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Abstract

Given a simple connected graph Γ and a subset of its vertices C, the pseudo-
distance-regularity around C generalizes, for not necessarily regular graphs, the notion
of completely regular code. Up to know, most of the characterizations of pseudo-
distance-regularity has been derived from a combinatorial definition. In this paper we
propose an algebraic (Terwilliger-like) approach to this notion, showing its equivalence
with the combinatorial one. This allows us to give new proofs of known results, and
also to obtain new characterizations which do not depend on the so-called C-spectrum
of Γ, but only on the positive eigenvector of its adjacency matrix. In the way, we also
obtain some results relating the local spectra of a vertex set and its antipodal. As a
consequence of our study, we obtain a new characterization of a completely regular
code C, in terms of the number of walks in Γ with an endvertex in C.
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1 Preliminaries

Pseudo-distance-regularity is a natural generalization of distance-regularity which extends
this notion to not necessary regular graphs. The key point of this generalization relays
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on defining an adequate weight for each vertex in such a way that we obtain a “regu-
larized” graph. Since its introduction in [7], the study of pseudo-distance-regularity pro-
duced several interesting results, specially in the area of quasi-spectral characterizations
of distance-regularity [4, 7] and completely regular codes [5, 6]. This study was based on
the combinatorial definition of pseudo-distance-regularity around a vertex, which comes
up naturally from the notion of distance-regularity around a vertex. Among the variety
of techniques used in these works, two concepts stand out: the local spectrum (of a single
vertex or a subset of vertices) and certain families of orthogonal polynomials.

Our work in this paper is motivated by the connection existing between pseudo-distance-
regularity and the study developed by Terwilliger [11] in the context of association schemes.
In his work, he introduced the subconstituent algebra (also known as Terwilliger algebra)
with respect to a vertex of a graph and defined the notion of thin module in this algebra.
As commented by the third and fourth authors in [3, 5], the study of pseudo-distance-
regularity around a vertex i is equivalent to the thin character of the minimum module
containing its characteristic vector ei. The aim of this paper is to extend this parallelism
from a single vertex to a set of vertices.

The plan of the paper is as follows. In the rest of this section we first give some notation
on graphs and their spectra. In Section we introduce the local spectrum of a vertex set,
discussing some of its properties. Special attention is paid to the relation between the local
spectra of two antipodal subsets of vertices. Section 3 is devoted to explain the concept
of pseudo-distance-regularity around a vertex set, in combinatorial sense, and to review
some its known quasi-spectral characterizations. In the case of regular graphs, this concept
coincides with that of a completely regular code. Our main results are in Section 4, where
we extend the (algebraic) definition of Terwilliger to a set of vertices in any graph, and
prove its equivalence with the combinatorial approach. This allows us to give new proofs
of known results, and also to obtain new characterizations which do not depend on the
so-called C-local spectrum, but only on the positive eigenvector of the adjacency matrix.
As a consequence, we obtain a new characterization of a completely regular code C, in
terms of the number of walks having an endvertex in C.

Throughout this paper Γ = (V, E) stands for a simple connected graph with vertex set
V = {1, 2, . . . , n} and V denotes the space of the formal linear combinations of its vertices.
The adjacencies in Γ, {i, j} ∈ E, are denoted by i ∼ j and Γk(i) = {j|∂(i, j) = k}
represents the set of vertices at distance k from i, where ∂(·, ·) is the distance function in
Γ. For simplicity we will write Γ(i) instead of Γ1(i). Every vertex i is associated to the
i-th unitary (or characteristic) vector ei ∈ Rn, and, consequently, V is identified with Rn.
With this identification in mind, the adjacency matrix of Γ, A, can be seen as the matrix
of an endomorphism in V with respect to the basis {ei}i∈V .

The set of different eigenvalues of A is denoted by ev Γ := {λ0, λ1, . . . , λd}, where
λ0 > λ1 > · · · > λd, and the spectrum of Γ is defined by

spΓ := spA = {λm(λ0)
0 , λ

m(λ1)
1 , · · · , λ

m(λ0)
d },

where m(λl) stands for the multiplicity of the eigenvalue λl. From the Perron-Frobenius
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Theorem for nonnegative matrices, we have that λ0 ≥ |λd| and equality is attained if
and only if Γ is a bipartite graph; see e.g. [1]. Moreover, m(λ0) = 1 and every non-null
vector of Ker(A− λ0I) has all its components either positive or negative. We denote by
ν ∈ Ker(A−λ0I) the unique positive eigenvector with minimum component equal to one.
Let us remark that in the case of δ-regular graphs we have that λ0 = δ and the vector ν
turns out to be the all-1 vector j.

Note that V is a module over the quotient ring R[x]/I, where I is the ideal generated
by the polynomial Z =

∏d
l=0(x− λl), which vanishes in A, with product defined by

pu := p(A)u for every p ∈ R[x]/I and u ∈ V.

Remark that the orthogonal projection of V onto the eigenspace El = Ker(A − λlI),
for some 0 ≤ l ≤ d, can be written as

Elu = Zlu, u ∈ V,

where Zl = (−1)l

πl

∏
0≤h≤d(h6=l)(x− λl) and πl :=

∏
0≤h≤d(h6=l) |λh − λl|.

