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Abstract

We aim at giving support to the idea that no physical LargeyE8unulation (LES) model
should be used in the simulation of turbulent flows. It is sigally shown that the rate of transfer
of subgrid kinetic energy provided by the stabilizatiomterof the Orthogonal Subgrid Scale (OSS)
finite element method is already proportional to the molecphysical dissipation rate (for an
appropriate choice of the stabilization parameter). Thesludes the necessity of including an extra
LES physical model to achieve this behavior and somehovwigssthe purely numerical approach
to solve turbulent flows. The argumentation is valid for a fem®@ugh mesh with characteristic
element sizeh, so thath lies in the inertial subrange of a turbulent flow.

Key Words: Stabilized finite elements, Large Eddy Simulation, Vasisl Multiscale, Subgrid
Scale modeling, Orthogonal Subgrid Scales, Turbulent flows

1 Introduction

Two parallel lines have been followed in the past years taukite incompressible turbulent flows
that can be of engineering interest. On one side, the drdsliERANS (Reynolds Averaged Navier-
Stokes) models combined with the impossibility to perfortd®(Direct Numerical Simulation) com-
putations for large Reynolds number problems led to theldpugent of LES (Large Eddy Simulation)
strategies (see e.g., [43]). On the other side, the nuntigrioalems that arise when trying to solve
the discrete differential or weak versions of CDR (Conweeiiffusion-Reaction) equations have mo-
tivated the development of several stabilization stra®gd mitigate them. A landmark in the devel-
opment of these stabilization methods was the appeararnite sfibgrid scalestabilization approach
or, as originally termed, theariational multiscalemethod (VMM), in the framework of finite element
methods [27, 29]. Both approaches, LES and VMM applied ta filynamics, share some features
like being based on a scale decomposition of the continuelaeity and pressure fields of the Navier-
Stokes equations. However, in the former case this scadeatégmn is performed at the continuous level
while in the latter it is inherently carried out in the distization process. The relation between both
methods is not fully understood at present and it is not coldaether they should be used together
or independently in the simulation of turbulent flows. Instipaper we aim at giving some support to
the idea that no LES physical model should be used if an apptepdiscrete stabilization scheme is
implemented.

In LES the scale decomposition between large and small flalescas been traditionally per-
formed by means of a filtering process (see e.g., [38, 17,d&jhed through a convolution operation.
The filter is applied to the Navier-Stokes equations ususlsuming that it commutes with the differ-
ential operators and a new equation for the filtered velauity pressure fields is derived. However, this
equation contains the divergence of the so-calksidual stressensor that depends on the exact veloc-
ity field. This term has to be modeled somehow to obtain a diggstem of equations only depending
on filtered quantities. Once a physical LES model is chodesn résulting filtered equation is finally
discretized and solved.

This approach presents several mathematical difficultiel as knowing the error introduced when
the commutation between the filtering and differentiatiperators is assumed, knowing which should
be the appropriate choice for the LES boundary conditiords arnat is probably more important,
knowing which is the relation between the errors introdubgdhe physical LES model and by the
discretization procedure. Some of these subjects havéveelceecent attention both from analytical
(see e.qg., [2, 34]) and numerical points of view (see €e.§.,%137, 35, 46]). In [23] a review of several
LES models was performed and some interesting conclusi@me drawn out, such as the fact that
filtering is not indispensable to achieve LES models, thatireg at an exact closure for the residual
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stress tensor is a paradoxic program and that some LES mualedghe remarkable propriety of being
more regular than the original Navier-Stokes equatioragitey to problems for which uniqueness of
solutions can be proved. In this sense, it was concludedath&S model should fulfill with two main
requisites, namely, it should regularize the Navier-S$okgquations yielding to well-posed problems
and it should lead tguitable weak solutions (i.e., physically acceptable solutions)ah attempt to
provide a first step towards a mathematical definition of L& notion ofsuitable approximationso

the Navier-Stokes equations was then introduced in [24hifncontext, it is worthwhile to mention that

a DNS using the Galerkin method with low order finite elemerusstitutes a suitable approximation
to the Navier-Stokes equations, which may justify the faet sometimes better results are achieved
for low-order methods when no LES model is employed [22].

In the VMM or subgrid scale approach to solve turbulent flo83]]the scale separation is carried
out by means of a projection onto the finite element space.€fuations are then obtained respectively
governing the dynamics of the large and small scales. Lagesare those that can be captured by the
computational mesh, while small or subgrid scales are thoseaptured by the mesh. Modeling takes
place when giving an approximated solution for the subgeaes equation, which is to be inserted in
the large scale equation to account for their effects.

The initial motivation of the VMM method was to solve somelod numerical problems associated
with the simulation of the discrete Navier-Stokes equamuch as the necessity to satisfy thie
sup condition (which implies the use of different interpolatispaces for the velocity and pressure
fields) or the numerical instabilities appearing for corivecdominated flows. Consequently, when the
VMM was first applied to the simulation of turbulent flows a pioal LES model (Smagorinsky model)
was still included, although solely acting on the subgridle@quation [30, 31, 32]. The idea that the
stabilization terms in the VMM approach could be sufficiemsimulate turbulent flows was already
pointed out in the framework of orthogonal subgrid scale $pStabilization methods [10] (see also
[12]) as a natural extension to that work. Later it was reeititiced in [4, 33] and further elaborated
in [28]. Recently, very good results have been obtained énsimulation of isotropic turbulence and
turbulent channel flows with the sole use of numerical steddibn [1, 26, 44]. Actually, and as far as we
know, this “numerical” line of thinking initiated with the MES (Monotone Integrated LES) approach
[3] c.f. [46] (see also [43] and references therein). Welglahe back to this point in Section 5

In this paper a further argument supporting the non physicadeling approach will be given. An
important point a closure LES model should satisfy is thatréite of kinetic energy transferred from
the filtered large scales to the small ones should equal thsiqath dissipation rate at the Kolmogorov
length scale (see e.g., [40, 42]). This is so for the filtertviying in the inertial subrange of the
flow under study. Considering the OSS stabilized finite elgnmeethod [8, 9, 10], it will be herein
shown that the contribution to the energy balance equat@an the stabilization terms that arise in the
discrete weak Navier-Stokes from purely numerical conatitens are in fact already proportional to
the physical dissipation rate (for a fine enough computatiomesh so that its characteristic element
size lies in the inertial subrange of the considered turtiulew). Consequently, the inclusion of an
extra physical LES model seems somewhat redundant andesszay.

The paper is organized as follows. In section 2 the energgnisal equations for the continuous
Navier-Stokes and LES problems are presented togetherthéih discrete counterparts using the
Galerkin and OSS stabilized finite element methods. Thelpmolwe would like to address is es-
tablished and the OSS stabilization terms accounting ftrémsfer of kinetic energy to subscales that
should be proportional to the physical dissipation rateideatified. In section 3 we proceed to the
explicit discretization of these terms, showing that tlegisemble average can be written as products
of geometrical factors multiplying two point second andrfbeorder nodal velocity correlations, as
well as triple-order velocity-pressure correlations. éation 4, results from fluid statistical mechanics
are used to relate these correlations to the physical digsiprate, which is the main goal of the pa-



per. Some general comments and remarks, together wittenefes to recent numerical experiments
supporting the pure numerical approach to solve turbulemtsflare given in section 5. A numerical
experiment of a turbulent flow impinging on a plate is alsduded. Conclusions are finally drawn in
section 6.

2 Energy balance equations

2.1 Energy balance equation for the Navier-Stokes problem

The strong formulation of the Navier-Stokes equations lgrobconsists in solving their differential
version in a given domaif ¢ R¢ (whered = 2,3 is the number of space dimensions) with bound-
ary 0€) and prescribed initial and boundary conditions. We willyoobnsider homogeneous Dirichlet
conditions on the boundary2 = T'p) for simplicity and use the conservative form of the equation
Throughout the work we will concentrate on the three dimameli cased = 3). The problem to be
solved then reads

Ou —2V - S (u)| + V- (u®@u)+Vp=f inQ x (0,7), 1)
V-u=0 inQx (0,7), (2)

u (x,0) = ug (x) inQ, t =0, (3)

u(x,t) =0 onl'p x (0,7), 4)

whereu stands for the flow velocity) for the pressure; represents the kinematic fluid viscosity (taken
constant hereafter}§ (u) := 3 (Vu + VuT) the rate of strain tenso; the external force an(, 7')
is the time interval of analysis.

