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Abstract

The notions of power and potential, both defined for any semivalue, give rise to
two endomorphisms of the vector space of all cooperative games on a given player
set. Several properties of these linear mappings are stated and their action on
unanimity games is emphasized. We also relate in both cases the multilinear
extension of the image game to the multilinear extension of the original game.
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1 Introduction

The notion of semivalue was first introduced by Weber [24] for simple games (see also
Einy [12]). The extension to all cooperative games, including an axiomatic charac-
terization and a formula in terms of weighting coefficients, was provided by Dubey,
Neyman and Weber [11]. Semivalues represent a generalization of the Shapley value
[23] that includes the Banzhaf value defined by Owen [19]—an extension to all coop-
erative games of the original Banzhaf power index ([21], [2], [4])—. An alternative
axiomatization can be found in Weber [25].

The concept of total power (simply power, in the sequel) was used by Feltkamp [13],
as a synonymous of “sum of allocations”, when providing a parallel axiomatization of
the Shapley and Banzhaf values (see also Dubey and Shapley [10]). While its meaning
for the Shapley value is almost trivial because of efficiency, it can be extended to any
semivalue (Dragan [7]). The concept of potential, first introduced for the Shapley value
by Hart and Mas–Colell ([16], [17]), and later on for the Banzhaf value by Dragan
[5], also admits an extension to all semivalues (Dragan [7]), which coincides with the
restriction to this class of values of a wider notion provided by Calvo and Santos [3],
who axiomatically characterized the solution concepts that possess a potential.

Thus, these notions of power and potential are defined for any semivalue acting on
the vector space of all cooperative games on a given player set N . If ψ is a semivalue
and v is a game, both defined on N , the ψ–power of v is the sum of payoffs allocated
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by ψ to all players in v, while the ψ–potential works for ψ as a “potential” (in a rather
physical sense) by allocating a single number to every subgame of v.

Power and potential have a common characteristic: they induce endomorphisms of
the space of cooperative games; the image games assign to each coalition, respectively,
the additive power got by all its players and the potential of the restricted game,
always according to the referred semivalue. Both linear maps were introduced by
Dragan [8] for any semivalue, and the image games were respectively called power
game and potential game. Calvo and Santos [3] have also employed the concept of
power game, under the name of “auxiliary game”. In papers by Dragan [8] and
Dragan and Martinez-Legaz [9], the power and potential maps have been used in an
essential way, so that these two notions have turned out to be useful tools to study
several properties related with semivalues.

The present work is focussed on these power and potential maps attached to any
semivalue. We state the similar behavior of the unanimity games with respect to them
in the sense that they are eigenvectors of both with specific eigenvalues depending on
the considered semivalue. Some consequences are derived. In particular, we study the
relationship with respect to the multilinear extension, a concept introduced by Owen
[18] that has proven to be an interesting tool for value computation. Using the image
games given by the power and potential maps, the computations can be extended to
the power of the players and to the potential of the game and also of all its restricted
games.

More precisely, the computation of allocations to the players can be obtained
from the multilinear extension by using a common procedure for all semivalues. This
method generalizes the results obtained for the Shapley and Banzhaf values by Owen
([18], [19]) but the steps in the procedure have changed, since the consideration of
the potential game enables us to differentiate the contribution due to the game from
the contribution due to the semivalue.

According to the above considerations, the paper is organized as follows. In Sec-
tion 2 we provide preliminaries devoted to cooperative games and semivalues, paying
special attention to the weighting coefficients that define each semivalue. The power
map is considered in Section 3, where the results on unanimity games are provided
and the relationship between the multilinear extensions of a game and its power game
is stated. The main results are Theorem 3.4, Corollary 3.5 and Proposition 3.8. Sec-
tion 4 presents a similar treatment for the potential map and includes a unifying
viewpoint on the use of the multilinear extension technique. In this case, the main
results are given in Theorem 4.3, Corollary 4.4, Proposition 4.5 and Remark 4.7. In
Section 5, analogies and differences between both maps are emphasized. First, as to
their matrix representation in the common diagonalization basis. Next, by discussing
an equivalence notion between the image games based on the additivity of the dif-
ference game. Thirdly, by providing a splitting of the space into (common) invariant
subspaces and determining and comparing, only in the binomial case, the kernel and
the (full) invariant subspace of each map. Finally, the asymptotic behavior of the
iterations of each map is described.