2 The local spectrum of a vertex set and its antipodal

Given a nonempty set C of vertices of Γ, we consider the map ρ : P(V ) → V defined
by ρ∅ = 0 and ρC =

∑
i∈C νiei for C 6= ∅ and denote by eC the normalized vector

ρC/‖ρC‖. If eC = zC(λ0) + zC(λ1) + · · · + zC(λd) is the spectral decomposition of eC ;
that is zC(λl) = EleC ∈ El, l = 0, 1, . . . , d, the C-multiplicity (or C-local multiplicity) of
the eigenvalue λl is defined by mC(λl) = ‖zC(λl)‖2. Note that, since

E0eC =
1

‖ρC‖
〈ρC, ν〉
‖ν‖2

ν =
1

‖ρC‖
∑

i∈C

νi
νi

‖ν‖2
ν =

‖ρC‖
‖ν‖2

ν,

we get mC(λ0) = ‖ρC‖2
‖ν‖2 . Then, if µ0(= λ0), µ1, . . . , µdC

are the eigenvalues with non-zero
C-multiplicity, the C-spectrum (or C-local spectrum) is defined by

spC Γ := {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
},

with µ0 > µ1 > · · · > µdC
, and the set of different eigenvalues of C is denoted by

evC Γ := {µ0, µ1, . . . , µdC
}. Note that, since eC is unitary, we have

∑dC
l=0 mC(λl) = 1. ,

or As we have done for the spectrum of Γ, in order to simplify notation we introduce the
moment-like parameters

πl(C) :=
∏

0≤h≤dC(h6=l)

|µh − µl| (0 ≤ l ≤ dC).

The set Γk(C) = {v ∈ V |∂(v, C) = k} of vertices at distance k from C is denoted by
Ck. Thus, if C has eccentricity εC, C0(= C), C1, . . . , CεC

is a partition of V . We denote
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by C the set of vertices at maximum distance from C, C = CεC
, and we refer to it as its

antipodal set. If there is no possible confusion, we write D = C.

The polynomial ZC =
∏dC

l=0(x−µl) is the monic polynomial with minimum degree such
that ZCeC = 0, and the polynomial

HC =
‖ν‖2

π0(C)‖ρC‖2

dC∏

l=1

(x− µl)

satisfy HCν = HC(λ0)ν = ‖ν‖2
‖ρC‖2 ν. What is more, HC is the unique polynomial of degree

at most dC satisfying HCρC = ‖ρC‖2
‖ν‖2 HCν = ν and so, inspired by Hoffman [8], it is named

C-local Hoffman polynomial. This allows us to conclude that the eccentricity of C and the
number of C-local eigenvalues are related by εC ≤ dC ; see [5]. In case of equality, εC = dC ,
we say that C is extremal.

Proposition 2.1 Let C be an extremal set and let D be its antipodal set. Then, evC Γ ⊂
evD Γ and the C-multiplicities and D-multiplicities satisfy

mC(µl)mD(µl) ≥ π2
0(C)

π2
l (C)

‖ρC‖2‖ρD‖2

‖ν‖4
for all µl ∈ evC Γ,

where equality is equivalent to the linear dependence of the vectors zC(µl) and zD(µl).

Proof. Consider the interpolating polynomials associated with the local spectrum of C:

ZC
l =

(−1)l

πl(C)

∏

0≤h≤dC (h6=l)

(x− µh) (0 ≤ l ≤ dC),

verifying ZC
l (µh) = δlh. Since both ZC

l and HC have degree dC and their leader coefficients

are, respectively, (−1)l

πl(C) and ‖ν‖2
π0(C)‖ρC‖2 , the polynomial

T = π0(C)
‖ρC‖2

‖ν‖2
HC − (−1)lπl(C)ZC

l

has degree less than dC. The extremal character of C gives that 〈ρC, ZC
l ρD〉 = 〈ZC

l ρC, ρD〉 =
(−1)l

πl(C)〈xdCρC, ρD〉 6= 0. In particular, ZC
l ρD 6= 0. Moreover, if λl ∈ evC Γ,

〈ρC, ZC
l ρD〉 = 〈ρC,

d∑

h=0

ZC
l (λh)EhρD〉

= 〈ρC,
∑

λh 6∈evC Γ
ZC

l (λh)EhρD + ZC
l (λl)ElρD〉

= 〈ρC,ZC
l (λl)ElρD〉 = 〈ρC, zD(µl)〉,
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and evC Γ ⊂ evD Γ.

Since T has degree less than dC = εC , the vectors TeC and eD are orthogonal, giving:

0 = 〈TeC, eD〉 = π0(C)
‖ρC‖2

‖ν‖2
〈HCeC, eD〉 − (−1)lπl(C)〈ZC

l eC ,eD〉

= π0(C)
‖ρC‖

‖ρD‖ ‖ν‖2
〈HCρC, ρD〉 − (−1)lπl(C)〈zC(µl), eD〉

= π0(C)
‖ρC‖

‖ρD‖ ‖ν‖2
〈ν, ρD〉 − (−1)lπl(C)〈zC(µl),zD(µl)〉

= π0(C)
‖ρC‖ ‖ρD‖

‖ν‖2
− (−1)lπl(C)‖zC(µl)‖ ‖zD(µl)‖ cosα

(C,D)
l ,

where α
(C,D)
l is the angle between the vectors zC(µl), zD(µl). Therefore,

〈zC(µl), zD(µl)〉 = (−1)l π0(C)
πl(C)

‖ρC‖ ‖ρD‖
‖ν‖2

, (1)

and also:

π2
0(C)

π2
l (C)

‖ρC‖2‖ρD‖2

‖ν‖4
= mC(µl)mD(µl) cos2 α

(C,D)
l ≤ mC(µl)mD(µl),

where the equality occurs if and only if α
(C,D)
l is 0 or π. 2

Proposition 2.2 Let C be an extremal set and D its antipodal set. Then, the following
statements are equivalent:

(a) For every µl ∈ evC Γ, we have

mC(µl)mD(µl) =
π2

0(C)
π2

l (C)
‖ρC‖2‖ρD‖2

‖ν‖4
.

(b) The projection of the vector m̃D = (‖zD(µ0)‖, ‖zD(µ1)‖, . . . , ‖zD(µεC
)‖) over the

vector mC = (‖zC(µ0)‖, ‖zC(µ1)‖, . . . , ‖zC(µεC
)‖) is

‖ρC‖ ‖ρD‖
‖ν‖2

εC∑

l=0

π0(C)
πl(C)

,

or, equivalently,
( εC∑

l=0

mD(µl)

)
cos2 α(C,D) =

( εC∑

l=0

π0(C)
πl(C)

)2 ‖ρC‖2 ‖ρD‖2

‖ν‖4
,

where α(C,D) is the angle between the two vectors.
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(c) There exists a polynomial p ∈ RεC
[x] such that

ρD = pρC + z, where z ∈ ⊕
λl∈evD Γ\evC Γ El.