Use is made of the following notation to introduce the weaknf@ssociated to problem (1)-(4).
L? (Q) denotes the spaces of functions wheggower (1 < p < oo) is integrable in2, with p = oo
corresponding to the space of bounded functionQ.ifrorp = 2 we have a Hilbert space with scalar
product

(u,v) ::/Qu(a:)v(a:)dQ (5)

and induced normul| 2 = [lul| = (u,w)'/2. From a physical point of view,2 (€2) can be iden-
tified with the space of velocity fields with bounded kinetiteggy, given that|u||* = 2E (u), with
E (u) standing for the kinetic energy per unit mass.

H™ (Q) denotes the space of functions whose distributional diéragup to ordern lay in L? ().
The casen = 1 is of special interest as it is also a Hilbert space and carhisigally identified with
the space of velocity and vorticity fields having boundedrgynend enstrophy [16]. On the other
hand, H} (Q2) stands for the functions /! (2) vanishing onl'p. H~! () denotes the topological
dual of H} () and the brackets;, -), will be used for the duality pairing between these spadis;
designates the norm in a Banach spa€eand LP(0,T'; X) is the space of time dependent functions
such that theirX-norm is LP(0,T'). A bold character is used for the vector counterpart of akéh
spaces.

The weak form of problem (1)-(4) can be formulated as:
find [u,p] € L*(0,T; H}(Q)) x D'(0,T; L?(Q) /R) (D’ being the space of distributions) such that

(Oru,v) +20(8 (u) , 8 (v)) +(V - (u @ u),v) — (p,V-v) = (f,v), (6)
(Q> V- U) =0, (7)

for all [v,q] € H}(Q) x L?*(Q)/R, and satisfying the initial condition in a weak sense.
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For eacht € (0,7), settingv = u, ¢ = ct (constant) in (6)-(7) (assuming this is allowed) and
taking into account that we have limited the analysis to hgemeous Dirichlet boundary conditions,
we obtain the energy balance equation

% (31u) = 2018 @I + (7,0, @
Equation (8) states that the time variation of the flow kinetiergy depends on two factors, namely, the
molecular dissipation due to viscosity (which is clearlgative) and the power exerted by the external
force that can be either positive or negative. Identifyimg pointwise kinetic energy &s:= u-u/2, the
pointwise molecular dissipation ag,, := 2v [S (u) : S (u)] and the pointwise power of the external
force asP; := f - u we can rewrite (8) as

dk
/—dQ:—/smoldQ+/PfdQ. )
o dt Q Q

According to the Kolmaogorov description of the energy cdscin turbulent flows [36] cf. [42],
the flow can be viewed as driven by the external forces actirnigealarge scales (low wave numbers)
and generating kinetic energy, which is transferred todledcales (high wave numbers) by non-linear
processes. When the Kolmogorov length is reached, the ugsdssipationg,,1, in the r.h.s of (9)
takes part transforming the flow kinetic energy into intéergergy (heat is released).

2.2 Energy balance equation for a Large Eddy Simulation modie

In the standard Large Eddy Simulation (LES) of turbulent 8pw scale separation between large and
small scales for the velocity and pressure fields in the Nie&iekes equations is carried out. As com-
mented in the introduction, this has been done traditigrialimeans of a convolution of the latter fields
with a low pass filter operatof;) : v — 7, so that the decompositidm,p] = [w,p] + [v/,p] is
obtained (see e.g., [38] cf. [42], [43]u, p] stands for the large, filtered, scales while, p’] represent
the small, residual, scales.

Without getting into details on the type of filter used for #male separation and assuming that
the filtering operator commutes with differentiation (altigh this will be certainly a source of errors
[47, 20, 15]), the following differential problem is obt&id for the filtered velocity and pressure fields

[@,pl:

ou—2V-vS(w)]+V-@ou)+Vp=Ff-V-R in €2 x (0,7), (10)
V-a=0 inQ x (0,7), (11)

u(x,0) =g (x) inQ, t=0, (12)

u(x,t) =0 onI'p x (0,7), (13)

which is analogous to (1)-(4) except for the divergence eftdnsorR appearing in the r.h.s of (10).
The tensofR := u ® u — uw®w is usually named theesidual stress tensar thesubgrid scale tensor
and an expression for it in termsafis needed to close the system of equations (10)-(13). TFereliit
models forR give place to different LES models.

The weak formulation of problem (10)-(13) can be stated ast [fie,p] € L*(0,7; H(Q)) x
D'(0,T; L*(9)/R) such that

(O, v) +2v(S(m),S (v)) + (V- (w@m),v) — (p,V-v)
= <?7 v> + <R7 V’U> ) (14)
(Q7 V- ﬁ) =0, (15)



for all [v,q] € H}(Q) x L?(Q)/R, and satisfying the initial condition in a weak sense. Tgkinto ac-
count thatR is symmetric, we can rewrite the second term in the r.h.s&)fg&(R, Vv) = (R, S (v)).
In addition, and without loss of generality, we will consid@ deviatoric, its volumetric part being ab-
sorbed in the pressure term.

Assuming again continuity in time, if we next set= w, ¢ = ct, for eacht € (0,7 in (14)-(15)
we can obtain an energy balance for the filtered Navier-Stekgiations:

d (1 _ _ _ -
G (311) =21 @I + (RS @) + (F.w. (16)
We can now define the filtered pointwise kinetic enefgy= @ - /2, the pointwise filtered
molecular dissipatiort,,, = 2v[S (u) : S (u)], the rate of production of residual kinetic energy
P, = —R : S (w) and the pointwise power of the external filtered fofee:= f - @, so that we can

rewrite (16) as
d

— [ kdQ = —/EmoldQ—/frdQ—i—/?fdQ. (17)
dt Jq Q Q Q

For a fully developed turbulent flow with the filter width inghinertial subrange, the filtered field
accounts for almost all the kinetic energy of the flow. ThfiskdQ ~ [, kdQ and the first terms in
(9) and (17) become nearly equal. If the external force mpaacts on the large scales of the flow, it
will also happen thatf, P;dQ ~ [, PydS2. On the other hand, the energy dissipated by the filtered
field, £, is relatively small and can be neglected [42]. Consequeotisnparing equation (17) with
equation (9), we observe that in order for the LES model tcabelcorrectly it should happen that
JoPrdQ = [ emadQ2. That is, the rate of production of residual kinetic energgisd equal, in the
mean, the energy dissipated by viscous processes at themeatlyscales (Kolmogorov length), which
is the point of view expressed by Lilly [40].

In the case of some celebrated LES models, such as the Smsigornodel [45],P, is always
positive and there is no backscatter, i.e., the energy isyawransferred from the filtered scales to
the residual ones, but not vice versa. It is quite customiaen to termP,. assubgrid or residual
dissipationand to denote it bygaqs, see e.g., [46]. However, this may lead to confusion, esfigci
when introducing the discrete stabilized numerical versbthe original and filtered Navier-Stokes
equations, so we will keep the notati@h in this work.

2.3 Energy balance equations in discrete problems: stabded numerical approach of
the original and filtered Navier-Stokes equations

2.3.1 Galerkin finite element approach

The Galerkin finite element approximation to problem (6)-€@n be stated as: given the finite di-
mensional space¥;, C H{() and Qo C L*(Q)/R find [up(t),pr(t)] € L*(0,T; Vi) x
D'(0,T; Qo 1) such that

(Opun, vp) +2v(S (up) , S (vi)) +(V - (up @ up) , vp)
_(phu V- vh) = <f7 vh>7 (18)
(Qha V- Uh) = Ov (19)

for all (v, g] € V3, x Qo .

