We will not make any notational distinction between the two
views of the dynamical vector field.

The advantage of this formulation of the nonholonomic problem is that we can work entirely
in the bundle 7PD following similar arguments to those given for the unconstrained case. There
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LD is not exact. In fact it even does not make sense

is only one relevant difference: the 2-form w
to talk about closed forms because 72D is not a tangent bundle, neither a Lie algebroid, except

for integrable constraints.

4.2 The general Hamilton—Jacobi problem

In this framework, a solution to the general nonholonomic Lagrangian Hamilton—Jacobi problem
is a section o € Sec(D) of the vector bundle 7: D — @ such that the natural lift of its integral
curves are integral curves of I'. This statement has sense obviously because our bundles are
subbundles of a tangent bundle, and hence its sections are vector fields. It is also clear that this
corresponds exactly to the definition in the above section, with a change of notation X < o.
Given a section o € Sec(D) we can define the map To: D — TPD as the restriction
of the tangent map To: TQ — TD. It is well-defined since T'rg(To(v)) = v € D, so that
To(v) € TPD. With this definition, and according to Theorem 2, a section o € Sec(D) is a
solution to the general nonholonomic Lagrangian Hamilton—Jacobi problem if, and only if,

IN'oco=Tooo. (3)

For the following proposition we need a somehow extended notion of the pullback. In par-
ticular, for a section 6 of the exterior bundle of (7PD)*, we are redefining the meaning of o*
as the section of the exterior bundle of D* given by

(0*0)g(v1, ... vp) = by(g)(To(v1),...,To(vp)),
for g € Q and vy,...,v, € D.

Proposition 3 A section o € Sec(D) is a solution to the general nonholonomic Lagrangian
Hamilton—Jacobi problem if, and only if,

iU(U*wLD) _ O’*ELD.
Proof From equation (2), irw’® = P, we have that o*(irw’®) = 0*"P. Now, taking into
account that I'o o = To o g, for every v, € D we obtain
o*(irw"P) () = (irw")oq) (Tyo(vg)) = w44 (T(0()), Tyo (vg))
= W', (T (0(0), Tyo () = (0w P)y(0(q), vg) = o (07w ) (vy),
and the result follows. [

4.3 The restricted Hamilton—Jacobi problem

A solution of the (restricted) Lagrangian nonholonomic Hamilton—Jacobi problem is a solution
o of the general Lagrangian nonholonomic Hamilton—Jacobi problem which moreover satisfies
the condition

oFwlP =0.
According to the preceding Proposition, it follows that o must also satisfy o*¢“® = 0. Notice
that, for v € D, we have

(""" v) = (6*(dEL| 7o), v) = (dEL, To(v)) = (d(c*EL),v)

so that o*el® = d(c*EL)|p.

Summarizing, we have proved the following:
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Proposition 4 A section o € Sec(D) is a solution to the Lagrangian nonholonomic Hamilton—
Jacobi problem if, and only if, To(D) C TPD is a Lagrangian subbundle of (TPD,w’®) and
d(o*EL) € Sec(D°).

Note that, when the distribution is bracket-generating, the last condition means that the energy
is constant, as we have seen in Proposition 2 at the end of the preceding section.

5 Coordinate expressions and quasivelocities

In order to find local expressions for the objects we have defined, we can use local coordinates in
the base @ and a set of linear coordinates (quasivelocities [6, 10]) on the tangent bundle adapted
to the distribution D. This will greatly simplify many expressions.

Let (2%) be local coordinates on Q and choose a local basis {e,} of sections of D. Complete
with {e4} to a local basis {ea,ea} of X(Q), and denote the associated linear coordinates by
(y*,y*), that is, y* = e and y* = e, where {e®, e} is the dual basis. So we have coordinates
(2%, y*,y?) of TQ. In these coordinates the constraints read y = 0, so they are adapted to the
submanifold D C T'Q, and (z%,y®) can be used as coordinates for D.