(d) For every µl ∈ evC Γ, we have

‖ρD‖2

∑εC
l=0 mD(µl)

= ‖ν‖2

( εC∑

l=0

mC(µ0)π2
0(C)

mC(µl)π2
l (C)

)−1

.

Proof. By adding up for l = 0, 1, . . . , εC the inequalities given in Proposition 2.1 we
obtain:

〈mC, m̃D〉 = ‖m̃D‖ cosα(C,D) =
εC∑

l=0

‖zC(µl)‖ ‖zD(µl)‖ ≥ ‖ρC‖ ‖ρD‖
‖ν‖2

εC∑

l=0

π0(C)
πl(C)

,

giving the equivalence between (a) and (b).

Suppose that (a) holds. Then, given µl ∈ evC Γ, the vectors zD(µl), zC(µl) are propor-
tional. More precisely, by (1), there exist ξl > 0 such that zD(µl) = (−1)lξlzC(µl). Let p

be the unique polynomial in RεC
[x] such that p(µl) = (−1)l ‖ρD‖

‖ρC‖ ξl for all µl ∈ evC Γ. We
have

ElρD = ‖ρD‖zD(µl) = (−1)l‖ρD‖ξlzC(µl)

= (−1)l ‖ρD‖
‖ρC‖ ξlElρC = p(µl)ElρC = ElpρC.

Thus the vector z = ρD − pρC ∈ ⊕
λl∈evD Γ\evC Γ El and (c) is obtained. Conversely,

assuming that (c) holds, by projecting on El we obtain ‖ρD‖zD(µl) = p(µl)‖ρC‖zC(µl)
and Proposition 2.1 gives (a).

Finally we prove the equivalence between (c) and (d). The existence of the polynomial
p in (c) is equivalent to the linear dependence of the vectors zD(µl) and zC(µl) for all
µl ∈ evC Γ, and Proposition 2.1 ensures us that

mC(µl)mD(µl) =
π2

0(C)
π2

l (C)
‖ρC‖2‖ ‖ρD‖2

‖ν‖4
(0 ≤ l ≤ dC).

Hence, in this case,

εC∑

l=0

mD(µl) =
‖ρC‖2‖ρD‖2

‖ν‖4

εC∑

l=0

π2
0(C)

mC(µl)π2
l (C)

=
‖ρD‖2

‖ν‖2

εC∑

l=0

mC(µ0)π2
0(C)

mC(µl)π2
l (C)

, (2)

and the proof is concluded. 2

Corollary 2.3 The polynomial p described in Proposition 2.2(c) satisfies the following
properties:



7

(a) p ∈ RεC
[x] is unique, has degree εC and all its roots are real, different and interlace

the eigenvalues µ0, µ1, . . . , µεC
.

(b) Its value at µ0 is:

p(µ0) =
‖ρD‖2

‖ρC‖2
=

‖ν‖2

‖ρC‖2

( εC∑

l=0

mD(µl)

) ( εC∑

l=0

mC(µ0)π2
0(C)

mC(µl)π2
l (C)

)−1

.

(c) Given q ∈ RεC−1[x], we have:

εC∑

l=0

mC(µl)p(µl)q(µl) = 0 and
εC∑

l=0

mC(µl)p2(µl) =

( εC∑

l=0

mD(µl)

)
p(µ0) .

Proof. (a) Using (1), the computation

(−1)l π0(C)
πl(C)

‖ρC‖ ‖ρD‖
‖ν‖2

= 〈zC(µl),zD(µl)〉 = 〈eC, EleD〉

=
1

‖ρC‖ ‖ρD‖〈ρC, ElρD〉

=
1

‖ρC‖ ‖ρD‖〈ρC, ElpρC〉

=
1

‖ρC‖ ‖ρD‖p(µl)〈ρC, ElρC〉

=
‖ρC‖
‖ρD‖p(µl)〈zC(µl), zC(µl)〉 = mC(µl)

‖ρC‖
‖ρD‖p(µl),

gives

p(µl) = (−1)l π0(C)
mC(µl)πl(C)

‖ρD‖2

‖ν‖2
for all µl ∈ evC, (3)

thus, the polynomial p ∈ RεC
[x] is unique and the alternance of the sign over evC Γ

guaranties that their roots interlace its elements.

(b) From Proposition 2.2 (c) we get ‖ρD‖2 = 〈pρC, ν〉 = 〈ρC, pν〉 = p(µ0)〈ρC, ν〉 =
p(µ0)‖ρC‖2. This, together with Proposition 2.2 (d), gives the equalities.

(c) Using (b) and (3),

εC∑

l=0

mC(µl)p2(µl) =
εC∑

l=0

mC(µl)
π2

0(C)
m2

C(µl)π2
l (C)

‖ρD‖4

‖ν‖2

=
‖ρD‖4

‖ρC‖4

εC∑

l=0

m2
C(µ0)π2

0(C)
mC(µl)π2

l (C)

=
‖ρD‖2

‖ρC‖2

εC∑

l=0

mD(µl) =

( εC∑

l=0

mD(µl)

)
p(µ0) .
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The polynomials

ZC
l =

(−1)l

πl(C)

∏

0≤h≤εC (h6=l)

(x− µh) (0 ≤ l ≤ εC),

verifying ZC
l (µh) = δlh, allow us to write every polynomial q ∈ RεC

[x] as q =
∑εC

l=0 q(µl)ZC
l .

In particular,
∑εC

l=0 µk
l Z

C
l = xk, k = 0, 1, . . . , εC. Equating the coefficients of degree εC we

obtain
εC∑

l=0

(−1)l µk
l

πl(C)
= δkεC

(0 ≤ k ≤ εC).