No conclusion section has been added since we feel that the results of the paper
have been clearly stated in this (somewhat long) introduction.
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2 Preliminaries

Let N be a finite set of players and 2N be the set of its coalitions (subsets of N). A
cooperative game (with transferable utility) on N is a function v : 2N → R, which
assigns a real number v(S) to each coalition S ⊆ N and satisfies v(∅) = 0. A game v
is monotonic if v(S) ≤ v(T ) whenever S ⊂ T . A game v is additive (or inessential) if
v(S ∪T ) = v(S)+ v(T ) whenever S ∩T = ∅. Given a nonempty coalition T ⊆ N , the
restriction to T of a given game v on N is the game v|T on T defined by v|T (S) = v(S)
for all S ⊆ T .

Endowed with the natural operations for real–valued functions, denoted by v+ v′

and λv for λ ∈ R, the set of all cooperative games onN is a vector space GN . For every
nonempty coalition T ⊆ N , the unanimity game uT is defined on N by uT (S) = 1 if
T ⊆ S and uT (S) = 0 otherwise, and it is easily checked that the set of all unanimity
games is a basis for GN , so that dim(GN ) = 2n − 1 if n = |N |. Each game v ∈ GN
can then be uniquely written as a linear combination of unanimity games, and its
components are the Harsanyi dividends (Harsanyi [15]):

v =
∑

T⊆N : T 6=∅

αTuT , where αT = αT (v) =
∑

S⊆T

(−1)t−sv(S) (1)

and, as usual, t = |T | and s = |S|. The additive games form a linear subspace of
GN that we denote as AGN and is spanned by the set {u{i} : i ∈ N}. Finally, every
permutation θ of N induces a linear automorphism of GN that leaves invariant AGN
and is defined by (θv)(S) = v(θ−1S) for all S ⊆ N and all v ∈ GN .

By a value on GN we will mean a map f : GN → RN , which assigns to every game
v on N a vector f [v] with components fi[v] for all i ∈ N .

Following Dubey, Neyman and Weber’s [11] axiomatic description, ψ : GN → RN

is a semivalue iff it satisfies the following properties:

(i) Linearity: ψ[λv + µv′] = λψ[v] + µψ[v′] for all v, v′ ∈ GN and λ, µ ∈ R.
(ii) Anonymity: ψθi[θv] = ψi[v] for all θ on N , i ∈ N , and v ∈ GN .
(iii) Positivity: if v is monotonic, then ψ[v] ≥ 0.
(iv) Projection property: if v is additive, then ψi[v] = v({i}) for all i ∈ N .

The same authors (loc. cit.) provided a useful characterization of semivalues by means
of weighting coefficients: (a) for every weighting vector (ps)

n
s=1 such that

n
∑

s=1

(

n− 1

s− 1

)

ps = 1 and ps ≥ 0 for all s, (2)

the expression

ψi[v] =
∑

S⊆N : i∈S

ps[v(S) − v(S\{i})] for all i ∈ N and all v ∈ GN , (3)

where s = |S|, defines a semivalue ψ; (b) conversely, every semivalue can be obtained
in this way; (c) the correspondence (ps)

n
s=1 7→ ψ is bijective.

Notice that the number of coalitions of size s that contain a given player i ∈ N
is

(

n−1
s−1

)

, so that conditions (2) give a probability distribution on the set of all coali-
tions containing i that depends only on cardinality. Therefore, ψi[v] is the expected
marginal contribution of player i in v to a random coalition this player is joining.

Well known examples of semivalues are the Shapley value ϕ (Shapley [23]), for
which ps = 1/n

(

n−1
s−1

)

, and the Banzhaf value β (Owen [19]), for which ps = 21−n.
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The Shapley value ϕ is the only efficient semivalue, in the sense that
∑

i∈N

ϕi[v] = v(N)

for every v ∈ GN . It is worthy of mention that these two classical values are defined
for each N . The same happens with the binomial semivalues, introduced by Puente
[22] (see also Giménez [14] or Amer and Giménez [1]) as follows. Let α ∈ (0, 1) and
pα,s = αs−1(1 − α)n−s for s = 1, 2, . . . , n. Then (pα,s)

n
s=1 is a weighting vector and

defines a semivalue that will be denoted as ψα and called the α–binomial semivalue.
Using the convention that 00 = 1, the definition makes sense also for α = 0 and α = 1,
where we respectively get the dictatorial index ψ0 = δ and the marginal index ψ1 = µ,
introduced by Owen [20] and such that δi[v] = v({i}) and µi[v] = v(N) − v(N\{i})
for all i ∈ N and all v ∈ GN . Of course, α = 1/2 gives ψ1/2 = β, the Banzhaf value.