In the local coordinate system (z°) on Q, the elements of the basis e, € X(Q) are given by

0

€a = 03@7
for some local functions pi, € C*°(Q). The bracket of the sections e, is of the form

lea,€es] = Cvﬁe,y + 0&4/@6,4,

«,

with szﬁ € C*(Q) local functions on ). The constraints are integrable (holonomic) if, and

2]

only if, C(’jﬁ = 0. The vector fields e 4 have a similar expression, e4 = PfAW-

Remark 3 In the classical literature, the functions of the type Cj. are known as Hamel’s
transpositional symbols [15], which obviously are nothing but the structure coefficients (in the
Cartan’s sense) of the moving frame {e,}, see e.g. [13]. Similar expressions arise in the theory
of Lie algebroids, where the use of quasivelocities appears naturally [12, 23, 29].

Associated with the above basis and coordinates we can find a local basis of sections of 72D,
that is, a family of 2r vector fields tangent to D which moreover project point-wise to vectors
on D. The coordinate vector fields 3/0z° and 0/0y* are a basis of vector fields tangent to D.
The vector fields 9/0y® are vertical so that they project (through 7'7) to the zero section of
D. However, the vectors d/0x" do not (in general) project to admissible velocities. Taking an
appropriate linear combination we have that the vector fields p.,0/0z" project to eq, so that
they are sections of 7PD. Moreover, since they are linearly independent, we have got a basis

of sections of TPD:
0
and Va = @

.0

Lo = o ox’

This basis of sections of 72D can be completed to a basis of sections of TD by adding the
vector fields

0

x — y )
A pAaxZ
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and the brackets of the vector fields of such a basis are given by
[Xa, Xg] = CL3% + C43Xa,  [Xa, V3] =0, [Va,Vg]=0.

A SODE T € Sec(7PD) is a vector field tangent to D and such that T7(I'(v)) = v for every
v € D. It follows that it is of the form

['=y"Xo + fa(xi7 yﬁ)vav
for some local functions f* € C*°(D). The differential equations for its integral curves are

#=ply® = f60).

The above expressions can be specialized to the frequent case when the constraints are given
by expressing some velocities as linear functions of some other velocities,

it — BMx)i® = 0.

The local basis {e,, €4} can be taken to be

o .0 )

€q = — — e = —r
* Qe > oxA’ AT A

and therefore the adequate quasivelocities are
Ya = Ta yd =il — B;j(x):'no‘.
The natural velocities are then given in terms of the quasivelocities by
Ton = Yo s i =y + B (x)y~.
The local basis {X4, V4 } of sections of 72D can be given in terms of the natural coordinates by

) L0

B o 40
a=7—+Bl =
3:170“jL > A

A A Vazi Biv
9iA’ 9z T Pagia

X + e (BE)

and we can complete it to a local basis of X(D) with

9
oxA’

We can further complete to a local basis of X(7'Q) with

Xa=

0

V4= —=.
AT 9iA

The commutators of the elements of this basis of sections of 72D are

o 0BF 9
A
[Xa, Xg] = Riy <8xA + 83:11 W&ﬁ;) , X, Vgl =0, [Va,Vs] =0,

where Réﬁ = [eq, epl? = ea(Bg‘) —eg(BY).
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Lagrange—D’Alembert equations The constrained Lagrangian system (L,D) is regular if
the restriction of the fibered Hessian G to D is a regular bilinear tensor at every point. This
restricted Hessian GLP has a particularly simple expression in the coordinates (%, y®, y*),

L
LD — Y
G(a:z7yoa)(6047 6,6) ayaayﬂ (w 7y 70)