Then,
εC∑

l=0

(−1)l q(µl)
πl(C)

= 0 for all q ∈ RεC−1[x], (4)

and
εC∑

l=0

mC(µl)p(µl)q(µl) = π0(C)
‖ρD‖2

‖ν‖2

εC∑

l=0

(−1)l q(µl)
πl(C)

= 0. 2

Corollary 2.4 Let C ⊂ V be an extremal set with spC Γ = {µ0, µ1, . . . , µdC
} and let D be

its antipodal set. If the statements of Proposition 2.2 hold, then the angle between the vec-
tors mC = (‖zC(µ0)‖, ‖zC(µ1)‖, . . . , ‖zC(µdC

)‖), m̃D = (‖zD(µ0)‖, ‖zD(µ1)‖, . . . , ‖zD(µdC
)‖)

satisfy

cosα(C,D) =

∑εC
l=0

1
πl(C)√∑εC

l=0
1

mC(µl)π
2
l (C)

.

3 C-local pseudo-distance-regularity in combinatorial sense

The notion of pseudo-distance-regularity was first introduced in [7] as a generalization
for non-regular graphs of the distance-regularity. More precisely, in this section we are
interested in C-local pseudo-distance-regularity, which, when restricted to regular graphs,
is equivalent to the fact that C is a completely regular code. For a more exhaustive
study of this property see [5], where the authors obtain several characterizations which,
in particular, yield new characterizations for completely regular codes.

Given a set of vertices of a graph Γ, C, with eccentricity εC, we associate to it the
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functions a, b, c : V −→ [0, λ0] defined for i ∈ Ck by

c(i) =





0 (k = 0);
1
νi

∑

j∈Γ(i)∩Ck−1

νj (1 ≤ k ≤ εC).

a(i) =
1
νi

∑

j∈Γ(i)∩Ck

νj (0 ≤ k ≤ εC).

b(i) =





1
νi

∑

j∈Γ(i)∩Ck+1

νj (0 ≤ k ≤ εC − 1);

0 (k = εC).

Since ν is an eigenvector of eigenvalue λ0,

c(i) + a(i) + b(i) =
1
νi

∑

j∈Γ(i)

νj = λ0 for all i ∈ V,

that is, the sum over the three functions a, b, c, is constant and their images are all in
[0, λ0]. In other words, by assigning weight νi to each vertex i, the average weight degree
becomes constant and the graph is “regularized”. Note that, since every vertex in Ck must
be adjacent to a vertex of Ck−1, the function c is strictly positive over V \ C0. We say
that C is a flowing set when the associated function b is strictly positive over V \ CεC

.

Lemma 3.1 Let C ∈ V be a set of vertices with eccentricity εC and let D be its antipodal
set. Then, C is a flowing set if and only if εC = εD = ε and the corresponding distance
partitions, C0(= C), C1, . . . , Cε and D0(= D), D1, . . . , Dε, satisfy Dk = Cε−k, 0 ≤ k ≤ ε.

Proof. The condition suffices to guaranty that C is a flowing set since it implies
that the function b corresponding to C coincides with the function c corresponding to D.
Conversely, if C is a flowing set, every vertex in Ck is at distance εC − k from D and then
Ck ⊂ DεC−k, 0 ≤ k ≤ εC. From this we get

V = C0 ∪ C1 ∪ · · · ∪ CεC
⊂ DεC

∪DεC−1 ∪ · · · ∪D0 ⊂ V

and, since Ck (respectively, Dk), 1 ≤ k ≤ εC, do not intersect each other, εC = εD = ε
and Dk = Cε−k, 0 ≤ k ≤ ε. 2

Note that, by symmetry, the previous lemma establishes that C is a flowing set if and
only if D is.

Definition 3.2 A graph Γ is C-local pseudo-distance-regular (or pseudo-distance -regular
around C ) in combinatorial sense when the functions c, a and b associated to C are
constant over every Ck, k = 0, 1, . . . , εC.
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Its clear that if a graph Γ is C-local pseudo-distance-regular in combinatorial sense,
then C is a flowing set. In this case, from Lemma 3.1 we have that D = C and the
distance partitions associated to C and D coincide. Moreover, in this case, Γ is also
D-local pseudo-distance-regular with the roles of the functions b and c interchanged.

In a C-local pseudo-distance-regular graph, we indicate by ck, ak and bk the values of c,
a and b, respectively, over a vertex of Ck, and we refer to them as the pseudo-intersection
numbers of C. Note that when Γ is a regular graph and C consists of a single vertex, the
above numbers become the usual intersection numbers.

3.1 Some characterizations of C-local pseudo-distance-regularity

In [5], several quasi-spectral characterizations of pseudo-distance-regularity around a ver-
tex set are given. The authors obtain their results through a sequence of orthogonal
polynomials constructed from the C-local spectrum. In order to introduce these poly-
nomials, let us first define, in the quotient ring R[x]/(ZC), the following C-local scalar
product:

〈p, q〉C := 〈peC , qeC〉 =
dC∑

l=0

mC(µl)p(µl)q(µl).

A family of polynomials r0, r1, . . . , rdC
is an orthogonal system with respect to the C-local

scalar product when deg rk = k and 〈rk, rh〉C = δkh, 0 ≤ k, h ≤ dC . Then, the family of
C-local predistance polynomials, {pC

k }0≤k≤dC
is the unique orthogonal system with respect

to the C-local scalar product such that ‖pC
k ‖2

C = pC
k (λ0), k = 0, 1, . . . , dC ; see [2].

As mentioned, several characterizations of C-local pseudo-distance-regularity can be
obtained in terms of these polynomials which, in this case, are called C-local distance
polynomials; see [5].

