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Abstract

We aim at giving support to the idea that no physical Large Eddy Simulation (LES) model
should be used in the simulation of turbulent flows. It is heuristically shown that the rate of transfer
of subgrid kinetic energy provided by the stabilization terms of the Orthogonal Subgrid Scale (OSS)
finite element method is already proportional to the molecular physical dissipation rate (for an
appropriate choice of the stabilization parameter). This precludes the necessity of including an extra
LES physical model to achieve this behavior and somehow justifies the purely numerical approach
to solve turbulent flows. The argumentation is valid for a fineenough mesh with characteristic
element size,h, so thath lies in the inertial subrange of a turbulent flow.

Key Words: Stabilized finite elements, Large Eddy Simulation, Variational Multiscale, Subgrid
Scale modeling, Orthogonal Subgrid Scales, Turbulent flows

1 Introduction

Two parallel lines have been followed in the past years to simulate incompressible turbulent flows
that can be of engineering interest. On one side, the drawbacks of RANS (Reynolds Averaged Navier-
Stokes) models combined with the impossibility to perform DNS (Direct Numerical Simulation) com-
putations for large Reynolds number problems led to the development of LES (Large Eddy Simulation)
strategies (see e.g., [43]). On the other side, the numerical problems that arise when trying to solve
the discrete differential or weak versions of CDR (Convection-Diffusion-Reaction) equations have mo-
tivated the development of several stabilization strategies to mitigate them. A landmark in the devel-
opment of these stabilization methods was the appearance ofthesubgrid scalestabilization approach
or, as originally termed, thevariational multiscalemethod (VMM), in the framework of finite element
methods [27, 29]. Both approaches, LES and VMM applied to fluid dynamics, share some features
like being based on a scale decomposition of the continuous velocity and pressure fields of the Navier-
Stokes equations. However, in the former case this scale separation is performed at the continuous level
while in the latter it is inherently carried out in the discretization process. The relation between both
methods is not fully understood at present and it is not clearwhether they should be used together
or independently in the simulation of turbulent flows. In this paper we aim at giving some support to
the idea that no LES physical model should be used if an appropriate discrete stabilization scheme is
implemented.

In LES the scale decomposition between large and small flow scales has been traditionally per-
formed by means of a filtering process (see e.g., [38, 17, 18])defined through a convolution operation.
The filter is applied to the Navier-Stokes equations usuallyassuming that it commutes with the differ-
ential operators and a new equation for the filtered velocityand pressure fields is derived. However, this
equation contains the divergence of the so-calledresidual stresstensor that depends on the exact veloc-
ity field. This term has to be modeled somehow to obtain a closed system of equations only depending
on filtered quantities. Once a physical LES model is chosen, the resulting filtered equation is finally
discretized and solved.

This approach presents several mathematical difficulties such as knowing the error introduced when
the commutation between the filtering and differentiation operators is assumed, knowing which should
be the appropriate choice for the LES boundary conditions and, what is probably more important,
knowing which is the relation between the errors introducedby the physical LES model and by the
discretization procedure. Some of these subjects have received recent attention both from analytical
(see e.g., [2, 34]) and numerical points of view (see e.g., [19, 5, 37, 35, 46]). In [23] a review of several
LES models was performed and some interesting conclusions were drawn out, such as the fact that
filtering is not indispensable to achieve LES models, that aiming at an exact closure for the residual
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stress tensor is a paradoxic program and that some LES modelshave the remarkable propriety of being
more regular than the original Navier-Stokes equations, leading to problems for which uniqueness of
solutions can be proved. In this sense, it was concluded thata LES model should fulfill with two main
requisites, namely, it should regularize the Navier-Stokes equations yielding to well-posed problems
and it should lead tosuitableweak solutions (i.e., physically acceptable solutions). In an attempt to
provide a first step towards a mathematical definition of LES,the notion ofsuitable approximationsto
the Navier-Stokes equations was then introduced in [24]. Inthis context, it is worthwhile to mention that
a DNS using the Galerkin method with low order finite elementsconstitutes a suitable approximation
to the Navier-Stokes equations, which may justify the fact that sometimes better results are achieved
for low-order methods when no LES model is employed [22].

In the VMM or subgrid scale approach to solve turbulent flows [30], the scale separation is carried
out by means of a projection onto the finite element space. Twoequations are then obtained respectively
governing the dynamics of the large and small scales. Large scales are those that can be captured by the
computational mesh, while small or subgrid scales are thosenot captured by the mesh. Modeling takes
place when giving an approximated solution for the subgrid scales equation, which is to be inserted in
the large scale equation to account for their effects.

The initial motivation of the VMM method was to solve some of the numerical problems associated
with the simulation of the discrete Navier-Stokes equations, such as the necessity to satisfy theinf-
sup condition (which implies the use of different interpolation spaces for the velocity and pressure
fields) or the numerical instabilities appearing for convective dominated flows. Consequently, when the
VMM was first applied to the simulation of turbulent flows a physical LES model (Smagorinsky model)
was still included, although solely acting on the subgrid scale equation [30, 31, 32]. The idea that the
stabilization terms in the VMM approach could be sufficient to simulate turbulent flows was already
pointed out in the framework of orthogonal subgrid scale (OSS) stabilization methods [10] (see also
[12]) as a natural extension to that work. Later it was re-introduced in [4, 33] and further elaborated
in [28]. Recently, very good results have been obtained in the simulation of isotropic turbulence and
turbulent channel flows with the sole use of numerical stabilization [1, 26, 44]. Actually, and as far as we
know, this “numerical” line of thinking initiated with the MILES (Monotone Integrated LES) approach
[3] c.f. [46] (see also [43] and references therein). We shall come back to this point in Section 5

In this paper a further argument supporting the non physicalmodeling approach will be given. An
important point a closure LES model should satisfy is that the rate of kinetic energy transferred from
the filtered large scales to the small ones should equal the physical dissipation rate at the Kolmogorov
length scale (see e.g., [40, 42]). This is so for the filter width lying in the inertial subrange of the
flow under study. Considering the OSS stabilized finite element method [8, 9, 10], it will be herein
shown that the contribution to the energy balance equation from the stabilization terms that arise in the
discrete weak Navier-Stokes from purely numerical considerations are in fact already proportional to
the physical dissipation rate (for a fine enough computational mesh so that its characteristic element
size lies in the inertial subrange of the considered turbulent flow). Consequently, the inclusion of an
extra physical LES model seems somewhat redundant and unnecessary.

The paper is organized as follows. In section 2 the energy balance equations for the continuous
Navier-Stokes and LES problems are presented together withtheir discrete counterparts using the
Galerkin and OSS stabilized finite element methods. The problem we would like to address is es-
tablished and the OSS stabilization terms accounting for the transfer of kinetic energy to subscales that
should be proportional to the physical dissipation rate areidentified. In section 3 we proceed to the
explicit discretization of these terms, showing that theirensemble average can be written as products
of geometrical factors multiplying two point second and fourth-order nodal velocity correlations, as
well as triple-order velocity-pressure correlations. In section 4, results from fluid statistical mechanics
are used to relate these correlations to the physical dissipation rate, which is the main goal of the pa-
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per. Some general comments and remarks, together with references to recent numerical experiments
supporting the pure numerical approach to solve turbulent flows are given in section 5. A numerical
experiment of a turbulent flow impinging on a plate is also included. Conclusions are finally drawn in
section 6.

2 Energy balance equations

2.1 Energy balance equation for the Navier-Stokes problem

The strong formulation of the Navier-Stokes equations problem consists in solving their differential
version in a given domainΩ ⊂ R

d (whered = 2, 3 is the number of space dimensions) with bound-
ary ∂Ω and prescribed initial and boundary conditions. We will only consider homogeneous Dirichlet
conditions on the boundary(∂Ω ≡ ΓD) for simplicity and use the conservative form of the equations.
Throughout the work we will concentrate on the three dimensional case(d = 3). The problem to be
solved then reads

∂tu − 2∇ · [νS (u)] + ∇ · (u ⊗ u) + ∇p = f in Ω × (0, T ) , (1)

∇ · u = 0 in Ω × (0, T ) , (2)

u (x, 0) = u0 (x) in Ω, t = 0, (3)

u (x, t) = 0 onΓD × (0, T ) , (4)

whereu stands for the flow velocity,p for the pressure,ν represents the kinematic fluid viscosity (taken
constant hereafter),S (u) := 1

2

(
∇u + ∇uT

)
the rate of strain tensor,f the external force and(0, T )

is the time interval of analysis.
Use is made of the following notation to introduce the weak form associated to problem (1)-(4).

Lp (Ω) denotes the spaces of functions whosep power(1 ≤ p <∞) is integrable inΩ, with p = ∞
corresponding to the space of bounded functions inΩ. Forp = 2 we have a Hilbert space with scalar
product

(u,v) :=

∫

Ω
u(x)v(x)dΩ (5)

and induced norm‖u‖L2(Ω) ≡ ‖u‖ = (u,u)1/2. From a physical point of view,L2 (Ω) can be iden-

tified with the space of velocity fields with bounded kinetic energy, given that‖u‖2 = 2E (u), with
E (u) standing for the kinetic energy per unit mass.