The local expression of Lagrange—d’Alembert equations can be easily written in these coordi-
nates without the need of Lagrange multipliers. By contracting the equations irw®® — P =0

with the elements of the basis {X,, V4 }, and taking into account the constraints y? =0, these
8L 8L ; OL 8L
Y B — A B

where I' = y*X, + f*V, is the SODE vector field we are looking for.
Taking into account the second-order condition, the differential equations for the solutions

equations read

of the dynamics are

i’ Pay,

d { OL 8L75i8L_8LAﬁ

dt(@y“) aTﬂ a8Y paaxi* 8yACa,By7 (5)
y' =0

General Hamilton—Jacobi problem By evaluating the equations (4) on the image of the
section o, i.e. at a point of the form y* = o®(z), and taking into account the general Hamilton—
Jacobi condition, Eq. (3), which can be expressed as a relation between differential operators as
o*oLp =L, 00", we obtain

oL oL . oL B oL A B
Lo <8y0‘ oa) + <8y7 oa> C’aﬁa oL <aggZ 0'> = <3y 0> Copo”s (6)

which is the local expression of the general Hamilton—Jacobi equation. In order to find the

solutions of the dynamics these equations must be supplemented with the differential equations
for the integral curves of o, i.e. i = pio®
With a simplified notation, the equations to be solved are

@' = pho®,
OL oL - OL OL (7)
B _ i _
Lo <8y ) 8 A/Caﬂa— paaxl‘ a Caﬂa ’

where all the partial derivatives of the Lagrangian must be evaluated at points of the form
(2%, 0%(x)) before taking further derivatives. We remark the formal similarity of these equa-
tions (7) and equations (5), which are obtained formally by the substitution y* = o®(z) every-
where.

Restricted Hamilton—Jacobi problem For the expression of the Hamilton—Jacobi equation
we need the explicit expression of the form w”®. This coordinate expression can be easily found
by using the relation

P(X,Y) =dfL(Y,X) = Ly (0(X)) — Lx(6.(Y)) +0.([X,Y]),  X,Y € Sec(TD),
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applied to the elements of the basis {Xn, V4 }. It turns out that

. 0L . 92L oL OL
LD b i
(Yo Xg) = pls Oy*0x’ Pa OyPoxt + oy Caﬁ + oy Caﬁ’
%L
LD _
w (xa,Vg) - ayaayﬁ ’

WPV, V5) =0,

where all the partial derivatives of the Lagrangian are taken at points in the constraint subbundle

D, i.e. in the submanifold y* = 0. Therefore, the local expression of w”?® is
1/, 9°L . O0°L oL oL 0*L
LD _ ~ i i e B «a B8
W= (pﬁayaaxi Pogyiagi + oy Con + gyaCar >x AT 5 ayﬁx AV

where {X% V*} is the dual basis of {X4,Va}-
To compute pullbacks we can proceed as follows. If o: Q — D is a section of D then the
map 7 o is determined by

olei
To(eq) = Xo + P, BrT Vg,
and therefore the pullback of the dual basis {X%,V*} is
9o
o"X*=e% and 0"V = pj 8(; e?
From this it is straightforward to calculate the local expression of o*w™™®:
O_*wL‘D —
11, 0*L 0?’L 0o i 0*L 0’L 0o oL 0L an B
pﬁ )i + « 7 B B At + B i a7 aﬁ AC e Ne.
oy ox oy oy" Or oyPox oyP oy Ox oy oy
The equation o*wP = 0 is equivalent to the vanishing of the expression between braces:
, 0’L 0’L 9o - 0?L 0’L  Oo" 3 oL
i 4 o) i 4 T )+ O+ = Ol (8)
oy*ox*  Oy*0y" Oz’ oyPoxt  OyPoyr dxt 8 7oA oy
Alternatively, one can calculate o*w P (e,, e5) = —d(0*01)(€q, €3), from where the vanishing

LD — 0 is equivalent to the equations

oL oL oL ~ [ OL A
o (o) =50 (3 o7) = (a7 o) 2= (g oe)
Finally, the pullback by ¢ of the energy is easily calculated:

B N oL 4 OL o OL
O'EL:0'< 3a+y ay—A— ):a (ayaoa>—Loa.