Theorem 3.3 A graph Γ = (V, E) is pseudo-distance-regular around a set C ⊂ V , with
eccentricity εC, if and only if there exist a sequence of polynomials r0, r1, . . . , rεC

, with
deg rk = k, such that ρCk = rkρC for any 0 ≤ k ≤ εC. Moreover, in this case, εC = dC

and the the polynomials {rk}0≤k≤dC
are the C-local (pre)distance polynomials. 2

Moreover, for an extremal set C, εC = dC, the C-local pseudo-distance-regularity can
be characterized in terms of only the highest degree C-local predistance polynomial.

Theorem 3.4 Let Γ = (V, E) be a graph containing an extremal set C ⊂ V . Let C denote
the antipodal set of C. Then the following statements are equivalent:

(a) Γ is C-local pseudo-distance-regular in combinatorial sense.

(b) pC
dC

ρC = ρC.

(c) pC
dC

(λ0) = ‖ρC‖2
‖ρC‖2 . 2
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The results of the above two theorem will be proved in the next section, by using an
algebraic (or Terwilliger-like) approach to pseudo-distance-regularity around C.

4 C-local pseudo-distance-regularity in algebraic sense

Let C ⊂ V be a set of vertices of a simple connected graph Γ = (V, E). For each
k = 0, 1, . . . , εC, let E?

k be the vector space having {ei}i∈Ck
as a basis. Denote by E?

k the
projection V → E?

k . As a generalization of the subconstituent algebras defined in [11],
also known as Terwilliger algebras, we consider the algebra TC generated by the linear
operators {A, E?

0, E
?
1, . . . ,E

?
εC
}. A TC-module W is a subspace of V which is invariant

under the action of TC, that is, TCW = W .

In the context of association schemes, Terwilliger [11] defined a thin module as a mod-
ule W satisfying dimE?

kW ≤ 1 for every k. As commented in [3, 5], if we consider a
single vertex i, the notion of {i}-local pseudo-distance-regularity is equivalent to the thin
character of the primary Ti-module, that is, the unique irreducible module containing
ρ{i} = νiei. With the aim of generalize this definition to any subset of vertices, let us
consider a vector wC ∈ E?

0 and WC := TCwC ⊂ V, the minimum TC-module containing wC .
The definition of C-local pseudo-distance-regularity in algebraic sense will require the sub-
spaces E?

kWC , k = 0, 1, . . . , dC, to be one-dimensional. Let us first study some conditions
that wC must satisfy. Let wC =

∑
i∈C ξiei. Since Ek = (−1)k

πk

∏
0≤l≤d (l 6=k)(A−λlI) ∈ TC ,

k = 0, 1, . . . , dC , we have

E?
kE0wC =

∑

i∈C

ξiE
?
kE0

(
νi

‖ν‖2
ν + zi(λ1) + . . . + zi(λd)

)

=
∑

i∈C

ξiνi

‖ν‖2
E?

kν =

(∑

i∈C

ξiνi

‖ν‖2

)
ρCk .

Thus if dimE?
kWC = 1, the vector ρCk will constitute a basis of E?

kWC. In particular,
wC = E?

0IwC is linearly dependent with ρC0. Thus, the generalization for a set of vertices
of the definition of Terwilliger for a single vertex must be:

Definition 4.1 A graph Γ is C-local pseudo-distance-regular in algebraic sense when
dimE?

kWC = 1, k = 0, 1, . . . , εC, where WC is the TC-module WC := TCρC.

This definition generalizes also, for any graph, the one given in [10] for a set of vertices
in a distance-regular graph.

From the previous comments, if Γ is C-local pseudo-distance-regular in algebraic sense,
E?

kTρC ∈ 〈ρCk〉 for every T ∈ TC and k = 0, 1, . . . , εC. The following result gives a
characterization of C-local pseudo-distance-regularity in algebraic sense, which coincides
with the one of Theorem 3.3. This proves the equivalence between combinatorial and
algebraic C-local pseudo-distance-regularity.
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Theorem 4.2 A graph Γ is C-local pseudo-distance-regular in algebraic sense if and only
if there exist polynomials p0, p1, . . . , pεC

in RεC
[x] such that pkρC = ρCk, k = 0, 1, . . . , εC.

Proof. Suppose that Γ is C-local pseudo-distance-regular in algebraic sense. Given
r ∈ RεC

[x] and k = 0, 1, . . . , εC, consider ξk(r) ∈ R such that E?
krρC = ξk(r)ρCk. We

have that the map

RεC
[x] Θ−→ RεC+1 defined by Θr := (ξ0(r), ξ1(r), . . . , ξεC

(r)) (5)

is linear. If r ∈ RεC
[x] satisfies Θr = 0 then E?

krρC = 0 for every k and rρC =(∑εC
k=0 E?

k

)
rρC = 0. Consequently, r will vanish over all the dC + 1 elements of evC Γ,

and, since deg r ≤ εC ≤ dC , we conclude that r = 0. This proves that Θ is an isomorphism,
and by considering the polynomial pk ∈ RεC

[x] such that

Θpk = (0, . . . ,
(k)

1 , . . . , 0),

we have that pkρC = ρCk, k = 0, . . . , εC.

Conversely, let us now show that the existence of such polynomials implies the C-local
pseudo-distance-regularity. With this aim, consider the polynomial q = p0 + p1 + · · · +
pεC

∈ RεC
[x] satisfying qρC =

∑εC
k=0 ρCk = ν. Thus, q(µ0) = ‖ν‖2

‖ρC‖2 and q(µl) = 0,
l = 1, . . . , dC, giving dC ≤ deg q ≤ εC ≤ dC, so that C is extremal (εC = dC). Moreover,
q = ‖ν‖2

π0(C)‖ρC‖2 (x− µ1) · · · (x− µεC
) = HC, the C-local Hoffman polynomial.

The hypothesis guaranties that the polynomials pk, k = 0, 1, . . . , εC , constitute a basis
of RεC

[x], identified with R[x]/(ZC). Define γl
hk ∈ R by

phpk =
εC∑

l=0

γl
hkpl (0 ≤ h, k ≤ εC).