Hm (Ω) denotes the space of functions whose distributional derivatives up to orderm lay inL2 (Ω).
The casem = 1 is of special interest as it is also a Hilbert space and can be physically identified with
the space of velocity and vorticity fields having bounded energy and enstrophy [16]. On the other
hand,H1

0 (Ω) stands for the functions inH1 (Ω) vanishing onΓD. H−1 (Ω) denotes the topological
dual ofH1

0 (Ω) and the brackets,〈·, ·〉, will be used for the duality pairing between these spaces.‖·‖X

designates the norm in a Banach space,X, andLp(0, T ;X) is the space of time dependent functions
such that theirX-norm isLp(0, T ). A bold character is used for the vector counterpart of all these
spaces.

The weak form of problem (1)-(4) can be formulated as:
find [u, p] ∈ L2(0, T ;H1

0(Ω)) ×D′(0, T ;L2(Ω)/R) (D′ being the space of distributions) such that

(∂tu,v) + 2ν(S (u) ,S (v)) + 〈∇ · (u ⊗ u) ,v〉 − (p,∇ · v) = 〈f ,v〉, (6)

(q,∇ · u) = 0, (7)

for all [v, q] ∈ H1
0(Ω) × L2(Ω)/R, and satisfying the initial condition in a weak sense.
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For eacht ∈ (0, T ), settingv = u, q = ct (constant) in (6)-(7) (assuming this is allowed) and
taking into account that we have limited the analysis to homogeneous Dirichlet boundary conditions,
we obtain the energy balance equation

d

dt

(
1

2
‖u‖2

)
= −2ν ‖S (u)‖2 + 〈f ,u〉. (8)

Equation (8) states that the time variation of the flow kinetic energy depends on two factors, namely, the
molecular dissipation due to viscosity (which is clearly negative) and the power exerted by the external
force that can be either positive or negative. Identifying the pointwise kinetic energy ask := u·u/2, the
pointwise molecular dissipation asεmol := 2ν [S (u) : S (u)] and the pointwise power of the external
force asPf := f · u we can rewrite (8) as

∫

Ω

dk

dt
dΩ = −

∫

Ω
εmoldΩ +

∫

Ω
PfdΩ. (9)

According to the Kolmogorov description of the energy cascade in turbulent flows [36] cf. [42],
the flow can be viewed as driven by the external forces acting at the large scales (low wave numbers)
and generating kinetic energy, which is transferred to the low scales (high wave numbers) by non-linear
processes. When the Kolmogorov length is reached, the viscous dissipation,εmol, in the r.h.s of (9)
takes part transforming the flow kinetic energy into internal energy (heat is released).

2.2 Energy balance equation for a Large Eddy Simulation model

In the standard Large Eddy Simulation (LES) of turbulent flows, a scale separation between large and
small scales for the velocity and pressure fields in the Navier-Stokes equations is carried out. As com-
mented in the introduction, this has been done traditionally by means of a convolution of the latter fields
with a low pass filter operator,(·) : v 7−→ v, so that the decomposition[u, p ] = [u, p ] + [u′, p′] is
obtained (see e.g., [38] cf. [42], [43]).[u, p ] stands for the large, filtered, scales while[u′, p′] represent
the small, residual, scales.

Without getting into details on the type of filter used for thescale separation and assuming that
the filtering operator commutes with differentiation (although this will be certainly a source of errors
[47, 20, 15]), the following differential problem is obtained for the filtered velocity and pressure fields
[u, p ]:

∂tu − 2∇ · [νS (u)] + ∇ · (u ⊗ u) + ∇p = f −∇ · R in Ω × (0, T ) , (10)

∇ · u = 0 in Ω × (0, T ) , (11)

u (x, 0) = u0 (x) in Ω, t = 0, (12)

u (x, t) = 0 onΓD × (0, T ) , (13)

which is analogous to (1)-(4) except for the divergence of the tensorR appearing in the r.h.s of (10).
The tensorR := u ⊗ u−u⊗u is usually named theresidual stress tensoror thesubgrid scale tensor
and an expression for it in terms ofu is needed to close the system of equations (10)-(13). The different
models forR give place to different LES models.

The weak formulation of problem (10)-(13) can be stated as: find [u, p] ∈ L2(0, T ;H1
0(Ω)) ×

D′(0, T ;L2(Ω)/R) such that

(∂tu,v) + 2ν(S (u) ,S (v)) + 〈∇ · (u ⊗ u) ,v〉 − (p,∇ · v)

= 〈f ,v〉 + 〈R,∇v〉 , (14)

(q,∇ · u) = 0, (15)
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for all [v, q] ∈ H1
0(Ω)×L2(Ω)/R, and satisfying the initial condition in a weak sense. Taking into ac-

count thatR is symmetric, we can rewrite the second term in the r.h.s of (14) as〈R,∇v〉 = 〈R,S (v)〉.
In addition, and without loss of generality, we will consider R deviatoric, its volumetric part being ab-
sorbed in the pressure term.

Assuming again continuity in time, if we next setv = u, q = ct, for eacht ∈ (0, T ) in (14)-(15)
we can obtain an energy balance for the filtered Navier-Stokes equations:

d

dt

(
1

2
‖u‖2

)
= −2ν ‖S (u)‖2 + 〈R,S (u)〉 + 〈f ,u〉. (16)

We can now define the filtered pointwise kinetic energyk := u · u/2, the pointwise filtered
molecular dissipationεmol := 2ν [S (u) : S (u)], the rate of production of residual kinetic energy
Pr := −R : S (u) and the pointwise power of the external filtered forceP f := f · u, so that we can
rewrite (16) as

d

dt

∫

Ω
kdΩ = −

∫

Ω
εmoldΩ −

∫

Ω
PrdΩ +

∫

Ω
P fdΩ. (17)

For a fully developed turbulent flow with the filter width in the inertial subrange, the filtered field
accounts for almost all the kinetic energy of the flow. Thus,

∫
Ω kdΩ ≈

∫
Ω kdΩ and the first terms in

(9) and (17) become nearly equal. If the external force mainly acts on the large scales of the flow, it
will also happen that

∫
Ω PfdΩ ≈

∫
Ω PfdΩ. On the other hand, the energy dissipated by the filtered

field, εmol is relatively small and can be neglected [42]. Consequently, comparing equation (17) with
equation (9), we observe that in order for the LES model to behave correctly it should happen that∫
Ω PrdΩ ≈

∫
Ω εmoldΩ. That is, the rate of production of residual kinetic energy should equal, in the

mean, the energy dissipated by viscous processes at the verysmall scales (Kolmogorov length), which
is the point of view expressed by Lilly [40].

In the case of some celebrated LES models, such as the Smagorinsky model [45],Pr is always
positive and there is no backscatter, i.e., the energy is always transferred from the filtered scales to
the residual ones, but not vice versa. It is quite customary then to termPr as subgrid or residual
dissipationand to denote it byεSGS, see e.g., [46]. However, this may lead to confusion, especially
when introducing the discrete stabilized numerical version of the original and filtered Navier-Stokes
equations, so we will keep the notationPr in this work.

2.3 Energy balance equations in discrete problems: stabilized numerical approach of
the original and filtered Navier-Stokes equations

2.3.1 Galerkin finite element approach

The Galerkin finite element approximation to problem (6)-(7) can be stated as: given the finite di-
mensional spacesVd

0,h ⊂ H1
0(Ω) and Q0,h ⊂ L2(Ω)/R find [uh(t), ph(t)] ∈ L2(0, T ;Vd

0,h) ×
D′(0, T ;Q0,h) such that

(∂tuh,vh) + 2ν(S (uh) ,S (vh)) + 〈∇ · (uh ⊗ uh) ,vh〉

−(ph,∇ · vh) = 〈f ,vh〉, (18)

(qh,∇ · uh) = 0, (19)

for all [vh, qh] ∈ Vd
0,h ×Q0,h.

Note that equations (18)-(19) are still continuous in time.However, for the developments to be
presented hereafter time discretization will be not required, so no explicit expression for it will be given.
Anyway, and whatever time discrete scheme is used, it is wellknown that the Galerkin finite element
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approach (18)-(19) presents several difficulties. On one hand, numerical instabilities are encountered
when the non-linear convective term in the equation dominates the viscous one at high Reynolds number
problems. On the other hand, a compatibility condition (inf-supor LBBcondition) is required to control
the pressure term. This condition does not allow to use equalorder interpolations to approximate the
velocity and pressure fields. Further numerical instabilities are also found when small time steps are
used, specially at the early stages of evolutionary processes.

Several stabilization strategies have been developed to circumvent the above numerical instabilities
of the Galerkin finite element solution to the Navier-Stokesequations. We will concentrate here on
thesubgrid scaleapproach (also termedvariational multiscale methodor residual-based stabilization)
originally developed by Hughes [27, 29] for the scalar convection-diffusion-reaction equation, and latter
extended to other equations by many authors. In particular we will focus on the orthogonal subgrid
scale (OSS) approach developed in [8, 9, 10, 12]. This will simplify some of the forthcoming analysis
although the developments could be possibly extended to other methods.

