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a Dept. Matemàtica Aplicada IV, EPSC, Universitat Politècnica de Catalunya
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Abstract

The betweenness centrality of a vertex of a graph is the portion
of shortest paths between all pairs of vertices passing through that
vertex. We study selected general properties of this invariant and its
relations to distance parameters (diameter, mean distance); also, there
are studied properties of graphs whose vertices have the same value of
betweenness centrality.

1 Introduction

Throughout this paper, we consider connected finite graphs without loops or
multiple edges; we will use standard graph theory terminology by [5].
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Among the applications of graph theory the analysis of complex networks
is the one which has an important place, as it describes relations between
real-world objects of various nature. As a part of such an analysis, there are
investigated objects that play the key role within a network. The measure
of importance of objects is usually expressed in terms of so called centrality
indices. In [9], Freeman introduced several such indices; the one with the most
frequent use is the betweenness centrality which can be described, using the
graph terminology, as the portion of shortest paths of a graph that pass
through a selected vertex. Apart of the use in real network analysis, the
attention is recently focused also on its mathematical properties. In [4], there
are studied the Laplacian spectral bounds of betweenness and its relation to
other invariants of graphs like diameter or mean distance. The paper [7]
deals with estimations on betweenness of vertices in bipartite graphs. In [8],
the betweenness of vertices within their ego networks (that is, within graphs
induced on their neighbourhoods) is discussed as well as its correlation with
betweenness of vertices in random graphs and real-world networks. The
concept of betweenness was also defined for edges and applied in clustering
algorithms for determining the communities within social networks [13].

The aim of these notes is to continue the study of selected properties of
betweenness centrality and its relations with other graph invariants. The
Section 2 contains basic definitions and properties of betweenness. In Sec-
tion 3, we study estimations of the average vertex betweenness of general
and triangle-free graphs. We also explore the structure of triangle-free graph
having a vertex with the betweenness reaching the theoretical minimum.
The influence of selected graph operations (like edge or vertex addition) on
the average betweenness is discussed in Section 4. The final Section 5 deals
with betweenness-selfcentric graphs (that is, the graphs having the same be-
tweenness for each vertex). We give several constructions for such graphs;
besides we show that each strongly regular graph possesses this property
(which partially answers the question in [14] on the existence of betweenness-
selfcentric graphs with trivial automorphism group). Furthermore, we show
that the only betweenness-selfcentric graphs with universal vertex are com-
plete graphs.
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2 Basic definitions and properties

Given a connected graph G = (V,E), n and m denote the number of its
vertices and edges, respectively. The set of all neighbors of a vertex x is
N(x), and the degree of x is d(x) = |N(x)|. The average degree of G is the
ratio d = 2m/n. We denote by δ and ∆ the minimum and the maximum
degree of the vertices of the graph, respectively. Given two vertices u, v ∈ V ,
d(u, v) stands for their distance (that is, the length of a shortest u-v-path) in
G. The complement of the graph G is denoted by G and the graph constructed
by taking t disjoint copies of G is denoted by tG.

For any two vertices u, v ∈ V , d(u, v) denotes their distance (that is,
the length of a shortest u-v-path) in G; the mean distance l of G is equal
to 1

n(n−1)

∑
(u,v)∈V 2

d(u, v). By σu,v we denote the number of all shortest u-v-

paths, and by σu,v(x) the number of all shortest u-v-paths passing through
a vertex x 6= u, v. Let bu,v(x) = σu,v(x)/σu,v, then the betweenness B(x) of a
vertex x is defined as

∑
(u,v)∈V 2

bu,v(x) (note that, if u and v belong to different

components of G, then the corresponding term is not included in the sum).

The betweenness of the graph G is B(G) =
1

n

∑
x∈V

B(x).

We note that other authors (cf. [9]) consider the above defined sum for
unordered pairs of vertices. Our definition matches the one given in [4] and
allows to transfer the concept of betweenness to directed graphs (see also
[?]). Throughout this paper, all sums involving betweenness are considered
as being summed over ordered pairs of vertices from a given set.