Note that equétions (18)-(19) are still continuous in tilewever, for the developments to be
presented hereafter time discretization will be not rezpljiso no explicit expression for it will be given.
Anyway, and whatever time discrete scheme is used, it is kmelvn that the Galerkin finite element



approach (18)-(19) presents several difficulties. On oma&l haumerical instabilities are encountered
when the non-linear convective term in the equation dorestte viscous one at high Reynolds number
problems. On the other hand, a compatibility conditimfi-éupor LBB condition) is required to control
the pressure term. This condition does not allow to use egya@r interpolations to approximate the
velocity and pressure fields. Further numerical instaédiare also found when small time steps are
used, specially at the early stages of evolutionary presess

Several stabilization strategies have been developeddansient the above numerical instabilities
of the Galerkin finite element solution to the Navier-Stokegiations. We will concentrate here on
the subgrid scaleapproach (also termedariational multiscale methodr residual-based stabilizatign
originally developed by Hughes [27, 29] for the scalar catiea-diffusion-reaction equation, and latter
extended to other equations by many authors. In particueamill focus on the orthogonal subgrid
scale (OSS) approach developed in [8, 9, 10, 12]. This willpdify some of the forthcoming analysis
although the developments could be possibly extended & atlethods.

2.3.2 Orthogonal subgrid scale stabilization

The subgrid scale finite element stabilization method appio the present problem consists in first
splitting the continuous spatial spaces where the soluofound asH}(Q2) = V{ih @ fzg and
L2(Q)/R = Q0 @ Qp, with V¢ and Q, being any infinite dimensional spaces that respectively-com
plete the finite element spacg$, andQy, o in Hj(£2) andL?(£2)/R. The velocity and pressure fields
can then be decomposed as—= up +w andp = p, + p (the same holds for the test functions
v=v,+0,q¢=qn+q).

The weak form of the Navier-Stokes equations can now beigpitwo systems of equations. This
is done by first substituting = u;, + @ andp = p;, + p in (6)-(7) and takindv, g | = [vp, g5, |, which
corresponds to projecting (6)-(7) onto the finite elemeatsg. Then, a second equation is obtained by
projecting (6)-(7) onto the finite element complementargcgs by settingu, ¢ | = [0, q].

After integrating some terms by parts and neglecting temaslving integrals over interelement
boundaries, the equation corresponding to the large s€adefection onto the finite element spaces)
becomes [10, 12],

(E)tuh, ’Uh) + QV(S (uh) , S ('vh)) + (V . (uh &® uh) ,’Uh>
—(pn, V- vp) + (qn, V - up)
— > (@,2vV - S (vh) + V - (wp, @ v) + Van)a,

+ (O¢tr, vp) + (V- (B @ up) , vp)
+ <’l~L . V’fl,, ’Uh>
- (ﬁv V. 'Uh) = <f7 'Uh> . (20)

The first two lines of (20) contain the Galerkin terms pregigufound in (18)-(19). The third line
includes terms that are already obtained in the stabitinadif the linearized and stationary version of
the Navier-Stokes equations [8, 9] (Oseen problem). Thesestavoid the convection instabilities of
the Galerkin formulation and also allow to use equal intkons for the velocity and the pressure.
The first term in the fourth line accounts for the time demxebf the subscales, while the second term
provides global momentum conservation [12]. The term irfiftfeline has a second order dependence
on the velocity subscales and it is argued in [4] that has Méleyinfluence on the results. Consequently
it will be neglected in what follows, which will simplify thanalysis. Finally, the term in the sixth line
accounts for the effects of the pressure subscales.



To solve (20) we need some expressions for the velocity agsspre subscalés, p|. These ex-
pressions can be found from the solution of the small sulsgrédes equation (projection onto the finite
element complementary spaces). Given that the latter iegue&nnot be solved exactly, an approxi-
mation for its solution is required. The different ways inahthis approximated solution is obtained
give place to different subgrid scale stabilization modéls will use here the orthogonal subgrid scale
(OSS) approach, which is based on choosing the spaces orntlofp the finite element ones as the
complimentary spaces in the above formulation. Moreapesi-staticsubscales will be considered,
leading to the approximation [8, 9]:

U~ T1Twu.hy (21)

D~ ToTp s (22)

wherer,, ;, andr, ; represent the orthogonal projection of the residuals diitiite element components
up andph

Pun = 1 [Opuy, — 20V - 8 (up) + V - (w, @ up) + Vpp, — f]
= —Hﬁ[—?vv -8 (uh) + V- (uh X uh) + Vph], (23)
Tp,h = —Hﬁ [V . uh]. (24)

Hﬁ in the above equations stands for the orthogonal projedt[;‘;n:: 1 —1I;,, with I being the identity
andII; the L? projection onto the appropriate finite element space. Ity fae numerical analysis of the
stationary and linearized problem is greatly simplifiedhistprojection is weighted elementwise by the
stabilization parameters, as shown in [11]. However, it essential for the following developments.

In the second line of (23) we have used precisely the fact timate discretized);w;, C vg,h. We
have also considered that the external force belongétoi.e., it only acts at the large scales of the
flow in accordance with the simplified vision of the enérgyoawha presented at the end of section 2.1.
We have also introduced another simplification in the exgoes for the velocity residual as only the
finite element component has been considered in the adeaatlacity term. Note, in addition, that no
implicit time dependence of the subscales has been coedidgunasi-staticapproach). On the other
hand, the viscous term in the above equations has to be &s@lekmentwise.

The stabilization parameters appearing in (21)-(22) caoliained from arguments based on a
Fourier analysis for the subscales [10] that yield,

9 | | 2 -1/2
14 up
T = [(Clﬁ> + <CQT> ] 5 (25)
2
= (26)
C1T1

c1 ande,y in (25)-(26) are algorithmic parameters with recommendades ofc; = 4 andc, = 2 for
linear elements [7], whilé stands for a characteristic mesh element size. Again, we heglected
the subscale contribution in the advective velocityrof The choice (25)-(26) for the stabilization
parameters guarantees that the kinetic energy of the nbdelscales approximates the kinetic energy
of the exact subscales [10]. In the forthcoming analysis Weeansider; andr, constant within each
element and typified by a characteristic element velocityetalefined later on.

Equation (20) together with the approximation (21)-(22)tfee subscales constitute the proposed
numerical approach to solve the incompressible Naviekest@quations. It will be argued that this
scheme should also be valid for the simulation of turbulemwsdl without the necessity to perform a
LES scale separation at the continuous level, prior to tmearnical discretization.
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2.3.3 Energy balance for the orthogonal subgrid scale finitelement approach to the Navier-
Stokes problem

In order to find an energy balance equation for the OSS nuaienpproach to the Navier-Stokes equa-
tions we can now sat;, = u;, andg; = ct in (20). This yields (no approximation for the subscales is
considered for the moment)

1d
2dt
— Z(ﬁ, 2vS (uh) + V- (uh & uh)>ge + Z (ﬁ, V- uh)Qe + <f7 uh>u (27)

lun||* = =20 |8 ()|

where(), denotes the domain of theth element. Here and below, the summations with inedexe
assumed to be extended over all the elements.
If we now consider the subscales approximation (21)-(2421) we obtain

1d
Sq lnl|* = =20 (|8 (un)|* + (f 1, un)

—Zﬁ(ﬂﬁ[—%wig(uh)—kv-(uh®uh)+Vph],
e

WY -8 (up) + V- (up @up) )y — YT (nff (V- uh),V-uh>Q . (28)

e

Since we are interested in high Reynolds numbers, all tidigetion terms multiplied by the viscosity
will be neglected, from where we obtain the following enebgfance equation for the OSS stabilized
finite element approach to the Navier-Stokes equations:

1d
2 dt
— Zﬁ (Hf{ [V-(uh®uh) —|—Vph] ,V'(uh®uh))

lunl® = =20 ||S (wp)|* + (Fpun)

e

= (m (V-uh),v'uh)ﬂ . (29)

e

Let us define the pointwise numerical kinetic energy of the fisk” := % |uh|2, the pointwise molecu-
lar numerical dissipation for the large scalesfgs := 2vS (uy,) : S (uy,) and the pointwise numerical
power for the external force &3 := f,, - u;,. We will also identify?*™ within each element with

P = pPhT  yphT (30)

where
P =y [V - (g, @ wp) + Vr] - [V - (ug, @ uy)] (31)
P2 = T (V- up) (V- uy) (32)

Equipped with these definitions, equation (29) can be reswrias

d h / h / h / h
— | K"dQ=— | £,,d — E PrTdQ + | PrdQ, 33
dt Jo Q : - JQ. ‘ Q ! (33)

which can be compared with the energy balance equation afahénuous problem (9), using similar
arguments to those in section 2.2.