If the distribution is bracket-generating, then the equation d(c*c’®P) € Sec(D°) can be
substituted by

of o*w

oc*(x )gyL («*,0°(x)) — L(z%, 0°(x)) = constant .
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6 Complete solutions

The essential idea in the standard (unconstrained) Hamilton—Jacobi theory consists in finding
a complete family of solutions to the problem (not only one particular solution). In the present
context a complete solution can be defined as follows:

Definition 1 Consider a solution oy to the general (respectively, restricted) Lagrangian non-
holonomic Hamilton—Jacobi problem depending on r = rank (D) additional parameters A € A
(where A C R" is some open set) and suppose that the map ®: Q x A — D given by ®(q,\) =
ox(q) is a local diffeomorphism. In this case the family {ox; A € A} is said to be a complete solu-
tion to the general (respectively, restricted) Lagrangian nonholonomic Hamilton—Jacobi problem.

In other words, a complete solution is a local diffeomorphism ®: () x A — D over the identity
in @, such that for every A € A the section oy € Sec(D) given by ox(¢q) = ®(g¢, ), is a solution
to the general (restricted) Hamilton—Jacobi problem.

The interest of this notion is that all the integral curves of I' can be actually described as
integral curves of appropriate vector fields in the complete solution. For every point v € Im ®
we take ¢ = 7g(v) and we find A € R” such that ®(¢, \) = v. The vector field o is a solution
to the generalized Hamilton—Jacobi problem, with o(q) = v. Taking the integral curve 7(t) of
o passing through ¢, we have that 4(t) is the solution to the dynamics starting at v.

In what follows, for simplicity, we will assume that ®: Q x A — D is a global diffeomorphism.
We then define the map F: D — R” by F = pryo®~ !, where pry : Q@ x A — A is the projection
onto the second factor.

From the very definition, it follows that a complete solution provides the manifold D with
a foliation transverse to the fibers of 7: D — @), the leaves being the image of the vector fields
oy, and that the solution vector field I' is tangent to the leaves. We now study this foliation
with more detail, specially in the case of a complete solution to the restricted problem.

Proposition 5 The following properties hold.
1. For every A € A we have F~1(\) =Im (o).

2. The map T®: TQ x TA — TD restricts to a map T®: D x TA — TPD. Moreover TP
is a diffeomorphism (a local diffeomorphism if ® is a local diffeomorphism,).

3. The section T' € Sec(D x TA — Q x A) defined by T = (T®)"! oT o ® has the form

I'(g,A) = (ox(q), 0x).
4. The components of the map F are constants of motion.

5. If ® is a complete solution to the restricted problem, then the subbundles
{(v,0) € D x TA} and {(0,z) € D x TA} are Lagrangian subbundles of the symplectic
bundle (D x TA, ®*(wP)).

Proof We will make use of the following fact:

TP (vg,0)) = Tox(vg). (9)
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Indeed, if (s) is a curve in @ such that §(0) = v,, then

T, 02)f = (1, 02)(f © B) = [(®(1(s), )

= L] = Lozf)(a(s))

= Uq(Uif) = TU)\(Uq)f

for every function f € C*°(D), which proves the equality (9).

Now let us proceed with the proof of the proposition:

LveF 1)) <= Fv)=)\ <= 271v) = (7(v),)) <= v = ®(7(v),\) <= v = 0\(7(v))
< v € Im (o).

2. For every (vg, 2zy) € TQ x TA
TT(T®(vq, 20)) = T(7 0 @) (vg, 2a) = Tpry(vg, 2) = vg -
So, T®(vy, z)) belongs to TPD if, and only if, vg € D.

3. We have just to prove that 7®(c,(q),0x) = ['(®(g, A)), for every (¢, A) € @ x A. Using
(9), for vy = ox(q) we have that 7®(ox(q),05) = Tox(ox(g)), and taking into account
that T'oy ooy =" o0y, we finally get

T®(0a(q),0x) =Toa(or(q)) =T(or(q)) =T(2(g; A)).
4. F is constant on Im oy, and I' is tangent to Im o, so the result follows.