Using the definition of betweenness, we obtain that B(x) ≤ (n−1)(n−2)
and the equality holds if and only if G ∼= K1,n−1 ([9]). Another useful formula
that describes the connection of betweenness and mean distance is contained
in the following

Theorem 1 ([4]). B(G) = (n− 1)(l − 1).

Proof. Given two vertices u, v of G at a distance d = d(u, v), the sets (called
layers, [4]) P h

u,v = {w ∈ V | d(u,w) = h, d(w, v) = d− h}, for any 0 ≤ h ≤ d

(where P 0
u,v = {u} and P d

u,v = {v}). Let Pu,v =
⋃d

h=0 P h
u,v. Considering the

layers P h
u,v, 1 ≤ h ≤ d − 1, all the shortest paths from u to v cross through

all the vertices of each layer, thus
∑

w∈P h
u,v

bu,v(w) = 1, 1 ≤ h ≤ d − 1. For

any other vertex of the graph w 6∈ P h
u,v, there is no shortest path from u to
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v crossing through w, so bu,v(w) = 0. Therefore

∑
w∈V

bu,v(w) =
∑

w∈Pu,v

bu,v(w) =
d∑

h=0

∑

w∈P h
u,v

bu,v(w) =
d−1∑

h=1

1 = d− 1. (1)

Thus we obtain

B(G) =
1

n

∑
w∈V

B(w) =
1

n

∑
w∈V

∑
u,v∈V

bu,v(w) =
1

n

∑
u,v∈V

∑
w∈V

bu,v(w),

and applying (1) we get B(G) =
1

n

∑
u,v∈V

(d(u, v)− 1) = (n− 1)(l − 1).

Another useful tools in determining the betweenness of vertices are graph
symmetries. It is not hard to see (details are left to reader) that every two
vertices which belong to the same orbit under the action of the automorphism
group Aut(G) on a graph G have the same value of betweenness centrality
index; hence, vertex-transitive graphs possess the same value for each vertex.

3 Estimations based on local parameters

In this section, we will study bounds on betweenness of a graph which are
based on parameters of neighbourhoods of its vertices. The following esti-
mations of particular sums will be useful in the next:

Proposition 1.

a)
∑

x∈V (G)

1

n− d(x)
≥ n

n− d

b)
∑

x∈V (G)

d2(x) ≥ 2md.

Proof. a) By the inequality on the harmonic and arithmetic means,

n∑
x∈V (G)

1
n−d(x)

≤

∑
x∈V (G)

(n− d(x))

n
=

n2 − 2m

n
,
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which yields ∑
x∈V (G)

1
n−d(x)

n
≥ n

n2 − 2m
=

1

n− d
,

and the result follows.

b) By the Cauchy-Schwartz inequality,


 ∑

x∈V (G)

d(x) · 1



2

≤

 ∑

x∈V (G)

12


 ·


 ∑

x∈V (G)

d2(x)


 ,

hence
(2m)2 ≤ n

∑

x∈V (G)

d2(x) ,

which implies the result.

In the following, we present several local estimations of betweenness of
a vertex based on its neighbourhood. Let u, v be two nonadjacent vertices
of G having a common neighbour x. By Mu,v we denote the set of vertices
y ∈ V (G) such that uy 6∈ E(G) or vy 6∈ E(G) (note that u, v ∈ Mu,v), and
by Nu,v(x) the set of the vertices of Mu,v which are neighbours of x; we put
µu,v = |Mu,v|, νu,v(x) = |Nu,v(x)|.

Lemma 1. B(x) ≥ ∑
u,v∈N(x)

1

n− νu,v(x)
.

Proof. Let u, v ∈ N(x), uv 6∈ E(G). Then σu,v(x) = 1 and bu,v(x) = 1/σu,v.
Moreover, σu,v ≤ n − µu,v ≤ n − νu,v(x), so bu,v(x) ≥ 1/(n − νu,v(x)) and

B(x) =
∑

(u,v)∈V 2

u,v 6=x

bu,v(x) ≥ ∑
u,v∈N(x)
uv 6∈E(G)

bu,v(x) ≥ ∑
u,v∈N(x)
uv 6∈E(G)

1

n− νu,v(x)
.