Every element of E?
kTCρC can be seen as a linear combination of vectors TrTr−1 · · ·T1ρC,

where Tl = E?
tl
psl

, 1 ≤ l ≤ r and tr = k. We can suppose that s1 = t1 (since, otherwise,
we get the zero vector). Then,

T1ρC = E?
t1ps1ρC = E?

t1ρCs1 = ρCs1 = ps1ρC,

T2T1ρC = E?
t2ps2ps1ρC = E?

t2

( εC∑

l=0

γl
s2s1

pl

)
ρC = E?

t2

εC∑

l=0

γl
s2s1

ρCl = γt2
t1s2

ρCt2

= γt2
t1s2

pt2ρC

and, iterating, we get

Tr · · ·T1ρC = γt2
t1s2

· · · γtr
tr−1sr

ptrρC = γt2
t1s2

· · · γtr
tr−1sr

ρCk .

Hence, dimE?
kWC = 1, k = 0, 1, . . . , εC, and Γ is C-local pseudo-distance-regular in

algebraic sense. 2
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In particular, notice that we have shown that the condition of being extremal, εC = dC ,
is necessary for having C-local pseudo-distance-regularity. Moreover, the polynomials of
Theorem 4.2 satisfy the following properties:

Corollary 4.3 Let Γ = (V,E) be a graph and C ⊂ V such that Γ is C-local pseudo-
distance-regular in algebraic sense. For every k = 0, 1, . . . εC(= dC), the polynomial pk ∈
RεC

[x] satisfying pkρC = ρCk is unique, it has degree k, and coincides with the C-local
predistance polynomial, pk = pC

k .

Proof. The unicity is provided by the fact that the map Θ defined in (5) is an
isomorphism. In particular, this gives that p0 = 1. Now, consider 1 ≤ k ≤ dC, if
deg pk < k a contradiction arises: ‖ρCk‖2 = 〈pkρC, ρCk〉 = 0. Let s, 1 ≤ s ≤ εC − 1, be
the maximum integer such that deg ps > s. There exist ξs+1, . . . , ξεC

∈ R such that the
polynomial q = ps + ξs+1ps+1 + · · ·+ ξεC

pεC
has degree less or equal to s. Consider l such

that ξl 6= 0.

〈qρC, ρCl〉 = 〈psρC, ρCl〉+
εC∑

h=s+1

ξh〈phρC, ρCl〉

= 〈ρCs, ρCl〉+
εC∑

h=s+1

ξh〈ρCh, ρCl〉 = ξl‖ρCl‖2 6= 0 .

On the other hand, since deg q ≤ s < s+1 ≤ l, we get 〈qρC, ρCl〉 = 0, which is impossible.
So it does not exists such an index s and deg pk = k for every 0 ≤ k ≤ εC. Finally, the
polynomials {pk}0≤k≤εC

are orthogonal:

〈pk, ph〉C = 〈pkeC , pheC〉 =
1

‖ρC‖2
〈ρCk, ρCh〉 = 0 for k 6= h,

and they have norm:

‖pk‖2
C =

1
‖ρC‖2

〈pkρC, pkρC〉 =
1

‖ρC‖2
〈ρCk, ρCk〉

=
1

‖ρC‖2
〈ν, pkρC〉 =

1
‖ρC‖2

〈pkν, ρC〉 =
pk(µ0)
‖ρC‖2

〈ν, ρC〉 = pk(µ0).

Consequently, they are the C-local predistance polynomials {pC
k }0≤k≤dC

, as claimed. 2

The following result gives another characterization of C-local pseudo-distance-regularity,
which is proved by using the algebraic approach.

Theorem 4.4 Let Γ = (V, E) be a graph with vertex subset C ∈ V having eccentricity
εC and local eigenvalues evC Γ = {µ0, µ1, . . . , µdC

}. Let us consider the distance partition
V = C0 ∪ C1 ∪ · · · ∪ CεC

given by the distance to C, and the spectral decomposition
ρC = ẑC(µ0) + ẑC(µ1) + · · · + ẑC(µdC

). Then, Γ is C-local pseudo-distance-regular in
algebraic sense if and only if the subspaces of V generated by ρC0,ρC1, . . . , ρCεC

and by
ẑC(µ0), ẑC(µ1), . . . , ẑC(µdC

) coincide.
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Proof. Let R = 〈ρC0, ρC1, . . . ,ρCεC
〉 and S = 〈ẑC(µ0), ẑC(µ1), . . . , ẑC(µdC

)〉. Note
that, since the involved vectors are linearly independent, dimR = εC and dimS = dC.

Suppose that Γ is C-local pseudo-distance-regular in algebraic sense. Theorem 4.2
guaranties that C is extremal, dC = εC , and there exist polynomials p0, p1, . . . , pεC

in
RεC

[x] such that pkρC = ρCk, k = 0, 1, . . . , εC . Given h, 0 ≤ h ≤ εC, we have

ẑC(µh) = EhρC =

( εC∑

k=0

E?
k

)
EhρC =

εC∑

k=0

E?
kEhρC =

εC∑

k=0

ahkρCk, (6)

where ahk ∈ R, thus ẑC(µh) ∈ S and R = S.

Suppose now that R = S. In particular, εC = dC and C is extremal. For every k,
k = 0, 1, . . . εC, there are bkh ∈ R, h = 0, 1, . . . , εC, satisfying

ρCk =
εC∑

h=0

bkhẑC(µh).

Define pk ∈ RεC
[x] as the unique polynomial such that pk(µh) = bkh for every h =

0, 1, . . . , εC. Then

ρCk =
εC∑

h=0

bkhẑC(µh) =
εC∑

h=0

pk(µh)ẑC(µh) = pk

εC∑

h=0

ẑC(µh) = pkρC0, (7)

and Γ is C-local pseudo-distance-regular in algebraic sense. 2

Consider the vector space VC := {qρC : ∀q ∈ R[x]}. Since {ZC
k }0≤k≤dC

is a basis
of RdC

[x], VC = 〈ẑC(µ0), ẑC(µ1), . . . , ẑC(µdC
)〉. Taking in mind that dC ≥ εC, the next

corollary is obtained.