It is clear thatk” will account for nearly the whole pointwise kinetic energytioe flow so that
Jo ¥"dQ =~ [, kdQ. On the other hand, it will also occur thfi P/dQ ~ [, PydQ, given that the
force only acts at the large scales. In addition the numlenicdecular dissipation of the large scales
will be negligible, so thatf,, £ ,dQ ~ 0.

The next, crucial, question is if it should happen that [, P7d ~ [, emqidQ for the OSS
formulation to be a good numerical approach for the Naviek& equations, in the case of fully de-
veloped turbulence. Actually, this should not be necelsstine case for all the terms iR”7, given that
they have arisen in the equation motivated by pure numesiedlilization necessities. However, it is
clear that at least some of these terms should account fapbepriate physical behavior and their
domain integration should approximate the mean molecigaiition in (9). It will be the main result
of this work to show, by means of heuristic reasoning, thatadly the wholeP”" satisfies this assump-
tion. It should be also noted that in the definitionf)f™, the approximation for high Reynolds number
flows was already performed (stabilization terms multipligy the viscosity have been neglected).

2.3.4 Energy balance for the orthogonal subgrid scale finitelement approach to a LES model

We could now proceed to discretize the LES equations (18)«(&ing the OSS approach. The usual way
to do so is by simply adding the Navier-Stokes stabilizatenms to the Galerkin discretization of the
LES equations, i.e., terms containing the residual stexssotr,R, are not included in the stabilization
terms (see e.g., [46]). This approach is in fact non contisteless linear elements are used. However,
in the OSS method this approach still makes sense givenhbatansistency error becomes optimal
(see [11]).

The following discrete energy balance equation for the LE8@hanalogous to (33) is obtained

—h

dk =hT =h —h

St = [ i -3 [ Pran- [ Plaes [ P, (34)
/Q dt q " —~ Jo. 0 o 7

with k= L[, |2, 28 = 208 () : S (@n), Py = Fp, - U, Py = —R : 8 (wy) andPy” =
=Y eIy [V - (@n @ Tn) + V], 1y [V - (@, @ an))e, — Yoo 2y (V- ), Iy (V- W) ),

Following the argumentation lines in the above sections itlear that the kinetic energy term will
approximate the one in the exact energy balance equatiomt{@)same will prove true for the external

force power and, agaiﬁﬁlol will be negligible. However, we are now left with the curidiagt that the
two terms invoIvingﬁ}fT andfff should equal, in the mean, the molecular physical dissipafl his

seems at least redundant if the term contaiﬂ_Frfé that arises from the discretization of the original
Navier-Stokes equation already presents this behaviarther words, the process of first filtering at
the continuum level, modeling, and then proceeding to diszation (LES method) looks unnecessary
if an appropriate numerical discretization scheme is udxliously, for an inaccurate discretization
scheme the addition of extra dissipation as that providedEy may be useful, but this should not be
the case. In the following sections we aim at giving supporthis idea by means of some heuristic
reasoning.
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3 Numerical subgrid kinetic energy transfer for high Reynolds numbers
using the OSS stabilized FEM

3.1 Elemental ensemble average "™ for high Reynolds numbers

3.1.1 Stabilization parameters at high Reynolds numbers

In (25) an expression is given for the stabilization paramet. In the case of high Reynolds number
flows the viscosity term in this expression can be discarddwbnt of the convective one, yielding

T~ h . (35)
co |up|
On the other hand, using (35) in the expression for the paemein (26) we get
Ty & c—2h|uh| . (36)

C1

When using the above stabilization parameters in a finitmetht implementation, represents a
characteristic element length @f, while u;, stands for a characteristic velocity at each element of the
partition. Several options exist for the latter giving @ao different OSS stabilization methods. One
could take for example the velocity mean value at the eleroeit$ root mean square value. Whatever
choice is made the key point for the forthcoming results & th should depend inversely on this
characteristic velocity whiles; should be proportional to it. This behavior will allow us &ateP”
with the molecular dissipation ratg,., a fact that can be inversely be viewed as a confirmation of the
right choice forr; ands in (35)-(36).

As mentioned in the introduction, for a given computatiomesh we will consider the case of the
characteristic element sizebeing fine enough so as to lay in the inertial subrange. Thigahsubrange
can be thought as having limiting valugs s, lg] with [p; ~ 60n andig; ~ L/6. n represents the
Kolmogorov length where dissipation takes place @ndorresponds to the flow scale typical of the
largest, anisotropic eddies (see e.g., [42]). Let us delmpté the ensemble average (or time average
under the ergodic assumption) of the chosen charactetistarity at a given mesh element, to be
used in the expressions for the stabilization parametaykrkogorov’s second similarity hypothesis
then guarantees that for an eddy of sizeuch that’ € [Ips, (], U can only depend og,,, and/,
actuallyU ~ (sm01€)1/3. Our assumptions on the mesh discretization imply thatCh, with C' > 1
a dimensionless constant. It then follows that the elenhetdailization parameters become

h h
wo ™ 37
T )P =0
Toge ~ WU ~ h (emeil)/? (38)

where all constants have been included ingidd he symbok is used here to denotehaves aghat

is, the terms related by this symbol are approximately egpab constants. However, we will abuse of
language and in what follows the equality sign will be fremfilye employed in expressions containing
approximated terms of the type (37)-(38).

3.1.2 Elemental ensemble average 6"

Let us denote bﬂ? [V- (up, ® up) + Vph] thei-th component of the projector in the definition of the
numerical subgrid kinetic energy transfer teftfi™ in (31) and denote thith velocity component by

Uhs -

11



We consider a finite element partition of the dom&ihavingn,, pressure nodes,, velocity nodes
andn. elements. Following similar lines of what is done in [13}tK@ugh with a very different objec-
tive) we define the average value in a mesh elerfierdaf 27 in (31) as

Phm = % /Q (P do.

1

= /Q [V - (wp, @ up) + Vpn] - [V - (un, @ wy) | dSe. (39)
An ensemble average (or time average under the ergodic pisajnof this quantity can be performed
to obtain

1

(PI) =+ </ [V - (wy, © up) + Vn] - [V - (up @ uh)]dQe> (40)
e Qe

(Brackets are used in this section to denote ensemble avénatead of duality pairing). We next

identify the terms(PifQ>U and <P£fgl> p in (40) that will be treated independently in the analysie W

have

(Pim) = vi </ [V - (up @ up) ] - [V (uy @ uh)]dQe>
= % < . 0; (upitin) O (wnkun,) dQe>
— % </Q [V - (wp, @ up) |05 (unjung) dQe> (41)
and
(P2}, = (T (7m) - [9 (o) Jan)
- % < / O (ung ) dQe>
— % < / e 1% (Vpn) 95 (wnjuns) dQe> , (42)

Above and in the following, summation is understood ovetiapeepeated indexes.
Obviously, we have

(712 = (722, + (72, @

3.1.3 Elemental ensemble average Gf"™

Proceeding analogously to what has been done in the presemti®n but for the?”™ term defined in
(32), it can readily be checked that the elemental ensemviiage ofP"™ becomes