As a consequence, given a vertex x of a triangle-free graph G and its
neighbours u, v, νu,v(x) = d(x), we obtain

Corollary 1. If G is a triangle-free graph, then, for every vertex x ∈ V (G),

d(x)(d(x)− 1)

n− d(x)
≤ B(x).
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Based on these results, we obtain several estimation for the betweenness
of a triangle-free graph:

Theorem 2. If G is a triangle-free graph, then B(G) ≥ δ(δ − 1)

n− d
.

Proof. In each inequality of Proposition 1, we can use the lower bound δ(δ−1)
for the numerator. Now, summing the obtained inequalities for all vertices of
G and multiplying this sum by 1

n
, we have

δ(δ − 1)

n

∑

x∈V (G)

1

n− d(x)
≤ 1

n

∑

x∈V (G)

B(x) = BG.

By Proposition 1a)

δ(δ − 1)

n
· n

n− d
≤ δ(δ − 1)

n

∑

x∈V (G)

1

n− d(x)
.

and the result follows.

Theorem 3. If G is a triangle-free graph, then B(G) ≥ 1

n− δ

(
d

2 − n

2

)
.

Proof. Using the lower bound on B(x) from Proposition 1 and the estimation

on the denominator, we obtain
d(x)(d(x)− 1)

n− δ
≤ B(x). Now,

∑

x∈V (G)

d(x)(d(x)− 1) =
∑

x∈V (G)

d2(x)−
∑

x∈V (G)

d(x) =
∑

x∈V (G)

d2(x)− 2m.

As G is triangle-free, m ≤ n2

4
by Turán theorem. Finally, using Proposition

1 b), we obtain

B(G) ≥ 1

n(n− δ)

∑

x∈V (G)

d2(x) ≥ 1

n(n− δ)

(
2md− n2

2

)
=

1

n− δ

(
d

2 − n

2

)
.

Theorem 4. If G is a triangle-free graph, then B(G) ≥ n(n− 1)

n− d
−n−d+1.
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Proof. Summing the inequalities from Proposition 1 and dividing with n, we
obtain

B(G) ≥ 1

n

∑

x∈V (G)

d(x)(d(x)− 1)

n− d(x)
=

1

n

∑

x∈V (G)

(
−d(x) + 1− n +

n(n− 1)

n− d(x)

)
=

1

n


−

∑

x∈V (G)

d(x) + (1− n)
∑

x∈V (G)

1 + n(n− 1)
∑

x∈V (G)

1

n− d(x)


 ≥

1

n

(
−2m + (1− n)n + n(n− 1)

n

n− d

)
= −d + 1− n +

n(n− 1)

n− d
.

In the next, we consider graphs such that B(x) attains the lower bound
from Proposition 1 for some vertex x of G. Note that such a graph is not
necessarily triangle-free: the graph on Fig. 3 is vertex-transitive, hence, for
each vertex x, B(x) is the same and equal to 2 = 3(3− 1)/(6− 3).

Fig.1

Nevertheless, if we restrict our study to triangle-free graphs, we obtain
the complete characterization:

Lemma 2. Let G be a triangle-free graph. Then the following statements
are equivalent:

a) there exists a vertex x ∈ V (G) such that B(x) =
d(x)(d(x)− 1)

n− d(x)
,

b) G is isomorphic to a complete bipartite graph.
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Proof. Suppose first that G ∼= Kr,s. Let R, S be bipartitions of G such that
|R| = r, |S| = s and let x ∈ R. Then

B(x) =
∑

(u,v)∈V 2

u,v 6=x

bu,v(x) =
∑

(u,v)∈S2

bu,v +
∑

(u,v)∈R2

u,v 6=x

bu,v(x) +
∑

u∈R,v∈S
u 6=x

bu,v(x).