2.3.2 Orthogonal subgrid scale stabilization

The subgrid scale finite element stabilization method applied to the present problem consists in first
splitting the continuous spatial spaces where the solutionis found asH1

0(Ω) = Vd
0,h ⊕ Ṽd

0 and

L2(Ω)/R = Qh,0 ⊕ Q̃0, with Ṽd
0 andQ̃0 being any infinite dimensional spaces that respectively com-

plete the finite element spacesVd
0,h andQh,0 in H1

0(Ω) andL2(Ω)/R. The velocity and pressure fields
can then be decomposed asu = uh + ũ and p = ph + p̃ (the same holds for the test functions
v = vh + ṽ, q = qh + q̃).

The weak form of the Navier-Stokes equations can now be splitinto two systems of equations. This
is done by first substitutingu = uh + ũ andp = ph + p̃ in (6)-(7) and taking[v, q ] = [vh, qh ], which
corresponds to projecting (6)-(7) onto the finite element spaces. Then, a second equation is obtained by
projecting (6)-(7) onto the finite element complementary spaces by setting[v, q ] = [ṽ, q̃ ].

After integrating some terms by parts and neglecting terms involving integrals over interelement
boundaries, the equation corresponding to the large scales(projection onto the finite element spaces)
becomes [10, 12],

(∂tuh,vh) + 2ν(S (uh) ,S (vh)) + 〈∇ · (uh ⊗ uh) ,vh〉

− (ph,∇ · vh) + (qh,∇ · uh)

−
∑

e

〈ũ, 2ν∇ · S (vh) + ∇ · (uh ⊗ vh) + ∇qh〉Ωe

+ (∂tũ,vh) + 〈∇ · (ũ ⊗ uh) ,vh〉

+ 〈ũ · ∇ũ,vh〉

− (p̃,∇ · vh) = 〈f ,vh〉 . (20)

The first two lines of (20) contain the Galerkin terms previously found in (18)-(19). The third line
includes terms that are already obtained in the stabilization of the linearized and stationary version of
the Navier-Stokes equations [8, 9] (Oseen problem). These terms avoid the convection instabilities of
the Galerkin formulation and also allow to use equal interpolations for the velocity and the pressure.
The first term in the fourth line accounts for the time derivative of the subscales, while the second term
provides global momentum conservation [12]. The term in thefifth line has a second order dependence
on the velocity subscales and it is argued in [4] that has verylittle influence on the results. Consequently
it will be neglected in what follows, which will simplify theanalysis. Finally, the term in the sixth line
accounts for the effects of the pressure subscales.
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To solve (20) we need some expressions for the velocity and pressure subscales[ũ, p̃ ]. These ex-
pressions can be found from the solution of the small subgridscales equation (projection onto the finite
element complementary spaces). Given that the latter equation cannot be solved exactly, an approxi-
mation for its solution is required. The different ways in how this approximated solution is obtained
give place to different subgrid scale stabilization models. We will use here the orthogonal subgrid scale
(OSS) approach, which is based on choosing the spaces orthogonal to the finite element ones as the
complimentary spaces in the above formulation. Moreoverquasi-staticsubscales will be considered,
leading to the approximation [8, 9]:

ũ ≈ τ1ru,h, (21)

p̃ ≈ τ2rp,h, (22)

whereru,h andrp,h represent the orthogonal projection of the residuals of thefinite element components
uh andph

ru,h = −Π⊥

h [∂tuh − 2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph − f ]

= −Π⊥

h [−2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph], (23)

rp,h = −Π⊥

h [∇ · uh]. (24)

Π⊥

h in the above equations stands for the orthogonal projection, Π⊥

h := I−Πh, with I being the identity
andΠh theL2 projection onto the appropriate finite element space. In fact, the numerical analysis of the
stationary and linearized problem is greatly simplified if this projection is weighted elementwise by the
stabilization parameters, as shown in [11]. However, this is not essential for the following developments.

In the second line of (23) we have used precisely the fact that, once discretized,∂tuh ⊂ Vd
0,h. We

have also considered that the external force belongs toVd
0,h i.e., it only acts at the large scales of the

flow in accordance with the simplified vision of the energy cascade presented at the end of section 2.1.
We have also introduced another simplification in the expressions for the velocity residual as only the
finite element component has been considered in the advective velocity term. Note, in addition, that no
implicit time dependence of the subscales has been considered (quasi-staticapproach). On the other
hand, the viscous term in the above equations has to be evaluated elementwise.

The stabilization parameters appearing in (21)-(22) can beobtained from arguments based on a
Fourier analysis for the subscales [10] that yield,

τ1 =

[(
c1
ν

h2

)2
+

(
c2
|uh|

h

)2
]−1/2

, (25)

τ2 =
h2

c1τ1
. (26)

c1 andc2 in (25)-(26) are algorithmic parameters with recommended values ofc1 = 4 andc2 = 2 for
linear elements [7], whileh stands for a characteristic mesh element size. Again, we have neglected
the subscale contribution in the advective velocity ofτ1. The choice (25)-(26) for the stabilization
parameters guarantees that the kinetic energy of the modeled subscales approximates the kinetic energy
of the exact subscales [10]. In the forthcoming analysis we will considerτ1 andτ2 constant within each
element and typified by a characteristic element velocity tobe defined later on.

Equation (20) together with the approximation (21)-(22) for the subscales constitute the proposed
numerical approach to solve the incompressible Navier-Stokes equations. It will be argued that this
scheme should also be valid for the simulation of turbulent flows without the necessity to perform a
LES scale separation at the continuous level, prior to the numerical discretization.

8



2.3.3 Energy balance for the orthogonal subgrid scale finiteelement approach to the Navier-
Stokes problem

In order to find an energy balance equation for the OSS numerical approach to the Navier-Stokes equa-
tions we can now setvh = uh andqh = ct in (20). This yields (no approximation for the subscales is
considered for the moment)

1

2

d

dt
‖uh‖

2 = −2ν ‖S (uh)‖2

−
∑

e

〈ũ, 2νS (uh) + ∇ · (uh ⊗ uh)〉Ωe +
∑

e

(p̃,∇ · uh)Ωe
+ 〈f ,uh〉, (27)

whereΩe denotes the domain of thee-th element. Here and below, the summations with indexe are
assumed to be extended over all the elements.

If we now consider the subscales approximation (21)-(24) in(27) we obtain

1

2

d

dt
‖uh‖

2 = −2ν ‖S (uh)‖2 + 〈fh,uh〉

−
∑

e

τ1
(
Π⊥

h

[
− 2ν∇ · S (uh) + ∇ · (uh ⊗ uh) + ∇ph

]
,

2ν∇ · S (uh) + ∇ · (uh ⊗ uh)
)
Ωe

−
∑

e

τ2

(
Π⊥

h (∇ · uh) ,∇ · uh

)
Ωe

. (28)

Since we are interested in high Reynolds numbers, all the stabilization terms multiplied by the viscosity
will be neglected, from where we obtain the following energybalance equation for the OSS stabilized
finite element approach to the Navier-Stokes equations:

1

2

d

dt
‖uh‖

2 = −2ν ‖S (uh)‖2 + 〈fh,uh〉

−
∑

e

τ1

(
Π⊥

h [∇ · (uh ⊗ uh) + ∇ph] ,∇ · (uh ⊗ uh)
)

Ωe

−
∑

e

τ2

(
Π⊥

h (∇ · uh) ,∇ · uh

)
Ωe

. (29)

Let us define the pointwise numerical kinetic energy of the flow askh := 1
2 |uh|

2, the pointwise molecu-
lar numerical dissipation for the large scales asεhmol := 2νS (uh) : S (uh) and the pointwise numerical
power for the external force asP h

f := fh · uh. We will also identifyPhτ
r within each element with

Phτ
r := τ1P

hτ1
r + τ2P

hτ2
r (30)

where

Phτ1
r := Π⊥

h

[
∇ · (uh ⊗ uh) + ∇ph

]
· [∇ · (uh ⊗ uh)] (31)

Phτ2
r := Π⊥

h (∇ · uh) (∇ · uh) . (32)

Equipped with these definitions, equation (29) can be rewritten as

d

dt

∫

Ω
khdΩ = −

∫

Ω
εhmoldΩ −

∑

e

∫

Ωe

Phτ
r dΩe +

∫

Ω
P h

f dΩ , (33)

which can be compared with the energy balance equation of thecontinuous problem (9), using similar
arguments to those in section 2.2.
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It is clear thatkh will account for nearly the whole pointwise kinetic energy of the flow so that∫
Ω k

hdΩ ≈
∫
Ω kdΩ. On the other hand, it will also occur that

∫
Ω P

h
f dΩ ≈

∫
Ω PfdΩ, given that the

force only acts at the large scales. In addition the numerical molecular dissipation of the large scales
will be negligible, so that

∫
Ω ε

h
moldΩ ≈ 0.

The next, crucial, question is if it should happen that
∑

e

∫
Ωe

Phτ
r dΩ ≈

∫
Ω εmoldΩ for the OSS

formulation to be a good numerical approach for the Navier-Stokes equations, in the case of fully de-
veloped turbulence. Actually, this should not be necessarily the case for all the terms inPhτ

r , given that
they have arisen in the equation motivated by pure numericalstabilization necessities. However, it is
clear that at least some of these terms should account for theappropriate physical behavior and their
domain integration should approximate the mean molecular dissipation in (9). It will be the main result
of this work to show, by means of heuristic reasoning, that actually the wholePhτ

r satisfies this assump-
tion. It should be also noted that in the definition ofPhτ

r , the approximation for high Reynolds number
flows was already performed (stabilization terms multiplied by the viscosity have been neglected).