Corollary 4.5 Γ is C-local pseudo-distance-regular in algebraic sense if and only if

qρC ∈ 〈ρC0, ρC1, . . . ,ρCεC
〉 ∀q ∈ R[x] ,

or, equivalently, if and only if there exists a basis B of RdC
[x] such that

bρC ∈ 〈ρC0, ρC1, . . . ,ρCεC
〉 for all b ∈ B .

An interesting application of this corollary is the following characterization of a com-
pletely regular code (for other characterizations, see e.g. [6, 9]).

Theorem 4.6 Let Γ = (V,E) be a regular graph. Then C ⊂ V is a completely regular
code if and only if, for any given nonnegative integers ` ≤ dC and k ≤ εC, the number of
`-walks between (the vertices of ) C and i ∈ Ck does not depend on the vertex i.
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Proof. In Corollary 4.5 take the canonical basis B = {1, x, x2, . . . , xdC} of RdC
[x].

Then, there exist constants αh, 0 ≤ h ≤ εC, such that x`ρC =
∑εC

h=0 αhρCh. Hence,

(x`ρC)i =
(
A` ∑

j∈C ej

)
i
=

∑
j∈C(A`)ji

=
(∑εC

h=0 αhρCh

)
i
=

∑εC
h=0 αh

(∑
j∈Ch

ej

)
i
=

∑εC
h=0 αhδhk = αk.

From this, we get the result. 2

As the authors of [5] established in the study of the C-local pseudo-distance regularity
from a combinatorial point of view, the conditions of Theorem 4.2 can be apparently
relaxed by restricting them to the set of vertices at maximum distance from C, provided
that C is extremal.

Theorem 4.7 Let Γ = (V, E) be a graph and let C ⊂ V be an extremal set. Let
C0, C1, . . . , CεC

be the distance partition of V given by the distance to C. Then, Γ is
C-local pseudo-distance-regular in algebraic sense if and only if there exists a polynomial
p ∈ RεC

[x] such that pρC = ρCεC
.

Proof. The necessity of the condition follows from Theorem 4.2. To proves suffi-
ciency, let evC Γ = {µ0, µ1, . . . , µεC

} and ẑC(µk) = EkρC, 0 ≤ k ≤ εC . In particular
zC(µ0) = ‖ρC‖2

‖ν‖2 ν. We claim that ρCk ∈ 〈ẑC(µ0), ẑC(µ1), . . . , ẑC(µεC
)〉, k = 0, . . . , εC ,

thus, by applying Theorem 4.4 the result arises.

Note that for k = 0 the claim is trivially satisfied and the case k = εC is guarantied
by the hypothesis: ρCεC

= pρC =
∑εC

l=0 p(µl)ẑC(µl). Let D be the subset of vertices at

distance εC from C, D = C. From ρD = pρC we get p(µ0) = ‖ρD‖2
‖ρC‖2 and, since ∂(u, v) ≥ εC

for every u ∈ C and v ∈ D, εD ≥ εC. Moreover, the equality pρC = p(µ0)zC(µ0) + · · ·+
p(µdC

)zC(µdC
) = ρD gives dC ≥ dD. All together, we have εD ≥ εC = dC ≥ dD ≥ εD, thus

(ε :=) εD = εC and (M :=) evC Γ = evD Γ. Note that p ∈ Rε[x] must have degree ε and
has an inverse p−1 in the ring Rε[x]/(Z), being Z :=

∏ε
l=0(x− µl).

Consider the normalized weight functions on M given by the C-local and D-local
multiplicities: mC(µl) = ‖ElρC‖2

‖ρC‖2 and mD(µl) = ‖ElρD‖2
‖ρD‖2 . From ElρD = ElpρC =

p(µl)ElρC, we have

mD(µl) =
‖ElρD‖2

‖ρD‖2
= p2(µl)

‖ElρC‖2

‖ρC‖2

‖ρC‖2

‖ρD‖2
=

p2(µl)
p(µ0)

mC(µl) .

The orthogonal systems corresponding to the C-local predistance polynomials, {pk}0≤k≤ε,
and D-local predistance polynomials, {pk}0≤k≤ε, are related (in R[x]/I) by pk = p−1

ε pε−k,
0 ≤ k ≤ ε, where, as we have already seen, pε = p. (The existence of p−1

ε is assured by
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Corollary 2.3(a).) Indeed,

〈pk, ph〉D =
ε∑

l=0

mD(µl)pk(µl)ph(µl)

=
1

p(µ0)

ε∑

l=0

mC(µl)p2(µl)p−1(µl)pε−k(µl)p−1(µl)pε−h(µl) =

=
1

p(µ0)

ε∑

l=0

mC(µl)pε−k(µl)pε−h(µl) =
1

p(µ0)
〈pε−k, pε−h〉C

= δkhp−1(µ0)pε−k(µ0) = δkhpk(µ0).

Given 1 ≤ k ≤ ε− 1, let us consider the set Sk = {r + ps : r ∈ Rk−1[x], s ∈ Rε−k−1[x]}.
Then, for any q ∈ Sk, we have:

〈qρC, ρCk〉 = 〈rρC, ρCk〉+ 〈sρD, ρCk〉 = 0. (8)

Note also that

Rε[x] = 〈p0, . . . , pk−1, pk, pk+1, . . . , pε〉 = 〈p0, . . . , pk−1, pk, pεp̄ε−k−1, . . . , pεp̄0〉
= Sk ⊥C 〈pk〉. (9)

Consider the principal idempotents EC
l , l = 0, 1, . . . , ε corresponding to the members

of the C-spectrum, that is EC
l is the projection onto the eigenspace corresponding to µl.