If (u, v) ∈ S2, then d(u, v) = 2, σu,v = r and σu,v(x) = 1; hence,
∑

(u,v)∈S2

bu,v(x)

=
∑

(u,v)∈S2

1

r
=

s(s− 1)

r
. If u ∈ R and v ∈ S, then d(u, v) = 1, σu,v = 1 and

σu,v(x) = 0 which yields
∑

u∈R,v∈S
u 6=x

bu,v(x) = 0. Finally, if (u, v) ∈ R2, u, v 6= x,

then d(u, v) = 2 and σu,v(x) = 0, thus
∑

(u,v)∈R2

u,v 6=x

bu,v(x) = 0. So, we obtain

B(x) =
s(s− 1)

r
=

d(x)(d(x)− 1)

n− d(x)
.

Conversely, suppose that B(x) =
d(x)(d(x)− 1)

n− d(x)
for some x ∈ V (G).

As B(x) =
∑

u,v∈N(x)

bu,v(x) +
∑

u,v 6∈N(x)

bu,v(x) +
∑

u∈N(x),v 6∈N(x)

bu,v(x), this implies

that
∑

u,v∈N(x)

bu,v(x) ≤ B(x). Since G is triangle-free, σu,v(x) = 1 for u, v ∈

N(x), thus
∑

u,v∈N(x)

bu,v(x) =
∑

u,v∈N(x)

1

σu,v

. Besides for u, v ∈ N(x) it also

holds σu,v ≤ n − d(x). Therefore
∑

u,v∈N(x)

1

σu,v

≥ ∑
u,v∈N(x)

1

n− d
=

d(d− 1)

n− d
.

Thus
d(x)(d(x)− 1)

n− d(x)
= B(x) =

∑
u,v∈N(x)

1

σu,v

. This equality holds if and only

if σu,v = n − d(x) for every u, v ∈ N(x), which means that u and v are
adjacent to every other vertex y 6∈ N(x). In addition, both sets N(x) and
V (G) \ N(x) are independent, which together implies that G is a complete
bipartite graph.

Note that from this proof, it follows that, if there is a single vertex of
a triangle-free graph that reaches theoretical minimum betweenness bound,
then all vertices do so.
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4 Betweenness and local graph operations

In this section we will study the influence of local graph operations on the
betweenness of a graph.

Proposition 1. Let G be an n-vertex graph and G′ be the graph obtained
from G by connecting two vertices u, v ∈ V (G) at distance d = d(u, v) > 1
with a new edge. Then

B(G′) ≤ B(G)− 2(d− 1)

n
.

Proof. Since dG(u, v) = d, dG′(u, v) = 1 and dG′(x, y) ≤ dG(x, y) for (x, y) 6=
(u, v), we obtain that

∑
(x,y)∈V 2

dG′(x, y) ≤ ∑
(x,y)∈V 2

dG(x, y) − 2(d − 1). From

this we obtain
∑

(x,y)∈V 2

dG′(x, y)

n(n− 1)
≤

∑
(x,y)∈V 2

dG(x, y)

n(n− 1)
− 2(d− 1)

n(n− 1)

l(G′) ≤ l(G)− 2(d− 1)

n(n− 1)

l(G′)− 1 ≤ (l(G)− 1)− 2(d− 1)

n(n− 1)

(n− 1)(l(G′)− 1) ≤ (n− 1)(l(G)− 1)− 2(d− 1)

n

which yields the desired statement by Lemma 1.

Corollary 1. Let G′ = (V ′, E ′) be a factor subgraph of a graph G = (V,E)
and let r = |E \ E ′|. Then

B(G) ≤ B(G′)− 2r

n
.

Proof. Adding the edges of E \ E ′ one by one to G, using Proposition 1 in

each step, the betweenness of obtained graph is decreased by
2

n
or more,

thus, the total drop is at least
2r

n
.
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Theorem 1. Let G = (V, E) be a graph of order n and size e, and let T be
one of its spanning trees. Then

B(G) ≤ B(T )− 2(e− n + 1)

n
.

Proof. Any spanning tree is a factor subgraph of G with n − 1 edges, so,
applying Proposition 1 with r = e− n + 1, we get the result.

Corollary 2. Let G be a hamiltonian graph of order n and size e. Then

B(G) ≤





(n2 − 4n + 4)

4
− 2(e− n)

n
for neven,

(n2 − 4n + 3)

4
− 2(e− n)

n
for nodd.