(Piz) = - ([ (7 ) (9w )

e

1 1
= Ve </Qe (&uhi)Q dQe> — 7@ </Qe Hh (V . ’U,h) (8Zuh2) dQe> . (44)
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3.1.4 Elemental ensemble average 6t"™

From (30) and using the elemental stabilization paramé8)s(38) as well as (40) and (44), we can
define the ensemble average of the rate of production ofikiaaergyP”" for high Reynolds numbers
as

(PRT) = 100 (PED ) + Ta.0e (PR ). (45)
3.2 FEM solution and treatment of the Z? projection in (P27)

3.2.1 FEM solution for the velocity and pressure fields and.? projection

The components of the discrete velocity fiedg can be expanded as usual for a mesh haxingodes
as

upi () = Y _ Ny () Uf, (46)
a=1
where the velocity shape functiog®/ (x),a = 1,...,n,} are a basis ovg,h andU;" are the velocity
nodal values, i.e., at the nodal pointé,, b=1,...,n,, it holds that
upi(x?) = UL, (47)

In case ofu;, being the finite element interpolant, the nodal values aaeteand
upi (2°) = UP = ui(xb) = ub. (48)

Let us also assume the following interpolation for the Régeatresses (see e.g., [6])
upitpg (x) = »_ N} (@) UPU? (49)
b=1

in order to have simpler expressions and to make some of ttiecémming results useful from a com-
putational point of view.
Concerning the discrete pressure figlg, it will be expanded as

"'p
pn(x) = Ny (x) P*, (50)
a=1
where the pressure shape functi({ris*g (x),a=1,... ,np} are a basis oD o and P denotes the

pressure nodal value at nogé. We note that one of the advantages of using a stabilize@ fitéiment
method such as the OSS in section 2.3.2 is that one can chqpseNg = N¢, hence circumventing
the necessity of using different interpolations for theoeély and pressure fields as demanded by the
inf-supcondition (see. e.g. [27, 29, 8, 9, 10]).

On the other hand, it will be necessary to give explicit expiens for the projected terms
PV - (up, ® uy) ] and 117 (Vpy,) appearing in (41), (42) and (44). This can be done as follows.
Consider a functiony;, computed from the finite element interpolation, not neaglgseontinuous. Its
L? projection onto/{, can be written as

Uz

(ys) = Y N* () 117, (51)
a=1

13



with the coefficientdI* being given by the solution of the linear system

Ny

ZMb“Ha:/wath, b=1,...,n, (52)
a=1 Q
Mbe = / NP NedQ. (53)

Q
The mass matrixM in (53) can be approximated by means of a diagonal matrix ef ftrm
diag(Mi1, ..., Mpy,n,) USing a standard nodal quadrature rule. In this case

I’ = M} / NP4, dS2, (54)

Q

so (53) becomes

() = ij;;Na / NdS2. (55)
a=1 Q

3.2.2 (P!7) interms of the finite element velocity and pressure fields

We next have to substitute the above expansions for theetiiseelocity and pressure fields in the
expressions fo{P/7') , (PIT) , and(P/'7>), respectively given by equations (41), (42) and (44).

Convective terrT(PﬁfQ}U corresponding to the velocity subscales (4d)e will first address the
term in the second line of (41), which will be denoted ,ffg1>U71. Substituting (49) in this term
yields

()=
1

=+ [Z <UﬁUfU,?U;-’> /Q &Naakzvbdae]. (56)
€ a,b €

/ [Z ANULULY akoU,QU;?] dQe>

e a b

The term in the third line of (41) will be denoted K;'7 ) .. After substituting (49) and (55) in it,
we get ’

1
hT1 _ —1arc cq nTarrarra brrbrrb
(Pr),, = V</Q [E MIN /QN QN ULUSdQ Ebjakzv U,CUJ}dQe>

a,c

:_%{§<U5U;U,§Uf>/g [akozC:Mc—clNc/QNcaiN“dQ}dQe}. (57)

e

To facilitate the notation in expressions (56) and (57) wiendethe geometric factors
I = /Q 9;N°9;N*dQ, (58)

and
G%b = /Q [aij ZMchNC /Q NcaiNadQ] dSe. (59)

Both factors depend on the elemét. However, whilelﬁjb has alocal character in the sense that it
only depends on the shape functions and the type of elemérg beed,Ggf has aglobal character

14



because it involves an integration over the whole comprtatidomairt2. This global character is due
to the fact that a projection is involved {P'7*) . ,.
We will also denote the velocity correlation function as

Bij = (UU;)- (60)
and the two point fourth moment of the velocity field by
By = (UFUSURUY). (61)

Using the notation (58)-(61) in equations (56) and (57), weam the following expansion for the
convective terrr(P;@U :

<P’}’L’2>U <PhT1>U1 + < th> A ZB” kj ( ) ’ (62)

where summation on the spatial dimension indexesk is assumed whereas summation on nodes will
be explicitly indicated throughout the text for the sake lafity.
Pressure tern(P,ffgl> P corresponding to the velocity subscales (42Wwill be next found an ex-

pression similar to (62) but for the pressure te{rﬁi‘ﬁ} Making use of (49) and (50) in (42), we get

for the term in the second line of (42), which we den(jxé”l >P L

T 1 a a
<P'{Z’€1>p,1 — 7e< /Q [za:a,»N P zb:aijU]’?Uf] dQe>

_ 1 [Z <an;?U;’> /Q aiNaaijdQe]. 63)
- .

)

Using now (49), (50) and (55) in the third line of (42), we dbta
1
hTi _ —1 are ca NG Da bbb
<pﬁe >P72 — _V;</Qe [Ea MIN /QN ;NP dQ Eb ;N U]Ul]d§26>
__1 arrbrTb ATh —1 arc ca nra
_ —V{§:<p UjUZ->/Qe [ajN §C MIN® [ NCON“dQdQ f. (84)

€ a,b
Given the geometric factors (58)-(59) and defining the twintpiple velocity-pressure correlation as
ab arrbrTh
By = (P"UU;), (65)

we can rewritg(P)'7' ) , as
<P%I>P - <P1{Z’21>P,1 + < th> B ZBE’% (Iab G%b) ’ (66)

with summation implied on indexes;.
Divergence tern(P,ffg2> corresponding to the pressure subscales (44¢an be readily checked
that the expression analogous to (62) and (66) for the (é?ﬁ@?> in (44) is given by

<7>£f;2>: ZB“b (1), (67)
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with Bf;.b being the second-order velocity correlations (60).

Finite element expression f«éﬂ%ﬁf@. Using the developments (62), (66) and (67) in equations (43)
and (45) we obtain the finite element expression for the ebkeaverage of the rate of production of
subgrid kinetic energy

(PRT) = 7100 (PR ) + To0c (PIT?)

1 a a a
pr Ve Z |:7'1,ae ( Z] k?] + Bp ’Lk?) + T27aeBZ‘kI?i| (I’Lk? - G2£> . (68)
a,b

4 Relation between numerical subgrid kinetic energy transér and phys-
ical dissipation in the inertial subrange

4.1 Two point fourth-order velocity correlations for (P/7)

Given thatI;ljb and G;?Jb in (58)-(59) are pure geometric factors, in order to relae éxpression (68)
for <7>;§g> with the physical molecular dissipatios,,.;, we will have to relate the various second-order
and fourth-order velocity correlatior3*’, B ; and the two point triple velocity-pressure correlation

ig ) g,k
Bt toit.

To do so, use will be made in what follows of some results diistteal fluid mechanics and in
particular of statistics concerning homogeneous isotrapbulence. Although the various correlations
B, B}, and Bih do not involve the whole velocity and pressure fields at thgespbut their OSS
finite eIement approximation, we will consider that the tessfrom statistical fluid mechanics can be
still applied to them, similarly to what is assumed for theefiéd velocity in a LES model. Note that in
the case ofuy, py| being the interpolant, see (48), no approximation would deded. We then guess
that the velocity and pressure from the OSS finite elementisal will not differ substantially from
the interpolant, at least in what concerns their statistiedavior. This is also implicitly assumed in
practical implementations of the results in [13].