In fact, semivalues are defined on cardinalities rather than on specific player sets:
this means that a weighting vector (ps)

n
s=1 defines a semivalue ψ on all N such that

n = |N |. When necessary, we shall write ψn for a semivalue on cardinality n and pns for
its weighting coefficients. This often matters since a semivalue ψ = ψn on cardinality
n gives rise to induced semivalues ψt for all cardinalities t such that 1 ≤ t ≤ n − 1,
recurrently defined by their weighting coefficients, which are given by an expression
obtained by Dubey et al. [11] and referred by Dragan ([6], [7]) as the Pascal triangle
(inverse) formula:

pts = pt+1
s + pt+1

s+1 for 1 ≤ s ≤ t < n. (4)

It is not difficult to check that the induced semivalues of the Shapley value (resp.,
the α–binomial semivalue) are all Shapley values (resp., α–binomial semivalues). By
applying equation (4) successively, one gets the expression of the weighting coefficients
of any induced semivalue in terms of the coefficients of the original semivalue, namely

pts =

n−t
∑

j=0

(

n− t

j

)

pns+j for 1 ≤ s ≤ t < n (5)

and, inductively, a kind of (partially) inverse formula that provides the remaining
weighting coefficients at all cardinality levels in terms of the last ones (ptt for all t):

p1
1 = 1 and pts =

t−s
∑

c=0

(−1)c
(

t− s

c

)

ps+cs+c for 1 ≤ s ≤ t−1 and 1 < t ≤ n. (6)

We end this section by recalling one of the three basic notions that will be dealt
with here, that of multilinear extension of a game, due to Owen [18]. The other two,
power and potential, will be introduced in the corresponding sections.

The multilinear extension (MLE, in the sequel) of a game v ∈ GN is the function
fv : [0, 1]n −→ R defined by

fv(XN ) =
∑

S⊆N

∏

i∈S

xi
∏

j∈N\S

(1 − xj)v(S), (7)

where XN denotes the set of variables xi for i ∈ N . The following properties directly
derive from the definition:

(i) If v, v′ ∈ GN and λ, µ ∈ R, then fλv+µv′ = λfv + µfv′ .

(ii) If ∅ 6= T ⊆ N , then fuT (XN ) =
∏

i∈T

xi.
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(iii) In general, if v =
∑

T⊆N : T 6=∅

αTuT , then fv(XN ) =
∑

T⊆N : T 6=∅

αT
∏

i∈T

xi.

(iv) If v ∈ GN and ∅ 6= T ⊆ N , then fv|T (XT ) = fv(XT , 0N\T ), where (XT , 0N\T )

denotes the set XN with xi = 0 for all i ∈ N\T . Moreover,
∂fv|T
∂xi

(1T ) =

v(T ) − v(T \{i}) for each i ∈ T , where 1T means xi = 1 for all i ∈ T .

3 The power map

In this section, we study an endomorphism of the vector space of games on a given
player set that is defined in terms of the power notion attached to each particular
semivalue. As a consequence, it follows that the MLE of a game can be applied to
computing the power of the players in the game and in all its restricted games.

Definition 3.1 (Dragan [7]) Let ψ be a semivalue on GN defined by the weighting
vector (ps)

n
s=1. The power of (the players in) a given game v ∈ GN according to

semivalue ψ is the sum of allocations to all players, that is,

Πψ(v) =
∑

i∈N

ψi[v] =
∑

i∈N

∑

S⊆N : i∈S

ps[v(S) − v(S\{i})]. (8)

Lemma 3.2 Let ψ be a semivalue on GN defined by the weighting vector (ps)
n
s=1. Let

v ∈ GN . Then the power of (the players in) any restricted game v|T according to ψt

is given by

Πψt(v|T ) = tpttv(T ) +
∑

U⊂T

[

uptu − (t− u)ptu+1

]

v(U). (9)

Proof. Since v|T ∈ GT , equation (8) yields

Πψt(v|T ) =
∑

i∈T

∑

U⊆T : i∈U

ptu[v(U) − v(U\{i})].