2.3.4 Energy balance for the orthogonal subgrid scale finiteelement approach to a LES model

We could now proceed to discretize the LES equations (14)-(15) using the OSS approach. The usual way
to do so is by simply adding the Navier-Stokes stabilizationterms to the Galerkin discretization of the
LES equations, i.e., terms containing the residual stress tensor,R, are not included in the stabilization
terms (see e.g., [46]). This approach is in fact non consistent unless linear elements are used. However,
in the OSS method this approach still makes sense given that the consistency error becomes optimal
(see [11]).

The following discrete energy balance equation for the LES model analogous to (33) is obtained

∫

Ω

dk
h

dt
dΩ = −

∫

Ω
εhmoldΩ −

∑

e

∫

Ωe

P
hτ
r dΩ −

∫

Ω
P

h
rdΩ +

∫

Ω
P

h
fdΩ , (34)

with kh := 1
2 |uh|

2, εhmol := 2νS (uh) : S (uh), P
h
f := fh · uh, P

h
r := −R : S (uh) andP

hτ
r :=

−
∑

e τ1(Π
⊥

h [∇ · (uh ⊗ uh) + ∇ph] ,Π⊥

h [∇ · (uh ⊗ uh)])Ωe −
∑

e τ2(Π
⊥

h (∇ · uh) ,Π⊥

h (∇ · uh))Ωe .
Following the argumentation lines in the above sections it is clear that the kinetic energy term will
approximate the one in the exact energy balance equation (9). The same will prove true for the external
force power and, again,εhmol will be negligible. However, we are now left with the curiousfact that the

two terms involvingP
hτ
r andP

h
r should equal, in the mean, the molecular physical dissipation. This

seems at least redundant if the term containingP
hτ
r that arises from the discretization of the original

Navier-Stokes equation already presents this behavior. Inother words, the process of first filtering at
the continuum level, modeling, and then proceeding to discretization (LES method) looks unnecessary
if an appropriate numerical discretization scheme is used.Obviously, for an inaccurate discretization
scheme the addition of extra dissipation as that provided byLES may be useful, but this should not be
the case. In the following sections we aim at giving support to this idea by means of some heuristic
reasoning.
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3 Numerical subgrid kinetic energy transfer for high Reynolds numbers
using the OSS stabilized FEM

3.1 Elemental ensemble average ofPhτ
r for high Reynolds numbers

3.1.1 Stabilization parameters at high Reynolds numbers

In (25) an expression is given for the stabilization parameter τ1. In the case of high Reynolds number
flows the viscosity term in this expression can be discarded in front of the convective one, yielding

τ1 ≈
h

c2 |uh|
. (35)

On the other hand, using (35) in the expression for the parameter τ2 in (26) we get

τ2 ≈
c2
c1
h |uh| . (36)

When using the above stabilization parameters in a finite element implementation,h represents a
characteristic element length ofΩe, while uh stands for a characteristic velocity at each element of the
partition. Several options exist for the latter giving place to different OSS stabilization methods. One
could take for example the velocity mean value at the elementor its root mean square value. Whatever
choice is made the key point for the forthcoming results is that τ1 should depend inversely on this
characteristic velocity whileτ2 should be proportional to it. This behavior will allow us to relatePhτ

r

with the molecular dissipation rateεmol, a fact that can be inversely be viewed as a confirmation of the
right choice forτ1 andτ2 in (35)-(36).

As mentioned in the introduction, for a given computationalmesh we will consider the case of the
characteristic element sizeh being fine enough so as to lay in the inertial subrange. The inertial subrange
can be thought as having limiting values[ lDI , lEI ] with lDI ≈ 60η and lEI ≈ L/6. η represents the
Kolmogorov length where dissipation takes place andL corresponds to the flow scale typical of the
largest, anisotropic eddies (see e.g., [42]). Let us denoteby U the ensemble average (or time average
under the ergodic assumption) of the chosen characteristicvelocity at a given mesh element, to be
used in the expressions for the stabilization parameters. Kolomogorov’s second similarity hypothesis
then guarantees that for an eddy of size`, such that̀ ∈ [ lDI , lEI ], U can only depend onεmol and`,
actuallyU ∼ (εmol`)

1/3. Our assumptions on the mesh discretization imply that` ≥ Ch, with C > 1
a dimensionless constant. It then follows that the elemental stabilization parameters become

τ1,ae ∼
h

U
∼

h

(εmol`)
1/3

, (37)

τ2,ae ∼ hU ∼ h (εmol`)
1/3 , (38)

where all constants have been included insideU . The symbol∼ is used here to denotebehaves as, that
is, the terms related by this symbol are approximately equalup to constants. However, we will abuse of
language and in what follows the equality sign will be frequently employed in expressions containing
approximated terms of the type (37)-(38).

3.1.2 Elemental ensemble average ofPhτ1
r

Let us denote byΠh
i

[
∇ · (uh ⊗ uh) +∇ph

]
thei-th component of the projector in the definition of the

numerical subgrid kinetic energy transfer termPhτ1
r in (31) and denote thei-th velocity component by

uhi.
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We consider a finite element partition of the domainΩ havingnp pressure nodes,nu velocity nodes
andne elements. Following similar lines of what is done in [13] (although with a very different objec-
tive) we define the average value in a mesh elementΩe of Phτ1

r in (31) as

Phτ1
r,e =

1

Ve

∫

Ωe

(
Phτ1

r

)
dΩe

=
1

Ve

∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh) + ∇ph

]
·
[
∇ · (uh ⊗ uh)

]
dΩe. (39)

An ensemble average (or time average under the ergodic assumption) of this quantity can be performed
to obtain

〈
Phτ1

r,e

〉
=

1

Ve

〈∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh) + ∇ph

]
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉
(40)

(Brackets are used in this section to denote ensemble average instead of duality pairing). We next
identify the terms

〈
Phτ1

r,e

〉
U

and
〈
Phτ1

r,e

〉
P

in (40) that will be treated independently in the analysis. We
have

〈
Phτ1

r,e

〉

U
:=

1

Ve

〈∫

Ωe

Πh,⊥
i

[
∇ · (uh ⊗ uh)

]
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉

=
1

Ve

〈∫

Ωe

∂i (uhiuhj) ∂k (uhkuhj) dΩe

〉

−
1

Ve

〈∫

Ωe

Πh
i

[
∇ · (uh ⊗ uh)

]
∂j (uhjuhi) dΩe

〉
(41)

and

〈
Phτ1

r,e

〉
P

:=
1

Ve

〈∫

Ωe

Πh,⊥
i

(
∇ph

)
·
[
∇ · (uh ⊗ uh)

]
dΩe

〉

=
1

Ve

〈∫

Ωe

∂iph∂j (uhjuhi) dΩe

〉

−
1

Ve

〈∫

Ωe

Πh
i

(
∇ph

)
∂j (uhjuhi) dΩe

〉
, (42)

Above and in the following, summation is understood over spatial repeated indexes.
Obviously, we have

〈
Phτ1

r,e

〉
=
〈
Phτ1

r,e

〉
U

+
〈
Phτ1

r,e

〉
P
. (43)

3.1.3 Elemental ensemble average ofPhτ2
r

Proceeding analogously to what has been done in the previoussection but for thePhτ2
r term defined in

(32), it can readily be checked that the elemental ensemble average ofPhτ2
r becomes

〈
Phτ2

r,e

〉
:=

1

Ve

〈∫

Ωe

Πh,⊥
(
∇ · uh

)(
∇ · uh

)
dΩe

〉

=
1

Ve

〈∫

Ωe

(∂iuhi)
2 dΩe

〉
−

1

Ve

〈∫

Ωe

Πh
(
∇ · uh

)
(∂iuhi) dΩe

〉
. (44)
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3.1.4 Elemental ensemble average ofPhτ
r

From (30) and using the elemental stabilization parameters(37)-(38) as well as (40) and (44), we can
define the ensemble average of the rate of production of kinetic energyPhτ

r for high Reynolds numbers
as 〈

Phτ
r,e

〉
:= τ1,ae

〈
Phτ1

r,e

〉
+ τ2,ae

〈
Phτ2

r,e

〉
. (45)

3.2 FEM solution and treatment of theL
2 projection in

〈
Phτ

r,e

〉

3.2.1 FEM solution for the velocity and pressure fields andL2 projection

The components of the discrete velocity fielduh can be expanded as usual for a mesh havingnu nodes
as

uhi (x) =

nu∑

a=1

Na
u (x)Ua

i , (46)

where the velocity shape functions{Na
u (x) , a = 1, . . . , nu} are a basis ofVd

0,h andUa
i are the velocity

nodal values, i.e., at the nodal points,xb, b = 1, . . . , nu, it holds that

uhi(x
b) = U b

i . (47)

In case ofuh being the finite element interpolant, the nodal values are exact and

uhi(x
b) = U b

i = ui(x
b) ≡ ub

i . (48)

Let us also assume the following interpolation for the Reynolds stresses (see e.g., [6])

uhiuhj (x) =

nu∑

b=1

N b
u (x)U b

i U
b
j (49)

in order to have simpler expressions and to make some of the forthcoming results useful from a com-
putational point of view.