Let us start with the two point fourth moment velocity coatén B;‘;?jkl, which by virtue of its
definition (61) fulfills

Zbkl = B?ib,kz = Bjc'lib,lk = B%Zﬁkr (69)
Use can be made of tlguasi-normalapproximation iillionshchikov zero-fourth-cumulant hypothe-
sis see e.g., [41]) in order to relate the fourth-order velocibrrelations with second-order velocity

correlations. For the particular case of velocities beiogsidered at just two points, the quasi-normal
approximation for the exact velocity field establishes

<u uf uiub> = (ufu) <u2u?> + <u“ui> <uau§’> + <uau§’> <uaui> (70)

Assuming that this relation holds true for the finite elemegibcity field, we can rewrite it using the
notation (60)-(61) to obtain

B = BB + BX B + B’ B3. (71)

In our case, the two-point fourth-order velocity corredatin (62) and (68) is contracted on the second
and fourth indexes so that

B, = BYBY, + BB + B By (72)

1j,kj
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The second-order velocity correlations can be relatededs¢icond-order velocity structure function
D¢? defined by (see e.g., [41, 42])

et = <(U§ _ U;l) (U}’ - qu)> : (73)

Developing (73) and under the assumption of homogeneotr®so turbulence (which implies that

Bgb = Bl¢, Bi = B, see for example [41]) it is straightforward to see that

1 1. 1

Bff = Biff = 5Dij = 3 [U"6y; — 5Dy,
with U representing the ensemble average of the velocity eitheodea or b, since both must be the
same.

Substituting (74) into (72) yields

(74)

1
4
The first term in (75) can be neglected in what follows giveat ihwill vanish when finally inserted
in (62). This is so because it can be factorized out of the satiom on nodes in this expression. The
summation can be carried inside the integrals in (58)-(&®jch will then contain terms of the type
0; (>, N*). Given that the shape functions form a partition of unjty, N = 1 and the derivative of
this term is obviously zero (velocity boundary conditiore®d not to be considered at this point).

As previously mentioned, a computational mesh with its abt@ristic lengthh lying in the inertial
subrangd (pr, 1] is considered in this paper. Combining the Kolmogorov first aecond similarity
hypothesis, an expression for the second order structuncidum D;Ijb can be found solely in terms of
emo1 @nd the distance between nodgsanda?, ro® = ||x® — x°||, for r®® € [Ipy, lg]. The expression
is given by (see e.g., [41, 42])

a 9 5 1 a a
By = 9 U[* 6y — 6 U* D — 6 U 6;,. D22 + (D?ngfig + Diij;'lIlc)) - (75)

2/3 1 rir?
D =2C <5m01rab> Dy, D = (461-]- - (Tab;Q , (76)

whereC represents a universal constant with approximate v@lae 2. Substituting (76) in (75) gives

11 2/3 9 2/3
ab 2 ab 2 ab
Bz’j,kj T \ul*c <€mol?” ) di + [— 3 e <€mol?” )

11 4/3 4/3
+ FCQ (5molrab) :|D;ll<? + C2 <5molrab) D;Igbpglg (77)

We can now make use again of Kolmogorov’s second similantgothesis, which as explained in
section 3.1.1 states that for an eddy of dize [Ipr, [£;] (i-e. lying in the inertial subrange) all velocity
scales are proportional (@m01€)1/3. Since|U | is a velocity, it follows that

U| ~ (emarl)*? (78)

and substituting in (77)

ab 43 o3 [ ap) /3 5 0/3 (a3

Bijkj = C‘fmol{ BET / (T ) Sik + | — 3t / (r )
11 a3 W\ .

+ gC (T b) }D“g +C (T b) DinDjig} = Eil/(?llcils7 (79)
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whereK% has been defined in the last line of (79).
In view of (79), equation (62) fofP';! ), can be rewritten as

<7’Q?>U —é iﬁZ’C (1 - cat). (80)

4.2 Two point triple-order velocity-pressure correlations for <7?’”1>P

It is our aim now to find an expression analogous to (80) batired the two point triple-order velocity-
pressure correlatlon ;; with the rate of physical dissipatiaf,, . To do so we will closely follow [41]
although with some particularities. We will abuse of namatand useBa” to denote the triple-order
velocity-pressure correlations of either the exact véjoiield or the flnlte element approximated one.
Whether equations are valid for one or the other, or for bétinem, can be easily determined by the
context. Likewise, we will identifyr = rab, being clear that this is the distance between nacles
andz®.

The tensor of second rarngbkl for the isotropic case can be written as

Bp v = P (r)rery + Py (1) 0, (81)
where
P():i B® . — B® Py (r) = B2 (82)
L\r) = "3 |[PpLL P, NN|» 12 NN

with the subscriptZ standing forlongitudinal and designating the direction of the vecigf and N
standing fomormaland designating any perpendicular direction to it.
Consider the Poisson equation for the pressure at aode

Ap = —8,,0r; (uf ]) (83)
whereA is the Laplacian operator that for functions only depending becomes

& 2d
A= — 4
d7“2+7“dr (84)

Multiplying both sides of (83) by.2u? and performing an ensemble average of the results yields
ABghy = —0r,0r, (Bil) - (85)

In the case of homogeneous isotropic turbulence, the témsoe r.h.s of (85) is an isotropic symmetric
tensor of second rank that can be expressed as

Or, O, ( i kl) Q1 (1) Ty + Q2 (1) O (86)

Inserting (81) and (86) in (85) and equating the coefficiefts,; andd,; on both sides yields two
differential equations for the unknow# and P;:

d’P, 6dP,
T e Y 7
dr? r dr @1 (87)
AP, 2dP

2 208 op— Q) (88)

dr? r dr



These equations can be uncoupled defining a new funétsuch that
Ps(r) =r>Py (r) + 3P, (r) = B3, + 2By v (89)

Multiplying (87) by 2 and adding the result to (88) multiplied by 3 gives the follogvequation for
P

d’P;  2dP:
S+ S22 = -0, (90)

dr? r dr

where

Q3 (r) = Q1 (r) +3Qa (). (91)

In order to find the two point triple-order velocity- pressurorrelatlonB“bl in (81) we need the
values of P, and P, which can be obtained from the solutions of the equatlom; &8d (90) together
with (89). However, to solve these equations we first needieevar their inhomogeneous terrgs and
(3. To do so, the use of the quasi-normal approximation and ¢fkgorov’s similarity hypotheses
will prove very useful again. We remind that our interestnidinding the results for in the inertial
subrangd ipr, lE1].

Making use of the quasi-normal approximation (71) in (86]) taking into account that due to the
incompressibility constrairﬁ?riBi =0, B“b = 0 (see [41)]), it follows that

Qu (1) rart + Qu (1) b = 0,0, (Bily) = 20, B0, BY (92)

and given that the second-order velocity correlation temgﬁ for homogeneous isotropic turbulence
can be expressed as [41]

TZ‘?”j

BY = —0,Bf (r)

T
+ B () + 50,81 (93)

we can obtain the following expressions ¢, Q2 andQ3 solely in terms of the longitudinal second-
order velocity correlatior3¢%

2
Q)= 5 [ 0] + 1B () B (), (94)
2
Qa1 =~ [ LB 0] — oL Bl () S 1), (95)
2
@ <r>=—ri2d%{r3 0] } (96)

Use has been made of (91) to obtain the expressio®for
Up to know we have followed [41], which should be consulteddetails. We can next use (74) to
relate B¢ with the longitudinal velocity structure functiaR$, and the rate of dissipatiof,;:

C
B, = B} - DLL = BI1 — Bl (Emorr) 2. 97)
Substituting (97) in (94) and (96) results in
17 _
Q1 (r) = = Cepar ™", (98)
7 _
Qs (r) = —5=C"% g3 =203, (99)
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The solutions to equations (87) and (90) with the inhomogesderms given by (98) and (99) and
appropriate boundary conditions can be found using the r@rdenction approach. This yields (see
Appendix)