The polynomials

ZC
l =

(−1)l

πl(C)

∏

0≤h≤ε h 6=l

(x− µh)

satisfy, in
⊕ε

l=0 Ker(A − µlI), that ZC
l (A) = EC

l . Using (8) and (9), we get ZC
l =

qlk + ξlkpk, and, since ξlkpk(µ0) = 〈ξlkpk, pk〉C = 〈ZC
l , pk〉C = mC(µl)pk(µl),

ZC
l = qlk + mC(µl)

pk(µl)
pk(µ0)

pk , qlk ∈ Sk (0 ≤ l, k ≤ ε),

In particular,

ZC
0 = q0k + mC(µ0)pk = q0k +

‖ρC‖2

‖ν‖2
pk , amb q0k ∈ Sk (0 ≤ k ≤ ε) (10)

Using (9) again we obtain

mC(µl)
pk(µl)
pk(µ0)

〈pkρC, ρCk〉 = 〈ZC
l ρC, ρCk〉 = 〈zC(µl), EC

l ρCk〉

= ‖ρC‖
√

mC(µl)‖EC
l ρCk‖ cosαlk,
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where αlk is the angle between EC
l ρCk and zC(µl), giving the inequalities

mC(µl)
p2

k(µl)
p2

k(µ0)
〈pkρC, ρCk〉2 = ‖ρC‖2‖EC

l ρCk‖2 cos2 αlk

≤ ‖ρC‖2‖EC
l ρCk‖2 (0 ≤ l, k ≤ ε). (11)

By adding up the previous inequalities for l = 0, 1, . . . , dC , we obtain

1
pk(µ0)

〈pkρC, ρCk〉2
(8a)

≤ ‖ρC‖2
ε∑

l=0

‖EC
l ρCk‖2

(8b)

≤ ‖ρC‖2‖ρCk‖2 (0 ≤ k ≤ ε) (12)

From (10) and (12) we obtain

‖ρC‖4

‖ν‖4
‖ρCk‖4 =

‖ρC‖4

‖ν‖4
〈ν, ρCk〉2 = 〈EC

0 ρC, ρCk〉2

=
‖ρC‖4

‖ν‖4
〈pkρC, ρCk〉2 ≤ ‖ρC‖4

‖ν‖4
pk(µ0)‖ρC‖2‖ρCk‖2

giving that
‖ρCk‖2 ≤ ‖ρC‖2pk(µ0) (0 ≤ k ≤ ε) (13)

and, by adding up for k = 0, 1, . . . , ε,

‖ν‖2 ≤ ‖ρC‖2
ε∑

k=0

pk(µ0) = ‖ρC‖2HC(µ0) = ‖ν‖2,

we conclude that (13), (12b) and (11) are all equalities. Thus,

pk(µ0) =
‖ρCk‖2

‖ρC‖2
, evCk

Γ ⊂ evC Γ (0 ≤ k ≤ ε) ,

and, for 0 ≤ l, k ≤ ε, there exist ψlk such that EC
l ρCk = ψlkzC(µl). Finally, the expressions

ρCk =
ε∑

l=0

EC
l ρCk =

ε∑

l=0

ψlkzC(µl) ∈ 〈zC(µ0),zC(µ1), . . . ,zC(µε)〉 (0 ≤ k ≤ ε)

yield that Γ is C-local pseudo-distance-regular in algebraic sense. 2

As a consequence, we have the following quasi-spectral characterization of C-local
pseudo-distance-regularity .

Theorem 4.8 Let Γ = (V, E) be a graph with an extremal set C ⊂ V and C-local spectrum

spC Γ = {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
}. Let C be its antipodal set. Then, Γ is C-

local pseudo-distance-regular if and only the highest degree C-local predistance polynomial
satisfies

pC
dC

(µ0) =
‖ρC‖2

‖ρC‖2
=

‖ν‖2

‖ρC‖2

( εC∑

l=0

mC(µl)

) ( εC∑

l=0

mC(µ0)π2
0(C)

mC(µl)π2
l (C)

)−1

.
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Proof. Let d = dC , Nd−1 =
⋃d−1

k=0 Ck = V \C, pd = pC
dC

, and qd−1 =
∑d−1

k=0 pC
k = HC−pd.

Then, as deg qd−1 = d− 1, we have:

〈ρNd−1, qd−1ρC〉 = 〈ν − ρC, qd−1ρC〉 = 〈ν, qd−1ρC〉 = 〈qd−1ν, ρC〉 = qd−1(µ0)‖ρC‖2,

and

‖qd−1ρC‖2 = ‖ρC‖2‖qd−1‖2
C = ‖ρC‖2

∥∥∥∑d−1
k=0 pC

k

∥∥∥
2

C

= ‖ρC‖2
∑d−1

k=0 ‖pC
k ‖2

C
= ‖ρC‖2qd−1(µ0).

Hence, the Cauchy-Schwarz inequality gives:

〈ρNd−1, qd−1ρC〉2 = q2
d−1(µ0)‖ρC‖4 ≤ ‖ρNd−1‖2‖ρC‖2qd−1(µ0)

so that

qd−1(µ0) ≤ ‖ρNd−1‖2

‖ρC‖2
⇔ pd(µ0) ≥ ‖ρC‖2

‖ρC‖2
,

where we have used that qd−1(µ0) = ‖ν‖2
‖ρC‖2 − pd(µ0) and ‖ρNd−1‖2 = ‖ν‖2 − ‖ρC‖2.

Moreover, if the above inequalities are equalities, the corresponding vectors are colinear,
qd−1ρC = αρNd−1 with α ∈ R. But, taking square norms, ‖qd−1ρC‖2 = ‖ρC‖2‖qd−1‖2

C =
‖ρC‖2qd−1(µ0) = α2‖ρNd−1‖2, we have that α = 1, and the resulting vector equality is
equivalent to pdρC = αρC. Consequently, Corollary 2.3(b) and Theorem 4.7 give the
result. 2
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