5. First, using (9) we have

((I)*WLD>(q,)\) ((Uq’ 0x), (qu 0/\)) = wé(?],/\) (T(I)(Uth OA)v T(I)(va 0/\))
= wéa)\) (TU)\(’Uq), TU)\(wq))
= (UXWLD)q(Uqu) =0

Furthermore, notice that 7 ®(Ver(pr;)) = Ver(7), which can be easily proved. Thus

(@*WLD)(%)\) ((qu y>\)7 (qu ZA)) = wLDq’(q,/\) (T@(Oq, y/\)v T(I)(qu 2/\)) =0

because Ver(7) is an isotropic (in fact Lagrangian) subbundle of the symplectic bun-
dle (TPD,w!?P).

This finishes the proof. [ |

In the case of a complete solution to the restricted problem, only the terms of the form
d*wEP((v,0), (0, 2)) can possibly be nonzero, and they can be expresed in terms of the Hessian,

(D) (1) (03 02); (055 20)) = GE2 (0 2(a, 1)),

where Z is defined by ¢V(0,, 2(¢,\)) = T®(0,, z)). Indeed, by the definition of GLP we have

((I)*WLD)(q,)\) ((U(P 0x), (0g, Z)\)) = wé(?],)\) (TO')\(vq), T, (04, Z)\))
= o (ToA(v), €"(0,2(g, )
= GLD(q) (v,2(q, N)).

X
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The nonholonomic bracket For a complete solution the map F' is a constant of the motion,
that is, if we denote by fi,..., fr the components of F', then every function f; is a constant of
the motion for I'. Conversely, a family of functionally independent first integrals fi,--- , f, €
C>°(D), satisfying the transversality condition det [(dfa , egﬂ # 0 (where {e,} is any local basis
for D), defines a complete integral by means of ®~*(v) = (7(v), (f1(v),..., fr(v))).

We now show that this functions are in involution with respect to the nonholonomic bracket.
One of the possible constructions of such bracket is as follows. Given a function g € C*°(D),
we consider the section §g € Sec((7PD)*) as the restriction of the differential of g to 7PD;
that is, dg = dg|y» 4 . Since the constrained system is regular, we can define the nonholonomic
Hamiltonian section 7, € Sec(7PD) by means ingwm) = 0g. Then we define the nonholonomic
bracket of two functions f,g € C*(D) by means of {f,g}"" = wLD(nf,ng). This bracket is
skewsymmetric but it does not satisfy the Jacobi identity, except if the constraints are actually
holonomic.

Theorem 4 If F' = (fi1, fo,..., fr) then {fi, f;}** = 0.

Proof  We will show that the sections 7y, are of the form ny = T®(Xy,0). Indeed, let
Z € Sec(D x TA — @ x A) be the section such that 7® o Z; = 5y, o ®. For every v € D, let
g =7(v) and XA = F(v), so that ®(q, \) = v. For every w € D, we have

(@*wLD)v(Zl-(v), (w,0)) = wEP (T®(Zi(v)), T®(w,0)) = wa(nfi (v), Tox(w))
=Tox(w) - fi=w-(fiooy)=w-(X) =0

where we have used that F' ooy, = A\ (constant), and hence f; o o) = \;. Therefore Z; takes
values in the orthogonal with respect to ®*w’® of the subbundle {(v,0) € D x TA}. Since this
subbundle is Lagrangian, we have that Z; takes values on it, i.e. it is of the form Z; = T®(W;,0).
But then

{fz’a fj}nh = wLD(nfwnfj) = wLD(T(I)(W%O)vT(I)(Wj’ 0)) = ((I)*WLD)((Wia 0)7 (Wj7 0)) =0,

which finishes the proof. [ |

7 Example

7.1 The nonholonomic free particle

Every one-dimensional distribution is integrable, so that the easiest example of a nonholonomic
system is obtained in R3 by a 2-dimensional distribution. By an adequate change of coordinates,
the annihilator of D is generated by the 1-form dxs — zodx;. The following example consists on
a free particle under the action of such a constraint, and it is known as the nonholonomic free
particle [4, 14, 33].