Proof. Let Cn be the hamiltonian cycle of G. We calculate the betweenness of
Cn and then apply Corollary 1 to find the bounds. As Cn is vertex-transitive,
B(w) = B(G) for all w of Cn, so we just need to calculate B(w) for only one
vertex.

If n is odd (n = 2k + 1), let ui be the vertex at a distance i on the left of
w and let vj be the vertex at a distance j on the right of w (in a clockwise
orientation of Cn). If i + j ≤ k we will have to cross through w if we go
from ui to vj, so buivj

(w) = bvjui
(w) = 1. Then B(w) =

∑k−1
i=1

∑k−i
j=1 2 =

2
∑k−1

i=1 (k − i) = k(k − 1).
Otherwise, if n is even (n = 2k), each vertex of the graph has one vertex at

a maximum distance k, and two possible paths to get to it. The contribution
of the vertices that are not at maximum distance from w will be equal to
the ones of the odd case and we just have to subtract 1

2
for the vertex at the

maximum distance, so B(w) = k(k − 1)− 2(k − 1)/2 = (k − 1)2.

We note that these bounds are tight for graphs with many edges and few ver-
tices (dense graphs). Using the relation between the betweenness centrality
and the mean distance of a graph given by the Theorem 1, the bounds are
also useful for the mean distance of a graph. They also improve the bounds
for the mean distance of Doyle in [6].

The influence of adding a vertex to a graph on the betweenness is more
complicated. We discuss first the addition of a pendant vertex:
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Proposition 2. Let G be a graph of order n, G′ the graph obtained by
connecting a new vertex v to a vertex w ∈ G with degree d(w) = d. If
B(G) ≤ 4(n− 1)− 2d then B(G) ≤ B(G′).

Proof. Let B(w) and B′(w) be the betweenness of a vertex w in G ad G′,
respectively. Put B′

n+1 = B′
v and B′

n = B′
w. The vertex v has degree 1,

then B′
n+1 = B′

v = 0. How much B′
w is affected? All the shortest paths

between w and the n − 1 vertices of the graph cross through w, so B′
w =

B′
n = Bn + 2(n − 1). By the way, considering all the δw neighbors of w,

the new B′
n will be increased in 2(n − 1 − δw) as all the shortest paths

between w and the rest of the vertices of G will cross through all these
vertices. We can not know how the rest of Bw will increase, but we can
insure that

∑n−1−δw

w=0 B′
w ≥ ∑n−1−δw

w=0 Bw. Then
∑n

w=0 B′
w =

∑n−1−δw

w=0 B′
w +∑n−1

w=n−1−δw
B′

w + B′
n ≥

∑n
w=0 Bw + 2(n− 1− δw) + 2(n− 1), and so

BG′ =

∑n
w=0 B′

w

n + 1
+

B′
n+1

n + 1
≥ nBG + 4(n− 1)− 2δw

n + 1
.

Observe that the larger the degree of the vertex to which we connect the new
vertex, the lower the bound. The increment of the betweenness will be

BG′ −BG ≥ [−BG + 4(n− 1)− 2δw]/(n + 1) ≥ 0.

Therefore the right side of the inequality is positive if BG ≤ 4(n−1)−2δw.

Proposition 3. Let G be a graph of order n, let G′ be the graph obtained
connecting a new vertex w to two vertices u, v of G at a distance d(u, v) = 1
or d(u, v) = 2, then

1

n + 1
[nBG + 2(n− 2)] ≤ BG′ .

Proof. The proof is similar to the one of the previous proposition:
If d(u, v) = 1, the three vertices form a triangle, so Bw = 0. The sum of the
new betweenness of u and v will be B′

u + B′
w = Bu + Bw + 2(n− 1), since all

the shortest paths connecting w to the rest of the graph pass through u and
v. Also the betweenness of the neighbors of u and v will increase, although

we do not know how much, so
1

n + 1
[nBG + 2(n− 2)] ≤ BG′ .