For each U ⊆ T , v(U) appears u = |U | times with coefficient ptu and t − u = |T \U |
times with coefficient −ptu+1. (For an alternative proof, see Dragan [7].) �

Definition 3.3 (Dragan [7]) Let ψ be a semivalue on GN defined by the weighting
vector (ps)

n
s=1. The ψ–power map is the endomorphism Π∗

ψ of GN that transforms
any game v in the game Π∗

ψ(v) defined by

Π∗
ψ(v)(S) = Πψs(v|S) for all S ⊆ N. (10)

Thus Π∗
ψ(v), the ψ–power game of v, assigns to each coalition S the power allocated

to the players of S in the restricted game v|S according to the induced semivalue ψs.

Theorem 3.4 Let ψ be a semivalue on GN defined by the weighting vector (ps)
n
s=1.

Every unanimity game uT is an eigenvector for the linear mapping Π∗
ψ with eigenvalue

tptt, i.e.,
Π∗
ψ(uT ) = tptt uT if ∅ 6= T ⊆ N. (11)
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Proof. For each S ⊆ N we write Π∗
ψ(uT )(S) according to (9):

Π∗
ψ(uT )(S) = Πψs(uT |S) = spssuT (S) +

∑

U⊂S

[

upsu − (s− u)psu+1

]

uT (U).

Now, we distinguish three cases.
(a) If S + T , then no coalition U ⊂ S contains T and hence Π∗

ψ(uT )(S) = 0.

(b) If S = T , then Π∗
ψ(uT )(T ) = t ptt uT (T ) + 0 = t ptt.

(c) Finally, if S ⊃ T , then

Π∗
ψ(uT )(S) = spss +

s−1
∑

u=t

(

s− t

u− t

)

[

upsu − (s− u)psu+1

]

=

= spss + tpst +

s−1
∑

u=t+1

(

s− t

u− t

)

upsu −
s−2
∑

u=t

(

s− t

u− t

)

(s− u)psu+1 − (s− t)pss =

= tpst + tpss +

s−1
∑

u=t+1

(

s− t

u− t

)

upsu −
s−1
∑

u=t+1

(

s− t

u− t− 1

)

(s− u+ 1)psu =

= t

s
∑

u=t

(

s− t

u− t

)

psu +

s−1
∑

u=t+1

[(

s− t

u− t

)

(u− t) −

(

s− t

u− t− 1

)

(s− u+ 1)

]

psu.

According to expression (5) for induced weights,
∑s

u=t

(

s−t
u−t

)

psu = ptt whereas the
second sum vanishes. Therefore

Π∗
ψ(uT )(S) = tptt for all S ⊃ T . �

Corollary 3.5 Let ψ be a semivalue on GN defined by the weighting vector (ps)
n
s=1.

The ψ–power map Π∗
ψ satisfies the following properties:

(i) Π∗
ψ is a bijection iff pnn > 0.

(ii) Π∗
ψ is the identity map in GN iff ψ = ϕ, the Shapley value.

(iii) If v is an additive game then Π∗
ψ(v) = v. If ptt 6= 1/t for t = 2, . . . , n then the

converse is true.

Proof. (i) (⇐) According to equation (5), if pnn > 0 then ptt > 0 for t = 1, . . . , n.
Then, all unanimity games are eigenvectors with positive eigenvalue and hence Π∗

ψ is
a bijection. (⇒) Conversely, if the endomorphism is a bijection then no eigenvalue
can vanish: in particular, pnn > 0.

(ii) (⇐) By efficiency of the Shapley value, Π∗
ϕ(v)(S) = Πϕs(v|S) = v(S) for all

v ∈ GN and all S ⊆ N whence Π∗
ϕ is the identity map. (⇒) Conversely, assume Π∗

ψ is
the identity map, i.e., Π∗

ψ(v)(T ) = v(T ) for all v ∈ GN and all T ⊆ N . By applying

equation (9) to uT it follows that tptt = 1 for t = 1, . . . , n and uptu − (t− u)ptu+1 = 0
for all u such that 1 ≤ u < t ≤ n. By induction, it is easy to see that ps = pns =
(s−1)!(n−s)!/n! whenever 1 ≤ s ≤ n, and this means that ψ = ϕ, the Shapley value.