Consider a particle moving in @ = R3, with Lagrangian function

1 . . .
L= 5(x%+x§+x§)

We have w; = dxy A diy 4+ dxo A dio 4+ dxs A dis and dE;, = t1dx1 + Todio + d3dTs, so the

unconstrained dynamics is the well-known free dynamics described by the vector field

~ .0 . .0
FO = le OdEL = xlailrl +LE267$2 +l’387x3
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We introduce the nonholonomic constraint
¢ = i3 — w231 =0,
so that the constraint submanifold is D = {(x1, 2, x3; &1, &2, %3) € TQ | &3 = x2d1}. Applying
D’Alembert’s principle for nonholonomic dynamics we get
0 Todot1 O Zok1 O ) ‘
"

. 0 . 0 .
- (ml 81'1 + 2 6952 + T2 81‘3 x% +1 89’51 :L'% +1 69‘:3

As a basis {e,} of sections of D we can take,

0 0 0
elza—wl%—xga—m, 62:8—@,
which we can complete with the vector field
0
e3 = 92s

The associated quasivelocities are related to the velocities by

Y1 =11 T1 =Wy

Yo = T2 Ty = Y2 (10)

Ys = &3 — T2d1 T3 = Y3 + T2y1.

The corresponding basis {X,,V,} can be expressed in terms of the natural coordinates on the
tangent bundle as

X = i +x i Yo = i +x ﬂ
1 81‘1 261’3 2 8$2 18$'3
0 0 0
Vi=— — Vo= —
1= Bar T 04, 2= By’
and it is completed to a basis of sections of T'D with the vector field
0
Xy = —.
3 81‘3

We have that the symplectic section is given by
WP = 201 XY AXZ (1 +23) XAV X2 AV
and the 1-form P is
el = 2oy X% + (1 + 23y V! + 12 V2.
LD LD

From here, the dynamical section I', such that ipw™= =&~~, is
T2
I'=9y1Xs + yoXo — V1,
Y1r2 T Y2A2 1+x§y1y2 1
and the integral curves of I' are the solutions to
. . . €2 .
1 =y1, Ty = y2, ylz_myly% Y2 =0, (11)

together with the constraint &3 = za1;.
Note that in this example D is a bracket-generating distribution. Indeed, e1, es and

be (23 +1)3/2 \ O3 ? O
are linearly independent at each point of R3. It follows that there is only one orbit for this

distribution, the full space R?, and hence any pair of points can be joined by concatenation of
integral curves of vector fields belonging to the distribution D.
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7.2 The Hamilton—Jacobi problem

Let us state the Hamilton—Jacobi problem for this dynamics. According to the general discussion,
we wish to find the vector fields X in () such that:

1. X takes values in D, and
2. X and I' are X-related: TX o X =10 X.

From the first condition we have that X has the form

8 8 0
X = —_— —_— 12
and the second condition leads to
Z2
L = —— L =0
or, more explicitly,
of of 5] f 89
4 _ —_— 0. 13
o1 9am, TG f92+1 f 9 9zs +x2fax3 (13)

It is easy to find particular solutions of these equations. For instance, f =1, g = 0 is a
solution and also f =0, g = 1 is a solution. From them we can find some integral curves of the
dynamics I'. However, to obtain all the integral curves of the dynamical vector field we need to
look for a complete solution.

Remark 4 An easier way to find these equations (together with the equations for the integral
curves of X) is from D’Alembert equations (11) by the substitution y; = f and y, = g. We get
the equations

xlzfv T9 =g, f_ 1+zx Qfg’ and g=0.

Equations (13) follow from this when expanding the total time derivatives of the functions f
and ¢ and using the first two equations.

7.3 A complete solution

In order to get a complete solution, we look for a diffeomorphism ®: Q x A — D, with
A = R2?, such that ®(¢,\) = Xa(g). In our case, taking (12) into account, this means
D(x1,x9,x3; A1, A2) = (21,22, x3; f, g, x2f), where the functions f, g satisfy (13).