If d(u, v) = 2, we call i1, . . . , is the s intermediate vertices connecting u
and v. In G we have bil(u, v) = 1/s and

∑s
l=1 bil(u, v) = 1, then in G′

11



w = is+1 ⇒ bil(u, v) = 1/(s + 1) and
∑s+1

l=1 bil(u, v) =
∑s+1

l=1 1/(s + 1) = 1,
but B′

u+B′
v = Bu+Bv +2(n−2) as before, therefore with the same reasoning

as the other case
1

n + 1
[nBG + 2(n− 2)] ≤ BG′ .

For d = 3 the BG can increase or decrease, depending on the graph.

Theorem 2. Let Tn be a tree of order n, w a vertex of degree d = d(w) > 1, ∆
the maximum degree of the graph, and m1, . . . , md be the sizes of the branches
of Tn (with respect to w). Then

1. B(w) =
d∑

i,j=1,i6=j

mimj for every w ∈ V (Tn),

2. Bmax
T ≤ (n−∆)(∆− 1)(n− 1)2/n∆ where the upper bound is reached

for a tree with a root vertex of degree ∆ and with all its branches of the
same size.

Proof. In a tree, every par of vertices is connected by unique path. Thus,
if u, v belong to different components of Tn − w, then bu,v(w) = 1. We

obtain then B(w) =
∑d

i=1 mi(n−mi) =
∑d

i,j=1,i 6=j mimj = f(m1, . . . ,mδw) =
f(m1, . . . , md).

Now, we calculate the maximum of this function under the condition
m1 + · · · + md = n − 1. Assume first that there exist i, j ∈ {1, . . . , d}
such that mi ≥ mj + 2; without loss of generality, let i = 1, j = 2. Set
m′

1 = m1 − 1,m′
2 = m2 + 1,m′

i = mi for i ≥ 3. Now f(m′
1, . . . ,m

′
d) =

d∑
i,j=3
i6=j

mimj +
d∑

j=3

m′
1mj +

d∑
i=3

mim
′
2+m′

1m
′
2 =

d∑
i,j=1
i6=j

mimj−
d∑

j=3

mj +
d∑

i=3

mi−m2+

m1−1 = f(m1, . . . , md)+m1−m2−1 > f(m1, . . . ,md). Thus, f(m1, . . . , md)
is maximized in the case when |mi −mj| ≤ 1 for all i, j − 1, . . . , d.

Next, consider the above maximization problem for positive real numbers
x1, . . . , xd. In this case, we can use the Lagrange multipliers formula with the

auxiliar function F (x1, . . . , xd, λ) =
∑d

i=1 mi

( ∑
j 6=i xj

)
−λ

( ∑d
i=1 xi−n+1

)
.

Solving the system formed by its partial derivatives equal to 0, and isolating
λ, we obtain λ = 2

∑
j 6=i mj = n − 1 −mi ∀i = 1, . . . , d. As λ is the same

for all equations, all xi are equal too, so the maximum is reached when
xi = (n − 1)/d and its value is f ∗

(
n−1

d
, . . . , n−1

d

)
= (n − 1)2(d − 1)/d. This

value is then also an upper bound for f(m1, . . . , md), so,

B(w) ≤ (n− 1)2(d− 1)/d ≤ (n− 1)2(∆− 1)/∆.
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Now recall that Tn contains at least ∆ pendant vertices which have zero
betweenness. Thus, for the betweenness of T , we obtain

BTn =
1

n

∑

w∈V (Tn)

B(w) ≤ 1

n

∑
w∈V (Tn)
d(w) 6=1

(n−1)2d(w)− 1

d(w)
≤ 1

n
(n−∆)(n−1)2 ∆− 1

∆
.

and this bound is reached for a tree with a root vertex of degree ∆ and with
all its branches of the same size.

Corollary 3. Let G be a graph of order n, size e and maximum degree of
vertices ∆, then

BG ≤ Bmax
G ≤ (n− 1)2 (∆− 1)

∆
− 2(e− n + 1)

n
.

Proof. Considering any spanning tree containing as a root vertex the vertex of
maximum degree, and applying Proposition 1 and (1), we get the result.