Concerning the discrete pressure field,ph, it will be expanded as

ph (x) =

np∑

a=1

Na
p (x)P a, (50)

where the pressure shape functions
{
Na

p (x) , a = 1, . . . , np

}
are a basis ofQh,0 andP a denotes the

pressure nodal value at nodexa. We note that one of the advantages of using a stabilized finite element
method such as the OSS in section 2.3.2 is that one can chooseNa

u = Na
p ≡ Na, hence circumventing

the necessity of using different interpolations for the velocity and pressure fields as demanded by the
inf-supcondition (see. e.g. [27, 29, 8, 9, 10]).

On the other hand, it will be necessary to give explicit expressions for the projected terms
Πh

i

[
∇ · (uh ⊗ uh)

]
and Πh

i

(
∇ph

)
appearing in (41), (42) and (44). This can be done as follows.

Consider a functionψh computed from the finite element interpolation, not necessarily continuous. Its
L2 projection ontoVd

0,h can be written as

Π(ψh) =

nu∑

a=1

Na (x) Πa, (51)
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with the coefficientsΠa being given by the solution of the linear system

nu∑

a=1

M baΠa =

∫

Ω
N bψhdΩ, b = 1, . . . , nu (52)

M ba :=

∫

Ω
N bNadΩ. (53)

The mass matrixM in (53) can be approximated by means of a diagonal matrix of the form
diag(M11, . . . ,Mnunu) using a standard nodal quadrature rule. In this case

Πb = M−1
bb

∫

Ω
N bψhdΩ, (54)

so (53) becomes

Π(ψh) =

nu∑

a=1

M−1
aaN

a

∫

Ω
NaψhdΩ . (55)

3.2.2
〈
Phτ

r,e

〉
in terms of the finite element velocity and pressure fields

We next have to substitute the above expansions for the discrete velocity and pressure fields in the
expressions for

〈
Phτ1

r,e

〉
U

,
〈
Phτ1

r,e

〉
P

and
〈
Phτ2

r,e

〉
, respectively given by equations (41), (42) and (44).

Convective term
〈
Phτ1

r,e

〉
U

corresponding to the velocity subscales (41). We will first address the

term in the second line of (41), which will be denoted by
〈
Phτ1

r,e

〉
U,1

. Substituting (49) in this term
yields

〈
Phτ1

r,e

〉
U,1

=
1

Ve

〈∫

Ωe

[∑

a

∂iN
aUa

i U
a
j

∑

b

∂kN
bU b

kU
b
j

]
dΩe

〉

=
1

Ve

[∑

a,b

〈
Ua

i U
a
j U

b
kU

b
j

〉∫

Ωe

∂iN
a∂kN

bdΩe

]
. (56)

The term in the third line of (41) will be denoted by
〈
Phτ1

r,e

〉
U,2

. After substituting (49) and (55) in it,
we get

〈
Phτ1

r,e

〉
U,2

= −
1

Ve

〈∫

Ωe

[∑

a,c

M−1
cc N

c

∫

Ω
N c∂iN

aUa
i U

a
j dΩ

∑

b

∂kN
bU b

kU
b
j

]
dΩe

〉

= −
1

Ve

{∑

a,b

〈
Ua

i U
a
j U

b
kU

b
j

〉∫

Ωe

[
∂kN

b
∑

c

M−1
cc N

c

∫

Ω
N c∂iN

adΩ

]
dΩe

}
. (57)

To facilitate the notation in expressions (56) and (57) we define the geometric factors

Iab
ij :=

∫

Ωe

∂jN
b∂iN

adΩe (58)

and

Gab
ij :=

∫

Ωe

[
∂jN

b
∑

c

M−1
cc N

c

∫

Ω
N c∂iN

adΩ

]
dΩe. (59)

Both factors depend on the elementΩe. However, whileIab
ij has alocal character in the sense that it

only depends on the shape functions and the type of element being used,Gab
ij has aglobal character
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because it involves an integration over the whole computational domainΩ. This global character is due
to the fact that a projection is involved in

〈
Phτ1

r,e

〉
U,2

.
We will also denote the velocity correlation function as

Bab
ij =

〈
Ua

i U
b
j

〉
. (60)

and the two point fourth moment of the velocity field by

Bab
ij,kl =

〈
Ua

i U
a
j U

b
kU

b
l

〉
. (61)

Using the notation (58)-(61) in equations (56) and (57), we obtain the following expansion for the
convective term

〈
Phτ1

r,e

〉
U

:

〈
Phτ1

r,e

〉
U

=
〈
Phτ1

r,e

〉
U,1

+
〈
Phτ1

r,e

〉
U,2

=
1

Ve

∑

a,b

Bab
ij,kj

(
Iab
ik −Gab

ik

)
, (62)

where summation on the spatial dimension indexesi, j, k is assumed whereas summation on nodes will
be explicitly indicated throughout the text for the sake of clarity.

Pressure term
〈
Phτ1

r,e

〉
P

corresponding to the velocity subscales (42). It will be next found an ex-

pression similar to (62) but for the pressure term
〈
Phτ1

r,e

〉
P

. Making use of (49) and (50) in (42), we get

for the term in the second line of (42), which we denote
〈
Phτ1

r,e

〉
P,1

,

〈
Phτ1

r,e

〉

P,1
=

1

Ve

〈∫

Ωe

[∑

a

∂iN
aP a

∑

b

∂jN
bU b

jU
b
i

]
dΩe

〉

=
1

Ve

[∑

a,b

〈
P aU b

jU
b
i

〉∫

Ωe

∂iN
a∂jN

bdΩe

]
. (63)

Using now (49), (50) and (55) in the third line of (42), we obtain

〈
Phτ1

r,e

〉
P,2

= −
1

Ve

〈∫

Ωe

[∑

a,c

M−1
cc N

c

∫

Ω
N c∂iN

aP adΩ
∑

b

∂jN
bU b

jU
b
i

]
dΩe

〉

= −
1

Ve

{∑

a,b

〈
P aU b

jU
b
i

〉∫

Ωe

[
∂jN

b
∑

c

M−1
cc N

c

∫

Ω
N c∂iN

adΩ

]
dΩe

}
. (64)

Given the geometric factors (58)-(59) and defining the two point triple velocity-pressure correlation as

Bab
p,ij =

〈
P aU b

i U
b
j

〉
, (65)

we can rewrite
〈
Phτ1

r,e

〉
P

as

〈
Phτ1

r,e

〉

P
=
〈
Phτ1

r,e

〉

P,1
+
〈
Phτ1

r,e

〉

P,2
=

1

Ve

∑

a,b

Bab
p,ij

(
Iab
ij −Gab

ij

)
, (66)

with summation implied on indexesi, j.
Divergence term

〈
Phτ2

r,e

〉
corresponding to the pressure subscales (44).It can be readily checked

that the expression analogous to (62) and (66) for the term
〈
Phτ2

r,e

〉
in (44) is given by

〈
Phτ2

r,e

〉
=

1

Ve

∑

a,b

Bab
ij

(
Iab
ij −Gab

ij

)
, (67)
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with Bab
ij being the second-order velocity correlations (60).

Finite element expression for
〈
Phτ

r,e

〉
. Using the developments (62), (66) and (67) in equations (43)

and (45) we obtain the finite element expression for the ensemble average of the rate of production of
subgrid kinetic energy

〈
Phτ

r,e

〉
= τ1,ae

〈
Phτ1

r,e

〉
+ τ2,ae

〈
Phτ2

r,e

〉

=
1

Ve

∑

a,b

[
τ1,ae

(
Bab

ij,kj +Bab
p,ik

)
+ τ2,aeB

ab
ik

] (
Iab
ik −Gab

ik

)
. (68)

4 Relation between numerical subgrid kinetic energy transfer and phys-
ical dissipation in the inertial subrange

4.1 Two point fourth-order velocity correlations for
〈
Phτ1

r,e

〉
U

Given thatIab
ij andGab

ij in (58)-(59) are pure geometric factors, in order to relate the expression (68)
for
〈
Phτ

r,e

〉
with the physical molecular dissipation,εmol, we will have to relate the various second-order

and fourth-order velocity correlationsBab
ij , Bab

ij,kl and the two point triple velocity-pressure correlation

Bab
p,ij to it.

To do so, use will be made in what follows of some results of statistical fluid mechanics and in
particular of statistics concerning homogeneous isotropic turbulence. Although the various correlations
Bab

ij , Bab
ij,kl andBab

p,ij do not involve the whole velocity and pressure fields at the nodes, but their OSS
finite element approximation, we will consider that the results from statistical fluid mechanics can be
still applied to them, similarly to what is assumed for the filtered velocity in a LES model. Note that in
the case of[uh, ph] being the interpolant, see (48), no approximation would be needed. We then guess
that the velocity and pressure from the OSS finite element solution will not differ substantially from
the interpolant, at least in what concerns their statistical behavior. This is also implicitly assumed in
practical implementations of the results in [13].