(iii) For any additive game v the projection property implies Π∗
ψ(v) = v. Now,

let us suppose that Π∗
ψ(v)(S) = v(S) for all S ⊆ N . We will prove that v(S) =

∑

i∈S v({i}) for all S ⊆ N (equivalent to the additivity of v) by induction on s = |S|.
If s = 2 then S = {i1, i2} and formula (9) gives

(1 − 2p2
2)v({i1, i2}) =

(

p2
1 − p2

2

)[

v({i1}) + v({i2})
]

= (1 − 2p2
2)

[

v({i1}) + v({i2})
]

.
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Condition p2
2 6= 1/2 implies that v({i1, i2}) = v({i1}) + v({i2}). Now, let 2 < k ≤ n,

assume that v(S) =
∑

i∈S v({i}) whenever |S| < k, and consider a coalition S =
{i1, . . . , ik} of cardinality k. Then

(1 − kpkk)v({i1, . . . , ik}) =
∑

U⊂{i1,...,ik}

[

upku − (k − u)pku+1

]

v(U) =

=

k−1
∑

u=1

(

k − 1

u− 1

)

[

upku − (k − u)pku+1

][

v({i1}) + · · · + v({ik})
]

.

The sum appearing as a coefficient of [v({i1}) + · · · + v({ik})] is

pk1 +

k−1
∑

u=2

(

k − 1

u− 1

)

upku −
k

∑

u=2

(

k − 1

u− 2

)

(k − u+ 1)pku =

= pk1 +

k−1
∑

u=2

[

(

k − 1

u− 1

)

u−

(

k − 1

u− 2

)

(k − u+ 1)

]

pku − (k − 1)pkk =

= pk1 +
k−1
∑

u=2

(

k − 1

u− 1

)

pku + pkk − kpkk = 1 − kpkk,

and therefore (1−kpkk)v({i1, . . . , ik}) = (1−kpkk)
[

v({i1})+· · ·+v({ik})
]

. As pkk 6= 1/k
for k = 3, . . . , n, it follows that v(S) = v({i1}) + · · · + v({ik}). �

Remark 3.6 Condition pnn > 0 is necessary and sufficient for Π∗
ψ to be an auto-

morphism of GN , and this means that the ψ–power game allows us to regenerate
the original game in all cases. On the contrary, whenever pnn = 0 there are pairs of
distinct games v, v′ ∈ GN sharing a ψ–power game, i.e., such that Π∗

ψ(v) = Π∗
ψ(v′).

Given v ∈ GN , the set of games having the same ψ–power game as v is the additive
coset v+ker(Π∗

ψ). The subspace ker(Π∗
ψ) is spanned by the unanimity games uT such

that ptt = 0. It is easy to see that ptt = 0 for some t with 2 ≤ t ≤ n is equivalent
to pss = 0 for all s such that t ≤ s ≤ n, and also to pns = 0 for all such s. Then,
if pnt−1, where 1 < t ≤ n, is the last nonnull weighting coefficient of ψ, then the
subspace ker(Π∗

ψ) is spanned by the unanimity games uS with t ≤ s ≤ n, so that

dimker(Π∗
ψ) =

∑n
s=t

(

n
s

)

. The extreme case corresponds to the semivalue defined by

p2
2 = 0, i.e., pn2 = · · · = pnn = 0 or, equivalently, pn1 = 1: this is the dictatorial index.

In this case, dim ker(Π∗
ψ) = 2n − n− 1.

Remark 3.7 Conditions ptt 6= 1/t for t = 2, . . . , n are all necessary in Corollary
3.5(iii). In order to see it, let us look at the Banzhaf value β. From equation (11) it
follows that Π∗

β(u{1,2}) = u{1,2} although the unanimity game u{1,2} is not additive.
For every semivalue ψ, the additive games are all invariant under the ψ–power

map Π∗
ψ . In general, the subspace of games invariant under Π∗

ψ (eigenvectors with

eigenvalue equal to 1) is spanned by the unanimity games uT such that ptt = 1/t, and

therefore dimker(Π∗
ψ − id) =

∑

t: ptt=1/t

(

n

t

)

, where id denotes the identity map. An

extreme case corresponds to the semivalue such that ptt = 1/t for all t from 1 to n:
the Shapley value. In this case, the subspace of invariant games coincides with GN .
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The next property provides an easy procedure to obtain the MLE of the power
game Π∗

ψ(v): it suffices to add, as a factor, the eigenvalue tptt to each product of t
variables in the MLE of the original game v.