17

P (r) = —2—7025‘;{?@# (r), (100)
1

Py(r) = Ec%jﬂjpgb (r) (101)

whereF® (r) an ¢ (r) are functions only depending on the distance
We can next obtaii (r) = Bgf)NN(r) substituting (100) and (101) into (89):

1
Py(r) == 8—1025ﬁ{j{17F01r—3 + TFo3r ™ + TFi3

1
+ [17F0 + TR + 17F21r2} = O (7). (102)
where the values of the various teriig in (102) are given in the Appendix (equations (A.10)-(A,12)
(A.22)-(A.24)) andF'¥,; has been defined in the last step.
Inserting (100) and (102) in (81) we find the expression far to-point triple order velocity-
pressure correlatioBgf’ij we were looking for:

B;,bz‘j = P1 (T) T + P2 (T) (Sl'j

1 1
— —0254/31 17F (r) Tirj + —F (r) 0ij
27 mo 3
4
ey (103)

Fab (r) being defined in the last line.
Finally, we can find an expression for the numerical kinetiergy transfer ternéPﬁfQ>P in equa-
tion (66). Substituting (103) in (66) yields

(Pr2) = %sﬁ{j’l SoFw (1 -a). (104)
N ab

4.3 Two point second-order velocity correlations for(Pﬁf?)

The last term that has to be dealt witi(@ﬁf§> in (67) arising from the pressure subscales stabilization.
As seen, (67) only involves the second-order velocity datiemn tensorBZ?'g?’. From (74) and (76) it can
readily be checked that the expression analogous to (80)1&84q for the tern‘(Pﬂf?> in (67) is given

by

2C
h _ 2/3 2/3ab ( 1ab ab
(Piz), = o e (12 )

a,b
. 1 2/3 ~ab ( rab ab
¢ a,b

with 15;.3?’ = 2Cr2/3Dge,
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4.4 Relation betweer(Pj”} and the physical rate of dissipations,,

,€

From equations (80), (104) and (105) substituted in (68) gte g

1 ~

(P = o 3 [rraectls (Kit + 730) + mactlDR] (12 - G%) - (208)
€ a,b

and finally inserting expressions (37)-(38) for the stahiiion parameters in (106) we obtain the final

expression we were looking for

(PAT) = emal % S (e + F) + 0D (-G ¢ (107)

e
a,b

which states that the average valueRff” on a mesh element is directly related to the molecular
physical dissipation by means of a factor that only depemdti® mesh geometry and the interpolation
spaces used to approximate the continuous ones. NotedhatzfCh, with C' > 1 dimensionless, the
factor that multiplies:,, is purely geometrical (and of course dimensionless).

5 Discussion and remarks

5.1 General comments

In section 2.3.3 we wondered about the possibility that stemas inP"™ integrated over the whole
computational domain equated the overall physical disisipan the energy balance equation. It was
argued that this should not necessarily be the case foreadittibilization terms i, given that they
arise from purely numerical considerations rather tharsigay ones. However, we have found in (107)
that when using the OSS stabilized finite element metho@atis in the ensemble averageR)f™ are
proportional to the dissipatios,,. . This can be viewed as a confirmation of the right choice fer th
stabilization parameters andr, in the OSS formulation.

As observed from (107) the proportionality factor betwé@j’@ ande,, is a rather complicated
function depending on the element and mesh geometry, aowdtle chosen finite element interpola-
tion spaces. Although one could be tempted to think thatgtsraum value should equal unity in order
to have the desired physical behavior, we have no basis &s@as$kis point given that, as stated, the
terms in (107) have to account not only for appropriate ptatdbehavior, but also for circumventing
purely numerical difficulties (e.g., to allow the use of elganterpolation spaces for the velocity and the
pressure).

In any case, what seems to follow from the above analysisasitmakes somehow redundant
and unnecessary the use of LES models. Effectively, shoelthave done the above analysis for the
energy balance equation (34), aresult of the lﬁ'}é = aemel (With o being a proportionality function
analogous to the one in (107)) would have been obtained. ©attter hand, the term arising from the
LES model would also behave ﬁsh = [emol SO that its effects, if any, could be included in tﬁéT
term with appropriate redefinition of the proportionaligcfor. Hence, if a good enough discretization
of the Navier-Stokes equations is performed, the somehtfical fact of filtering and modeling at
the continuous level should be unnecessary. In other wiindsproblem of simulating turbulence is
probably a purely numerical problem of correctly discrietizthe Navier-Stokes equations rather than
a problem of LES physical modeling.
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5.2 Other numerical approaches

As it has been mentioned, the purely numerical strategynlsite turbulent flows is not new, and
can be traced back (at least) to the MILES approach. Somgtithese type of models are referred to
asimplicit LESmodels. Some examples of them can be found in [43]. In thgse @f methods, the
subgrid-scale stress tensor is modeled depending on thermainprocedure. For example, in [14] the
model proposed is based on the parallel solution of the &tg@dcNavier-Stokes equations on a mesh
twice smaller in each Cartesian direction than the one usedrpute the resolved quantities. In this
method, the subgrid velocity is computed at each time sté@hpwt accounting for its time evolution,
and its expression is used to evaluate the subgrid-sca&ssstensor. One of the conclusions that can
be drawn from the numerical results presented is that theadeloes not have enough dissipation. In
an attempt to overcome this misbehavior, the parametershichwhe formulation depends could be
adjusted so as to follow the correct dissipation structaseproposed in [25], where the spectra of the
numerical solution and the physical one are forced to matcksbtropic turbulence.

A fundamental difference between the approaches descaibeédhe one we have analyzed here is
thatwe do not model neither the subgrid scale stress tensor s@ffiéct Rather, we simply add terms
based on the effect of the subscales onto the finite elemenpaaent of the solution. As we have
shown, the overall effect is a dissipation that mimics thespdal one. In this sense, our approach has
to be consideredesidual basedas the one proposed in [1] and also in [26, 44]. In this cdmetdrms
added to the Galerkin formulation of the problem depend erréisidual of the finite element solution,
which is thus considered the resolved scale. In contrastrtafgproach witltorthogonalsubscales, in the
references mentioned the subscales are considered wipeagortional to the finite element residual.
This implies that the orthogonal projection is dropped iB8)(and (24). This fact has an important
consequence in the energy balance equation (28), sincetmitpefficients of the time variation of
kinetic energy and the power of the external forces will gearmhe OSS method simplifies the analysis,
but nevertheless the dissipative terms which we have shmpraportional to the molecular dissipation
are also present in the method of [1]

5.3 Numerical evidence

The starting assumption of our analysis is that the finitenelet mesh is able to capture velocity fields
that lay in the inertial range and for which the results ofistizal fluid mechanics can be applied. This
condition should not be considered particularly stringastit is in fact analogous to what is assumed
for the filtered velocity in classical LES models for whictetfilter width is proportional to (if not
directly equal) the mesh size. Moreover, there is alreadyessound numerical evidence that this is in
fact possible and that residual based numerical formulatéan model turbulence flows.

A relevant numerical study of a residual based formulatiaydeting turbulent flows is [1]. The
formulation is tested for isotropic forced turbulence amdbtilent channel flows and the results are ex-
tremely good, in the sense that they clearly display the migadeconvergence towards results from di-
rect numerical simulation (DNS). Both mesh refinement argruonial order increase (using NURBS)
are tested. In the case of isotropic turbulence, for coasseatizations the numerical spectra match the
DNS results only for small wave numbers, whereas the magahiiproves as the discretization is also
improved. The important point, however, is that even forsealiscretizationthere is part of the iner-
tial range which is capture@nd, of course, with the correct slope, a characteristittfeaf turbulent
flows. For channel flows it is also shown that the boundaryrkayleat are created have the regions
corresponding to turbulence.