Let us start with the two point fourth moment velocity correlationBab
ij,kl, which by virtue of its

definition (61) fulfills
Bab

ij,kl = Bab
ji,kl = Bab

ji,lk = Bab
ij,lk. (69)

Use can be made of thequasi-normalapproximation (Millionshchikov zero-fourth-cumulant hypothe-
sis, see e.g., [41]) in order to relate the fourth-order velocity correlations with second-order velocity
correlations. For the particular case of velocities being considered at just two points, the quasi-normal
approximation for the exact velocity field establishes

〈
ua

i u
a
ju

b
ku

b
l

〉
=
〈
ua

i u
a
j

〉 〈
ub

ku
b
l

〉
+
〈
ua

i u
b
k

〉〈
ua

ju
b
l

〉
+
〈
ua

i u
b
l

〉〈
ua

ju
b
k

〉
. (70)

Assuming that this relation holds true for the finite elementvelocity field, we can rewrite it using the
notation (60)-(61) to obtain

Bab
ij,kl = Baa

ij B
bb
kl +Bab

ikB
ab
jl +Bab

il B
ab
jk. (71)

In our case, the two-point fourth-order velocity correlation in (62) and (68) is contracted on the second
and fourth indexes so that

Bab
ij,kj = Baa

ij B
bb
kj +Bab

ikB
ab
jj +Bab

ij B
ab
jk. (72)
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The second-order velocity correlations can be related to the second-order velocity structure function
Dab

ij defined by (see e.g., [41, 42])

Dab
ij =

〈(
U b

i − Ua
i

)(
U b

j − Ua
j

)〉
. (73)

Developing (73) and under the assumption of homogeneous isotropic turbulence (which implies that
Bab

ij = Bba
ij , Baa

ij = Bbb
ij , see for example [41]) it is straightforward to see that

Bab
ij = Baa

ij −
1

2
Dab

ij =
1

3
|U |2 δij −

1

2
Dab

ij , (74)

with U representing the ensemble average of the velocity either atnodea or b, since both must be the
same.

Substituting (74) into (72) yields

Bab
ij,kj =

5

9
|U |4 δik −

5

6
|U |2Dab

ik −
1

6
|U |2 δikD

ab
jj +

1

4

(
Dab

jjD
ab
ik +Dab

ij D
ab
jk

)
. (75)

The first term in (75) can be neglected in what follows given that it will vanish when finally inserted
in (62). This is so because it can be factorized out of the summation on nodes in this expression. The
summation can be carried inside the integrals in (58)-(59),which will then contain terms of the type
∂i (
∑

aN
a). Given that the shape functions form a partition of unity,

∑
aN

a = 1 and the derivative of
this term is obviously zero (velocity boundary conditions need not to be considered at this point).

As previously mentioned, a computational mesh with its characteristic lengthh lying in the inertial
subrange[ lDI , lEI ] is considered in this paper. Combining the Kolmogorov first and second similarity
hypothesis, an expression for the second order structure functionDab

ij can be found solely in terms of
εmol and the distance between nodesxa andxb, rab =

∥∥xa − xb
∥∥, for rab ∈ [ lDI , lEI ]. The expression

is given by (see e.g., [41, 42])

Dab
ij = 2C

(
εmolr

ab
)2/3

Dab
ij , Dab

ij :=
1

6

(
4δij −

rab
i r

ab
j

(rab)2

)
, (76)

whereC represents a universal constant with approximate valueC ≈ 2. Substituting (76) in (75) gives

Bab
ij,kj = −

11

18
|U |2 C

(
εmolr

ab
)2/3

δik +

[
−

5

3
|U |2C

(
εmolr

ab
)2/3

+
11

6
C2
(
εmolr

ab
)4/3

]
Dab

ik + C2
(
εmolr

ab
)4/3

Dab
ij D

ab
jk. (77)

We can now make use again of Kolmogorov’s second similarity hypothesis, which as explained in
section 3.1.1 states that for an eddy of size` ∈ [lDI , lEI ] (i.e. lying in the inertial subrange) all velocity
scales are proportional to(εmol`)

1/3. Since|U | is a velocity, it follows that

|U | ∼ (εmol`)
1/3 (78)

and substituting in (77)

Bab
ij,kj = Cε

4/3
mol

{
−

11

18
`2/3

(
rab
)2/3

δik +

[
−

5

3
`2/3

(
rab
)2/3

+
11

6
C
(
rab
)4/3

]
Dab

ik + C
(
rab
)4/3

Dab
ij D

ab
jk

}
=: ε

4/3
molK

ab
ik , (79)
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whereKab
ik has been defined in the last line of (79).

In view of (79), equation (62) for
〈
Phτ1

r,e

〉
U

can be rewritten as

〈
Phτ1

r,e

〉
U

=
1

Ve
ε
4/3
mol

∑

a,b

Kab
ik

(
Iab
ik −Gab

ik

)
. (80)

4.2 Two point triple-order velocity-pressure correlations for
〈
Phτ1

r,e

〉
P

It is our aim now to find an expression analogous to (80) but relating the two point triple-order velocity-
pressure correlationBab

p,ij with the rate of physical dissipationεmol. To do so we will closely follow [41]
although with some particularities. We will abuse of notation and useBab

p,ij to denote the triple-order
velocity-pressure correlations of either the exact velocity field or the finite element approximated one.
Whether equations are valid for one or the other, or for both of them, can be easily determined by the
context. Likewise, we will identifyr ≡ rab, being clear that this is the distance between nodesxa

andxb.
The tensor of second rankBab

p,kl for the isotropic case can be written as

Bab
p,kl = P1 (r) rkrl + P2 (r) δkl, (81)

where

P1 (r) =
1

r2

[
Bab

p,LL −Bab
p,NN

]
, P2 (r) = Bab

p,NN , (82)

with the subscriptL standing forlongitudinal and designating the direction of the vectorrab andN
standing fornormaland designating any perpendicular direction to it.

Consider the Poisson equation for the pressure at nodea

∆p = −∂ri
∂rj

(
ua

i u
a
j

)
(83)

where∆ is the Laplacian operator that for functions only dependingon r becomes

∆ =
d2

dr2
+

2

r

d

dr
. (84)

Multiplying both sides of (83) byub
ku

b
l and performing an ensemble average of the results yields

∆Bab
p,kl = −∂ri

∂rj

(
Bab

ij,kl

)
. (85)

In the case of homogeneous isotropic turbulence, the tensorin the r.h.s of (85) is an isotropic symmetric
tensor of second rank that can be expressed as

∂ri
∂rj

(
Bab

ij,kl

)
= Q1 (r) rkrl +Q2 (r) δkl. (86)

Inserting (81) and (86) in (85) and equating the coefficientsof rkrl andδkl on both sides yields two
differential equations for the unknownsP1 andP2:

d2P1

dr2
+

6

r

dP1

dr
= −Q1. (87)

d2P2

dr2
+

2

r

dP2

dr
+ 2P1 = −Q2. (88)
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These equations can be uncoupled defining a new functionP3 such that

P3 (r) = r2P1 (r) + 3P2 (r) = Bab
p,LL + 2Bab

p,NN . (89)

Multiplying (87) by r2 and adding the result to (88) multiplied by 3 gives the following equation for
P3:

d2P3

dr2
+

2

r

dP3

dr
= −Q3, (90)

where

Q3 (r) = r2Q1 (r) + 3Q2 (r) . (91)

In order to find the two point triple-order velocity-pressure correlationBab
p,kl in (81) we need the

values ofP1 andP2, which can be obtained from the solutions of the equations (87) and (90) together
with (89). However, to solve these equations we first need a value for their inhomogeneous termsQ1 and
Q3. To do so, the use of the quasi-normal approximation and of Kolmogorov’s similarity hypotheses
will prove very useful again. We remind that our interest is in finding the results forr in the inertial
subrange[ lDI , lEI ].