Now we found a bound for the maximum betweenness of a tree and we
generalize it for a general graph G.

Theorem 3. Let G be a graph of order n, w ∈ V of eccentricity ew and
Γk(w) the set of vertices at a distance k from w. If we connect a new vertex
u to w, then

BG′ =
1

n + 1

[
nBG + 2

ew∑

k=1

k|Γk(w)|].

note 1. We note that the second summand depends on the eccentricity of
the vertex w and its number of extremal vertices, that is, the more vertices
at extremal distance the vertex w has, the more BG will be increased.

Proof. Given a vertex w ∈ V , we denote by nk = |Γk(w)|, and we denote
by Bi and B′

i the betweenness of the vertex i in G and G′ respectively.
Connecting a new vertex u to w, all the shortest paths that go from u to
the vertices at a distance l > k, will cross through the vertices of Γk(w). For
this reason their betweenness will be increased as

∑
v∈Γ(k) B′

v =
∑

v∈Γ(k) Bv +

2
∑

i>k ni, 1 ≤ k ≤ ek − 1. The betweenness of the extremal vertices are
not affected. Adding the betweenness of all these sets

ew∑

k=0

∑

v∈Γ(k)

B′
v =

ew∑

k=0

∑

v∈Γ(k)

Bv + 2
ew−1∑

k=0

∑

i>k

ni.

13



Finally we divide all by n + 1 and get the result.

Theorem 4. Let Tn be a tree of n vertices and diameter D, then

• If n−D is odd, BTn ≤ 1 +
(n− 4)D

2
− D3 − 6D2 −D + 6

6n
.

• If n−D is even, BTn ≤ 1 +
(n− 4)D

2
− D3 − 6D2 + 2D

6n
.

Proof. Using Theorem 3 we are going to construct a tree with maximum B.
We start from a path PD+1 of diameter D and connect the n−D − 1 other
vertices without incrementing the diameter, in such a way that the total
betweenness would be the maximum. For constructing the tree, we consider
the two vertices with maximal eccentricity (apart from the ends): u2 and
uD. Both have the same number of vertices at a maximum distance (1 in
this moment). We connect a new vertex to one of them. Then the second
vertex to be added must be connected to the other one, because that vertex
would have the maximum eccentricity and also the maximum number of
vertices at extremal distance (2 at the moment). The third vertex can be
connected again to one of these vertices u2 or uD, but the fourth would have
to be connected to the other one, for the same reason.

Following this procedure we just have to add the n−D−1 vertices to the
second and the D vertex of the path. The betweenness of the tree depends
on two cases:

If n−D = 2k + 1, BTn =
1

n

D∑
i=2

2(k − 1 + i)(n− k − i) +
2k(k + 1)

n
.

If n−D = 2k + 2, BTn =
1

n

D∑
i=2

2(k + i)(n− k − 1− i) +
2(k + 1)2

n
.

Simplifying these sums we get the result.

Corollary 4. Let G be a graph with n vertices, e edges and diameter D > 1,
then

If n−D is odd, l ≤ n

(n− 1)
+

(n− 4)D

2(n− 1)
−D3 − 6D2 −D + 6

6n(n− 1)
− 2(e− n + 1)

n(n− 1)
.

If n−D is even, l ≤ n

(n− 1)
+

(n− 4)D

2(n− 1)
− D3 − 6D2 + 2D

6n(n− 1)
− 2(e− n + 1)

n(n− 1)
.

We notice that these bounds are reached for star graphs.

14



Example 1. If we consider the graph of the Figure 3, n = 9, e = 15, D = 3
and its mean distance is l = 1.75.

Figure 1: K3 × P3

The known bounds for the mean distance and the bound of the Corollary
4 give:

Mohar [12] l ≤ n

n− 1

⌈
∆ + θ2

4θ2

ln(n− 1)

⌉
= 3.375,

Kouider-Winkler [17] l ≤ n

δ + 1
+ 2 = 4.25,

Beezer et al. [1] l ≤ 1

n(n− 1)

⌊
(n + 1)n(n− 1)− 2e

δ + 1

⌋
= 2.38,

Yebra et al. [18] l ≤ 1

n− 1

∑

Qk(0)≤n−1

⌊
n(n− 1)

Q2
k(0) + n− 1

⌋
= 2.25,

Corollary 4 l ≤ 1.91.