It is not the purpose of this paper to present a detailed nigaiestudy of the behavior of the OSS
formulation to model turbulent flows. However, we shall grishere a simple example to compare the
numerical response of this formulation alone and in cortjonawith the classical Smagorinsky model.
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Figure 1: Flow over a circular plate. Streamlines and carstodi the velocity norm. Inlet velocity = 10
m/s.

Figure 2: Experimental pressure spectrum (theoreticglesto—7/3). Courtesy of GBF Aachen, Dipl.
Ing. Ralf Haase.

For that purpose, we consider the example of the flow overcaleir plate. The general view of the
computational domain, together with some streamlines baddontours of the Euclidean norm of the
velocity field, are shown in Fig. 1. The flow comes from the kfte of the computational domain, a
box of9 x 2.5 x 1.8 m? in which the inclined circular plate with its support is ptak with a velocity of
10 m/s. The diameter of the plate is 0.5 m. The domain has bieeretized with a rather coarse mesh
of 1.34 million linear elements (more details about this rugal example can be found in [21]).

Our interest here is to reproduce thiessure spectrurat the center of the plate, for which experi-
mental results are available [21]. The inertial range offtresssure spectrum should be proportional to
the power—7/3 of the wave number and, assuming Taylor’s hypothesis, the spectrum should also
be proportional to the power7/3 of the frequency. This is the predicted power law behaviottlie
pressure spectrum of isotropic turbulence (see e.g. [B9perimental results, which confirm this fact,
are shown in Fig. 2.

The important point is how is the pressure spectrum repiediby the OSS formulation alone and
with the Smagorinsky model. From Fig. 3 (top) it is seen thdidgth cases the 7/3 slope is reproduced,
confirming that the approximated fields belong to the inkeréiage. The qualitative difference between
turning off or on the Smagorinsky model can also be observauh ig. 3 (bottom). It is seen that,
in spite of the fact that both possibilities yield the cotretope of the pressure spectrum, the OSS
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formulation alone has a richer dynamic response of the presthus confirming that turning on the
Smagorinsky model introduces a dissipation that adds upédlmat is already physically correct.

6 Conclusions

For a fine enough computational mesh, it has been provedhbatantribution to the energy balance
equation of the stabilization terms of the Orthogonal Sigb§cale stabilized finite element method
is already proportional to the physical dissipation ratedn appropriate choice of the stabilization
parameters. This has been done with the sole use of the gigsal approximation for two point
fourth-order velocity correlations and using Kolmogomofitst and second similarity hypotheses. It has
been also assumed that several statistical fluid mechaso#ts, which are valid for the exact velocity
field, hold true for the approximated finite element velodigyd.

Taking into account that the stabilization terms in the OS&hwod arise from pure numerical ne-
cessities it is a noteworthy fact that they have the corrbgsical behavior in the inertial subrange of a
turbulent flow. This somehow supports the idea that no extyaipal LES modeling should be added to
the equations if an appropriate stabilization method islu$kat is to say, the simulation of turbulence
should probably rely on optimum numerical modeling rath@ntin physical one.

Appendix. Green'’s function approach to obtain P, (r) and Ps (r)

We will first address the problem of finding the solutitn(r) of the inhomogeneous equation (87) in
text using the Green'’s function approach. The solutionfi¢gchomogeneous counterpart of (87) are
andr—° so that the problem Green'’s function will be of the type

A+ Br® =G5 (r,r9) Ilpr<r<ro
G1 (T,To) = (Al)

C+Dr5=G7 (r,ro) ro<r<lgr.

To determine the values of, B, C and D we impose the boundary conditions at the inertial range
threshold value$ipr, (g1]

G1(Ipr,m0) = Kp, (A.2)
G1 (lgr,ro) = Kga, (A.3)

with Kp1, K1 constants. We also impose the continuity conditions

GT (rg.r0) = GT (rg,70) =0 (A.4)
0,G7 (rg,ro) — 8:GY (rg,mo) = —1 (A.5)

with G? (ri,ro) = limr—ro G? (r,r0). Defining the constants

r<ro
L = l%i[ L = L L — Z%IZ%I A6
AE =75 5 » MAD = 5 = Lep:=zs"—""7—, (A.6)
Ugr = br Ugr = Ubr Ugr = Ubr
as well as
— o ~ Lgp

Aor = LapKp1 — LapKp1, An:=—Lgp (Kp1 — Kp1), A= , (A7)

T 15 15
lEIlDI
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Figure 3: Comparison of the OSS formulation without (gresmd with the Smagorinsky model (red).

Top: numerical pressure spectrum (theoretical sloper#3), Bottom: detail of the pressure evolution
(at the center of the plate).
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it can readily be checked that the following expression igioled for the Green function in (A.1)

(Apt + A11r=®) + 2 (Lag — Lepr—) ro

—l—% (A21 + LADT‘_5) 7”8 Ipr<r<rmg

G1 (’I”, ?”0) = (A8)
(Aot + A11r™®) + £ (Lap — Lepr~—) ro
+% (A21+LAE‘T‘_5) 7‘8 ro <71 <lgr.

Using (A.8) and the inhomogeneous tefim () from equation (98) in textP; (r) can be found as

r lEr
Pl == [ 67 o) @ (o) = [ 65 (o) @u (r i
DI r
= _2_70 €mol [Fmﬁ +F11m +F21} =: —270 molF (r), (A.9)

where

3/ 5 3/ o
Fop = —2 <1E§/3 —1D§/3) App + — (zE§/3 —1D§/3) Leb

5 10
+ % (Lantif® = Lantpf*) . (A.10)
1 = 13330 (Larg — Lap) (A.11)
Py = _g (1_5/3 l_5/3) Am—i—% <113/3 l13/3)A o
- 1_30 (LADZDI/ ~ Laglg 2/3) ’ (A.12)

and we have defined (r) in the last line of (A.9).

We can now proceed analogously to find the solutigrir) to equation (90) in the text. The solu-
tions for the homogeneous counterpart of this equatiorl amedr—! so that the Green function will
behave as

A—I-BT‘_lEG; (?”,?”0) Ipr<r<mg
Gg (’I” ?”0) (A.13)
C+DT_IEG§(T,TO) ro <71 <lgr.
Tofind A, B, C' and D in (A.13) we impose the boundary conditions
G3 (Ip1,70) = Kps, (A.14)
G3 (lg1,m0) = KEs, (A.15)
as well as the continuity conditions
G5 (rfro) = G5 (rg,m0) =0 (A.16)
0,G3 (T‘ar,?”o) - 0,G5 (ra,ro) = —1. (A.17)
Defining the new constants
l l lprl
bag = —2— tap = —2L  tpp = P (A.18)
lgr —lpr lgr —lpr lgr —Ilpr



and

V4
Aoz :=UapKE3 —apKp3, Ai3:=—lgp(Kgs — Kp3), A= —ZEZ]’;I, (A.19)

the Green function (A.13) can be written as

(Aos + Azr™) + (bap — Lepr™) ro

+(A23 —l—EADr*l) 'rg Ipr<r<rg
G?) (’l”, TO) = (AZO)
(A03 + Aygr™ 1) + (bap — Lepr~ ) 1o
(A23 RN 1) 3 ro<r<lIgr.

We can now findP; () using (A.20) and the inhomogeneous tefn () from equation (99) in
text

lET

= /’“ G5 (r,m0) Q3 (o) dro + G5 (r,10) Q3 (ro) dro

T

7 1
= ECQ i3 [Fog— + Fi3 + F23r4/3] — Lo 43 pgb (1) (A.21)
T 27
where
Fos == 3 (l /3 1/3) A -5 (14/3 14/3) lep
3 /3 7/3
+? (antily = eanty) . (A.22)
/3 51/3 3 (73 13
=3 (17 =17 ) Aos + = (137 — 1117 ) Az
3
7 (QDZD/I - fAEl4/3> : (A.23)
9
Fgl = —2—8(€AE—€AD) 5 (A24)

and F$* (r) has been defined in the last line of (A.21).
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