As we already know, any solution to the free problem with values in D is also a solution to the
constrained problem. There are some obvious solutions of the free problem that are constant
vector fields, one of which, X = (0,constant,0), takes values in D. Thus, as we look for a
particular complete solution, we can choose g = A1 (constant) and try to find a corresponding
value of f satisfying

0 0 0
[t Mg el g =

If we assume that f depends only on z9, f = f(z2), then the above equation is

df o D)

d7332_ x%+1

f,
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whose solution is f = Ao/ \/x%j Hence we have a complete solution that can be expressed as

0 1 0 0
X =AM+t o—F—7— < +z ) =M X1+ X, (14)

(9.1‘2 2 A /;p% +1 8951 282173

with

X —i X —; o +xi
te 31‘27 2 ,/1'2 81‘1 281‘3 '

In other words, we have the diffeomorphism given by

332)\2

A2
.7}1 To2,T3; $1 ZL’Q ZL‘3) .
2 7 Y Y ) ) ?
Vs +1 \/:):2

@($1,$2,$3; )‘17 )\2) = (%1,1‘2,3’)3;
From here we get

_1 L . . _ L 2 . _ .
O™ (21, 20, 3; 1, L2, 43) = <$1,$27€U3,$1\/5132 + 1,SE2> = (21,22, 23; A1, A2)

and, therefore, we obtain the following constants of motion

fi=di\/2d+1, fo=1do.

Let us remark the linear expression of X}, ),, which is related to the fact that the conserved
quantities are linear (in the velocities).

A straightforward calculation shows that the solution that we have found is a solution to the
restricted Hamilton—Jacobi problem, that is X3 ,, wlP = 0. Alternatively, we can calculate the

pullback of wy,
A2

(23 + 1)3/2

which is in the exterior ideal generated by D°.

X*(wL) = (dwg — Jfgdxl) A dxo,

The flow of X}, ), can also be easily computed: when \; # 0, its integral curves are

zi(t) = 20+ % (arg sinh(z3 + \t) — arg sinh(mg)) ,
1

:L’Q(t) = (lig—i-)\lt
.’L‘3<t) = 3+ (\/1 x2+)\1t \/1+ .’L‘2 ),

when A1 = 0, the expression of the flow is

A
0 2
r1(t) = =z + ——t,
g SRVAENETE
x2(t) = $8)
o)
0 249
x3(t) = x5+ .
() ’ 1+ (29)?

It follows that (the tangent lift of) these curves are the solutions of the nonholonomic problem.
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Another complete solution We can obtain another complete solution by choosing g = Ay
(constant), as above, but now we try f = f(x2,23). Then the second equations of (13) holds,
and the first one reads

), 9f f _
a +x2f - f 15—+ 2+1
. . T3A1 — A2 . .
which has a solution f = 211 Hence we obtain another complete solution to the
T3
Hamilton—Jacobi problem:
)\1333 - )\2 6 8 )\1563 - )\2 8
X =+ A\ — —_— =M X7+ XX 15
A1,A2 l‘% + 1 8$1 + 18.’1}‘2 + X9 372 n 1 8563 141 + 242, ( )
with 0 0 0 1 0 0
I3 —
Xi=———|— — X9 = — — . 16
! .r%—l— 1 <85L‘1 T 3.%'3) + 8902 2 .%%—I— 1 <a$1 +1‘an3> ( )

This solution leads to the following constants of motion:
fir=asdy —dr(z5+1), fa=ma.

In this case the solution that we found is not a solution to the restricted problem, that is
X3, )\QwLQ # 0. In fact, we have

)\1%3 )\2 )\ CL‘% -1
X* —2x9——5——odr1 Nd d ANd A Ao) ———=dxo A dxs.
(wr) = Tz e T9 + 10 z3+ (Mg — 2)<x%+1)2 T2 A dzs
and hence .
« LD _ 2 12
X*w™” = 1+$%()\1x3—)\2)e Ae’.
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