5 Betweenness-selfcentric graphs

In this section, we will study graphs having the same value of betweenness
for all their vertices (that is, betweenness-selfcentric graphs). Clearly, any
vertex-transitive graph is betweenness-selfcentric; on the other hand, we show
that there are many betweenness-selfcentric graphs which are not transitive.
Namely, we show that this property holds for wide class of strongly regular
graphs (recall that a graph G is strongly regular with parameters (n, k, λ, µ)

15



if G is k-regular of order n, every pair of adjacent vertices has λ common
neighbours and every pair of nonadjacent vertices has µ common neighbours).

We first prove a lemma for graphs of diameter 2:

Lemma 3. Let G be a graph of diameter 2. Then, for every vertex x ∈ V (G),

B(x) =
∑

u,v∈N(x)
uv 6∈E(G)

1

σu,v

.

Proof. By definition,

B(x) =
∑

u,v∈V (G)
u,v 6=x

σu,v(x)

σu,v

=
∑

u,v∈N(x)

σu,v(x)

σu,v

+
∑

u,v 6∈N(x)

σu,v(x)

σu,v

+
∑

u∈N(x),
v 6∈N(x)

σu,v(x)

σu,v

.

Now, if both u, v 6∈ N(x), then each u-v-path containing x has length at
least 4; since d(u, v) ≤ 2, we get σu,v(x) = 0. If u ∈ N(x), v 6∈ N(x) and
uv ∈ E(G), then trivially σu,v(x) = 0; if uv 6∈ E(G), then d(u, v) = 2 but
there is no u − v-path passing through x, so again σu,v(x) = 0. Hence, in
the expression for B(x), the second and third sums are equal to zero, leaving

B(x) =
∑

u,v∈N(x)

σu,v(x)

σu,v

. Since σu,v(x) = 1 for nonadjacent u, v ∈ N(x) and 0

for adjacent ones, we are done.

Corollary 2. Every strongly regular graph is betweenness-selfcentric.

Proof. Let G be a strongly regular graph with parameters (n, k, λ, µ) and
x ∈ V (G). Every edge xy belongs to exactly λ triangles; this implies that
there is kλ

2
edges between vertices of N(x). Note that each strongly regular

graph has diameter 2. Then, by previous lemma, we obtain that the sum

B(x) =
∑

u,v∈N(x)
uv 6∈E(G)

1

σu,v

consists of k(k − 1) − kλ = k(k − λ − 1) summands

through ordered pairs of vertices; now, for each nonadjacent u, v ∈ N(x),
σu,v = µ, thus B(x) = k

µ
(k−λ− 1). Hence, G is betweenness-selfcentric.

By [?], each finite group may serve as the automorphism group of some
strongly regular graph, so, we obtain

Corollary 3. For each finite group A, there exists a betweenness-selfcentric
graph G such that Aut(G) ∼= A.
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Little is known about betweenness-selfcentric nonregular graphs; we present
one class of such graphs:

Lemma 4. For all integers t ≥ 2, r ≥ 1, the graph tK1,r is betweenness-
selfcentric.

Proof. It is easy to see that tK1,r has diameter 2. Let x be a vertex of tK1,r.

By Lemma 3, B(x) =
∑

u,v∈N(x)
uv 6∈E(G)

1

σu,v

. In this sum, each pair u, v originates

from the same copy of K1,r (which does not contain x) in tK1,r before com-
plementation in the way that one of u, v is the central vertex; we obtain that

σu,v(x) = 1 and σu,v = (t−1)(r+1), hence, B(x) = (t−1)r · 1

(t− 1)(r + 1)
=

r

r + 1
.

As all these graphs have diameter 2, it would be interesting to construct,
for each integer d > 2, an infinite family of betweenness-selfcentric nontran-
sitive graphs of diameter d.
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