Making use of the quasi-normal approximation (71) in (86) and taking into account that due to the
incompressibility constraint∂ri

Bab
ij = ∂rj

Bab
ij = 0 (see [41]), it follows that

Q1 (r) rkrl +Q1 (r) δkl = ∂ri
∂rj

(
Bab

ij,kl

)
= 2∂rj

Bab
ik ∂ri

Bab
jl (92)

and given that the second-order velocity correlation tensor Bab
ij for homogeneous isotropic turbulence

can be expressed as [41]

Bab
ij = −∂rB

ab
LL (r)

rirj
r

+
[
Bab

LL (r) +
r

2
∂rB

ab
LL

]
, (93)

we can obtain the following expressions forQ1,Q2 andQ3 solely in terms of the longitudinal second-
order velocity correlationBab

LL:

Q1 (r) =
6

r2

[
d

dr
Bab

LL (r)

]2

+
1

r

d

dr
Bab

LL (r)
d2

dr2
Bab

LL (r) , (94)

Q2 (r) = −3

[
d

dr
Bab

LL (r)

]2

− r
d

dr
Bab

LL (r)
d2

dr2
Bab

LL (r) , (95)

Q3 (r) = −
1

r2
d

dr

{
r3
[
d

dr
Bab

LL (r)

]2
}
. (96)

Use has been made of (91) to obtain the expression forQ3.
Up to know we have followed [41], which should be consulted for details. We can next use (74) to

relateBab
LL with the longitudinal velocity structure functionDab

LL and the rate of dissipationεmol:

Bab
LL = Baa

LL −
1

2
Dab

LL = Baa
LL −

C

2
(εmolr)

2/3 . (97)

Substituting (97) in (94) and (96) results in

Q1 (r) =
17

27
C2ε

4/3
molr

−8/3, (98)

Q3 (r) = −
7

27
C2ε

4/3
molr

−2/3. (99)
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The solutions to equations (87) and (90) with the inhomogeneous terms given by (98) and (99) and
appropriate boundary conditions can be found using the Green’s function approach. This yields (see
Appendix)

P1 (r) = −
17

27
C2ε

4/3
molF

ab
1 (r) , (100)

P3 (r) =
1

27
C2ε

4/3
molF

ab
3 (r) (101)

whereF ab
1 (r) anF ab

3 (r) are functions only depending on the distancer.
We can next obtainP2(r) = Bab

p,NN(r) substituting (100) and (101) into (89):

P2(r) :=
1

81
C2ε

4/3
mol

{
17F01r

−3 + 7F03r
−1 + 7F13

+
[
17F11 + 7F23r

4/3
]

+ 17F21r
2

}
=:

1

81
C2ε

4/3
molF

ab
NN (r) , (102)

where the values of the various termsFij in (102) are given in the Appendix (equations (A.10)-(A.12),
(A.22)-(A.24)) andF ab

NN has been defined in the last step.
Inserting (100) and (102) in (81) we find the expression for the two-point triple order velocity-

pressure correlationBab
p,ij we were looking for:

Bab
p,ij = P1 (r) rirj + P2 (r) δij

=
1

27
C2ε

4/3
mol

[
17F ab

1 (r) rirj +
1

3
F ab

NN (r) δij

]

=: ε
4/3
molF

ab
ij (r) , (103)

Fab
ij (r) being defined in the last line.

Finally, we can find an expression for the numerical kinetic energy transfer term
〈
Phτ1

r,e

〉
P

in equa-
tion (66). Substituting (103) in (66) yields

〈
Phτ1

r,e

〉
P

=
1

Ve
ε
4/3
mol

∑

a,b

Fab
ij

(
Iab
ij −Gab

ij

)
. (104)

4.3 Two point second-order velocity correlations for
〈
Phτ2

r,e

〉

The last term that has to be dealt with is
〈
Phτ2

r,e

〉
in (67) arising from the pressure subscales stabilization.

As seen, (67) only involves the second-order velocity correlation tensorBab
ij . From (74) and (76) it can

readily be checked that the expression analogous to (80) and(104) for the term
〈
Phτ2

r,e

〉
in (67) is given

by

〈
Phτ2

r,e

〉

P
=

2C

Ve
ε
2/3
mol

∑

a,b

r2/3Dab
ij

(
Iab
ij −Gab

ij
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=:
1

Ve
ε
2/3
mol

∑
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D̃ab
ij

(
Iab
ij −Gab

ij

)
, (105)

with D̃ab
ij := 2Cr2/3Dab

ij .
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4.4 Relation between
〈
Phτ

r,e

〉
and the physical rate of dissipationεmol

From equations (80), (104) and (105) substituted in (68) we get

〈
Phτ

r,e

〉
=

1

Ve

∑

a,b

[
τ1,aeε

4/3
mol

(
Kab

ik + Fab
ik

)
+ τ2,aeε

2/3
molD̃

ab
ik

] (
Iab
ik −Gab

ik

)
(106)

and finally inserting expressions (37)-(38) for the stabilization parameters in (106) we obtain the final
expression we were looking for

〈
Phτ

r,e

〉
= εmol




h

Ve

∑

a,b

[
`−1/3

(
Kab

ik + Fab
ik

)
+ `1/3D̃ab

ik

] (
Iab
ik −Gab

ik

)


 , (107)

which states that the average value ofPhτ
r on a mesh element is directly related to the molecular

physical dissipation by means of a factor that only depends on the mesh geometry and the interpolation
spaces used to approximate the continuous ones. Note that, for ` ≥ Ch, withC > 1 dimensionless, the
factor that multipliesεmol is purely geometrical (and of course dimensionless).

5 Discussion and remarks

5.1 General comments

In section 2.3.3 we wondered about the possibility that someterms inPhτ
r integrated over the whole

computational domain equated the overall physical dissipation in the energy balance equation. It was
argued that this should not necessarily be the case for all the stabilization terms inPhτ

r , given that they
arise from purely numerical considerations rather than physical ones. However, we have found in (107)
that when using the OSS stabilized finite element method all terms in the ensemble average ofPhτ

r are
proportional to the dissipationεmol. This can be viewed as a confirmation of the right choice for the
stabilization parametersτ1 andτ2 in the OSS formulation.

As observed from (107) the proportionality factor between
〈
Phτ

r,e

〉
andεmol is a rather complicated

function depending on the element and mesh geometry, as wellon the chosen finite element interpola-
tion spaces. Although one could be tempted to think that its optimum value should equal unity in order
to have the desired physical behavior, we have no basis to assess this point given that, as stated, the
terms in (107) have to account not only for appropriate physical behavior, but also for circumventing
purely numerical difficulties (e.g., to allow the use of equal interpolation spaces for the velocity and the
pressure).

In any case, what seems to follow from the above analysis is that it makes somehow redundant
and unnecessary the use of LES models. Effectively, should we have done the above analysis for the

energy balance equation (34), a result of the typeP
hτ
r = αεmol (with α being a proportionality function

analogous to the one in (107)) would have been obtained. On the other hand, the term arising from the

LES model would also behave asP
h
r = βεmol so that its effects, if any, could be included in theP

hτ
r

term with appropriate redefinition of the proportionality factor. Hence, if a good enough discretization
of the Navier-Stokes equations is performed, the somehow artificial fact of filtering and modeling at
the continuous level should be unnecessary. In other words,the problem of simulating turbulence is
probably a purely numerical problem of correctly discretizing the Navier-Stokes equations rather than
a problem of LES physical modeling.
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5.2 Other numerical approaches

As it has been mentioned, the purely numerical strategy to simulate turbulent flows is not new, and
can be traced back (at least) to the MILES approach. Sometimes, these type of models are referred to
as implicit LESmodels. Some examples of them can be found in [43]. In these type of methods, the
subgrid-scale stress tensor is modeled depending on the numerical procedure. For example, in [14] the
model proposed is based on the parallel solution of the truncated Navier-Stokes equations on a mesh
twice smaller in each Cartesian direction than the one used to compute the resolved quantities. In this
method, the subgrid velocity is computed at each time step, without accounting for its time evolution,
and its expression is used to evaluate the subgrid-scale stress tensor. One of the conclusions that can
be drawn from the numerical results presented is that the method does not have enough dissipation. In
an attempt to overcome this misbehavior, the parameters on which the formulation depends could be
adjusted so as to follow the correct dissipation structure,as proposed in [25], where the spectra of the
numerical solution and the physical one are forced to match for isotropic turbulence.

A fundamental difference between the approaches describedand the one we have analyzed here is
thatwe do not model neither the subgrid scale stress tensor nor its effect. Rather, we simply add terms
based on the effect of the subscales onto the finite element component of the solution. As we have
shown, the overall effect is a dissipation that mimics the physical one. In this sense, our approach has
to be consideredresidual based, as the one proposed in [1] and also in [26, 44]. In this case, the terms
added to the Galerkin formulation of the problem depend on the residual of the finite element solution,
which is thus considered the resolved scale. In contrast to our approach withorthogonalsubscales, in the
references mentioned the subscales are considered directly proportional to the finite element residual.
This implies that the orthogonal projection is dropped in (23) and (24). This fact has an important
consequence in the energy balance equation (28), since boththe coefficients of the time variation of
kinetic energy and the power of the external forces will change. The OSS method simplifies the analysis,
but nevertheless the dissipative terms which we have shown are proportional to the molecular dissipation
are also present in the method of [1].

5.3 Numerical evidence

The starting assumption of our analysis is that the finite element mesh is able to capture velocity fields
that lay in the inertial range and for which the results of statistical fluid mechanics can be applied. This
condition should not be considered particularly stringent, as it is in fact analogous to what is assumed
for the filtered velocity in classical LES models for which the filter width is proportional to (if not
directly equal) the mesh size. Moreover, there is already some sound numerical evidence that this is in
fact possible and that residual based numerical formulations can model turbulence flows.

A relevant numerical study of a residual based formulation modeling turbulent flows is [1]. The
formulation is tested for isotropic forced turbulence and turbulent channel flows and the results are ex-
tremely good, in the sense that they clearly display the numerical convergence towards results from di-
rect numerical simulation (DNS). Both mesh refinement and polynomial order increase (using NURBS)
are tested. In the case of isotropic turbulence, for coarse discretizations the numerical spectra match the
DNS results only for small wave numbers, whereas the matching improves as the discretization is also
improved. The important point, however, is that even for coarse discretizationsthere is part of the iner-
tial range which is capturedand, of course, with the correct slope, a characteristic feature of turbulent
flows. For channel flows it is also shown that the boundary layers that are created have the regions
corresponding to turbulence.

It is not the purpose of this paper to present a detailed numerical study of the behavior of the OSS
formulation to model turbulent flows. However, we shall present here a simple example to compare the
numerical response of this formulation alone and in conjunction with the classical Smagorinsky model.

22



Figure 1: Flow over a circular plate. Streamlines and contours of the velocity norm. Inlet velocity = 10
m/s.

Figure 2: Experimental pressure spectrum (theoretical slope =−7/3). Courtesy of GBF Aachen, Dipl.
Ing. Ralf Haase.

For that purpose, we consider the example of the flow over a circular plate. The general view of the
computational domain, together with some streamlines and the contours of the Euclidean norm of the
velocity field, are shown in Fig. 1. The flow comes from the leftside of the computational domain, a
box of9×2.5×1.8 m3 in which the inclined circular plate with its support is placed, with a velocity of
10 m/s. The diameter of the plate is 0.5 m. The domain has been discretized with a rather coarse mesh
of 1.34 million linear elements (more details about this numerical example can be found in [21]).

Our interest here is to reproduce thepressure spectrumat the center of the plate, for which experi-
mental results are available [21]. The inertial range of thepressure spectrum should be proportional to
the power−7/3 of the wave number and, assuming Taylor’s hypothesis, the time spectrum should also
be proportional to the power−7/3 of the frequency. This is the predicted power law behavior for the
pressure spectrum of isotropic turbulence (see e.g. [39]).Experimental results, which confirm this fact,
are shown in Fig. 2.

The important point is how is the pressure spectrum reproduced by the OSS formulation alone and
with the Smagorinsky model. From Fig. 3 (top) it is seen that in both cases the−7/3 slope is reproduced,
confirming that the approximated fields belong to the inertial range. The qualitative difference between
turning off or on the Smagorinsky model can also be observed from Fig. 3 (bottom). It is seen that,
in spite of the fact that both possibilities yield the correct slope of the pressure spectrum, the OSS
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formulation alone has a richer dynamic response of the pressure, thus confirming that turning on the
Smagorinsky model introduces a dissipation that adds up to one that is already physically correct.

6 Conclusions

For a fine enough computational mesh, it has been proved that the contribution to the energy balance
equation of the stabilization terms of the Orthogonal Subgrid Scale stabilized finite element method
is already proportional to the physical dissipation rate for an appropriate choice of the stabilization
parameters. This has been done with the sole use of the quasi-normal approximation for two point
fourth-order velocity correlations and using Kolmogorov’s first and second similarity hypotheses. It has
been also assumed that several statistical fluid mechanics results, which are valid for the exact velocity
field, hold true for the approximated finite element velocityfield.

Taking into account that the stabilization terms in the OSS method arise from pure numerical ne-
cessities it is a noteworthy fact that they have the correct physical behavior in the inertial subrange of a
turbulent flow. This somehow supports the idea that no extra physical LES modeling should be added to
the equations if an appropriate stabilization method is used. That is to say, the simulation of turbulence
should probably rely on optimum numerical modeling rather than in physical one.

Appendix. Green’s function approach to obtainP1 (r) and P3 (r)

We will first address the problem of finding the solutionP1 (r) of the inhomogeneous equation (87) in
text using the Green’s function approach. The solutions to the homogeneous counterpart of (87) are1
andr−5 so that the problem Green’s function will be of the type

G1 (r, r0) =





A+Br−5 ≡ G<
1 (r, r0) lDI < r < r0

C +Dr−5 ≡ G>
1 (r, r0) r0 < r < lEI .

(A.1)

To determine the values ofA,B,C andD we impose the boundary conditions at the inertial range
threshold values[ lDI , lEI ]

G1 (lDI , r0) = KD1, (A.2)

G1 (lEI , r0) = KE1, (A.3)

with KD1,KE1 constants. We also impose the continuity conditions

G>
1

(
r+0 , r0

)
−G<

1

(
r−0 , r0

)
= 0 (A.4)

∂rG
>
1

(
r+0 , r0

)
− ∂rG

<
1

(
r−0 , r0

)
= −1 (A.5)

with G≷
1

(
r±0 , r0

)
≡ limr→r0

r≷r0

G
≷
1 (r, r0). Defining the constants

L∆E :=
l5EI

l5EI − l5DI

, L∆D :=
l5DI

l5EI − l5DI

, LED :=
l5EI l

5
DI

l5EI − l5DI

, (A.6)

as well as

A01 := L∆EKE1 − L∆DKD1, A11 := −LED (KE1 −KD1) , A21 := −
LED

l5EI l
5
DI

, (A.7)
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Figure 3: Comparison of the OSS formulation without (green)and with the Smagorinsky model (red).
Top: numerical pressure spectrum (theoretical slope =−7/3), Bottom: detail of the pressure evolution
(at the center of the plate).
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it can readily be checked that the following expression is obtained for the Green function in (A.1)

G1 (r, r0) =





(
A01 +A11r

−5
)

+ 1
5

(
L∆E − LEDr

−5
)
r0

+1
5

(
A21 + L∆Dr

−5
)
r60 lDI < r < r0

(
A01 +A11r

−5
)

+ 1
5

(
L∆D − LEDr

−5
)
r0

+1
5

(
A21 + L∆Er

−5
)
r60 r0 < r < lEI .

(A.8)

Using (A.8) and the inhomogeneous termQ1 (r) from equation (98) in text,P1(r) can be found as

P1(r) = −

∫ r

lDI

G>
1 (r, r0)Q1 (r0) dr0 −

∫ lEI

r
G<

1 (r, r0)Q1 (r0) dr0

= −
17

27
C2ε

4/3
mol

[
F01

1

r5
+ F11

1

r2/3
+ F21

]
=: −

17

27
C2ε

4/3
molF

ab
1 (r) , (A.9)

where

F01 := −
3

5

(
l
−5/3
EI − l

−5/3
DI

)
A11 +

3

10

(
l
−2/3
EI − l

−2/3
DI

)
LED

+
3

65

(
L∆Dl

13/3
EI − L∆E l

13/3
DI

)
, (A.10)

F11 :=
33

130
(L∆E − L∆D) , (A.11)

F21 := −
3

5

(
l
−5/3
EI − l

−5/3
DI

)
A01 +

3

65

(
l
13/3
EI − l

13/3
DI

)
A21

+
3

10

(
L∆Dl

−2/3
DI − L∆El

−2/3
EI

)
, (A.12)

and we have definedF ab
1 (r) in the last line of (A.9).

We can now proceed analogously to find the solutionP3 (r) to equation (90) in the text. The solu-
tions for the homogeneous counterpart of this equation are1 andr−1 so that the Green function will
behave as

G3 (r, r0) =





A+Br−1 ≡ G<
3 (r, r0) lDI < r < r0

C +Dr−1 ≡ G>
3 (r, r0) r0 < r < lEI .

(A.13)

To findA,B,C andD in (A.13) we impose the boundary conditions

G3 (lDI , r0) = KD3, (A.14)

G3 (lEI , r0) = KE3, (A.15)

as well as the continuity conditions

G>
3

(
r+0 , r0

)
−G<

3

(
r−0 , r0

)
= 0 (A.16)

∂rG
>
3

(
r+0 , r0

)
− ∂rG

<
3

(
r−0 , r0

)
= −1. (A.17)

Defining the new constants

`∆E :=
lEI

lEI − lDI
, `∆D :=

lDI

lEI − lDI
, `ED :=

lEI lDI

lEI − lDI
, (A.18)
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and

A03 := `∆EKE3 − `∆DKD3, A13 := −`ED (KE3 −KD3) , A23 := −
`ED

lEI lDI
, (A.19)

the Green function (A.13) can be written as

G3 (r, r0) =





(
A03 +A13r

−1
)

+
(
`∆E − `EDr

−1
)
r0

+
(
A23 + `∆Dr

−1
)
r20 lDI < r < r0

(
A03 +A13r

−1
)

+
(
`∆D − `EDr

−1
)
r0

+
(
A23 + `∆Er

−1
)
r20 r0 < r < lEI .

(A.20)

We can now findP3 (r) using (A.20) and the inhomogeneous termQ3 (r) from equation (99) in
text

P3(r) =

∫ r

lDI

G>
3 (r, r0)Q3 (r0) dr0 +

∫ lEI

r
G<

3 (r, r0)Q3 (r0) dr0

=
7

27
C2ε

4/3
mol

[
F03

1

r
+ F13 + F23r

4/3

]
=:

1

27
C2ε

4/3
molF

ab
3 (r) , (A.21)

where

F03 := 3
(
l
1/3
EI − l

1/3
DI

)
A13 −

3

4

(
l
4/3
EI − l

4/3
DI

)
`ED

+
3

7

(
`∆Dl

7/3
EI − `∆E l

7/3
DI

)
, (A.22)

F13 := 3
(
l
1/3
EI − l

1/3
DI

)
A03 +

3

7

(
l
7/3
EI − l

7/3
DI

)
A23

−
3

4

(
`∆Dl

4/3
DI − `∆E l

4/3
EI

)
, (A.23)

F21 := −
9

28
(`∆E − `∆D) , (A.24)

andF ab
3 (r) has been defined in the last line of (A.21).
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