Proposition 3.8 Let ψ be a semivalue on GN , defined by the weighting vector (ps)
n
s=1,

and let the MLE of v ∈ GN be given by equation (7). Then:

(i) The MLE of game Π∗
ψ(v) is

fΠ∗
ψ
(v)(XN ) =

∑

T⊆N : T 6=∅

tpttαT
∏

i∈T

xi.

(ii) The ψt–power of any restricted game v|T is Πψt(v|T ) = fΠ∗
ψ
(v)(1T , 0N\T ), where

(1T , 0N\T ) means xi = 1 if i ∈ T and xi = 0 otherwise.

Proof. (i) Since all unanimity games are eigenvectors of Π∗
ψ , we have

Π∗
ψ(v) =

∑

T⊆N : T 6=∅

αTΠ∗
ψ(uT ) =

∑

T⊆N : T 6=∅

tpttαTuT

and the expression of the MLE of game Π∗
ψ(v) readily follows from property (iii) of

the MLE (see the end of Section 2).
(ii) It derives from Πψt(v|T ) = Π∗

ψ(v)(T ) = fΠ∗
ψ
(v)(1T , 0N\T ) for all T ⊆ N . �

Example 3.9 Let us consider the weighted majority game [68; 46, 42, 23, 15, 9], i.e.,
the 5–person (simple) game v defined by v(S) = 1 if

∑

i∈S wi ≥ q (winning coalitions)
and v(S) = 0 otherwise, where q = 68 is the quota and the weights are w1 = 46,
w2 = 42, and so on up to w5 = 9 (incidentally, this game describes the Catalonia
Parliament during Legislature 2003–2007). The set of minimal winning coalitions in
this game is Wm(v) = {{1, 2}, {1, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}} and its MLE is

fv(x1, x2, x3, x4, x5) = x1x2 + x1x3 − x1x2x3 + x1x4x5 + x2x3x4+

+ x2x3x5 −
∑

i<j<k<l

xixjxkxl + 2x1x2x3x4x5.

Let us consider the semivalue ψ = ψ5 defined by the weighting vector

(p5
s)

5
s=1 = (5/48, 1/12, 1/16, 1/24, 1/48).

Notice that semivalue ψ5 weights the marginal contributions by means of coefficients
that decrease a constant amount whenever the coalition size increases a unit (we
say that such a semivalue is an arithmetic semivalue with increase −1/48). We first
compute the last weighting coefficients for its induced semivalues:

p5
5 = 1/48, p4

4 = 1/16, p3
3 = 1/6, p2

2 = 5/12 and p1
1 = 1.

According to Proposition 3.8, the MLE of the power game Π∗
ψ(v) can be obtained

from the MLE of v, and we get

fΠ∗
ψ
(v)(x1, x2, x3, x4, x5) =

5

6
[x1x2 + x1x3] +

1

2
[−x1x2x3 + x1x4x5 + x2x3x4+

+ x2x3x5] −
1

4

∑

i<j<k<l

xixjxkxl +
5

24
x1x2x3x4x5.

8



Now, the power assigned by semivalue ψ to (the players of) the original game or
anyone of its restricted games can be easily computed. For instance,

Πψ(v) = Π∗
ψ(v)(N) = fΠ∗

ψ
(v)(1, 1, 1, 1, 1) = 13/8,

and, if e.g. T = {1, 2, 3},

Πψ3(v|T ) = Π∗
ψ(v)(T ) = fΠ∗

ψ
(v)(1, 1, 1, 0, 0) = 7/6.

4 The potential map

The results obtained for power in the preceding section will have here their respective
counterparts for potential.

Definition 4.1 (Dragan [7]) Let ψ be a semivalue on GN defined by the weighting
vector (ps)

n
s=1. The potential of (the semivalue ψ for) the restriction of a given game

v ∈ GN to a nonempty coalition T ⊆ N is defined by

Pψ(v|T ) =
∑

S⊆T

ptsv(S). (12)

The characteristic of a potential is the following: if i ∈ T ⊆ N and v ∈ GN , then

(i) Pψ(v|T ) − Pψ(v|T\{i}) = ψti [v|T ] if |T | > 1,
(ii) Pψ(v|{i}) = v({i}) = ψ1

i [v|{i}] if |T | = 1.

Definition 4.2 (Dragan [7]) Let ψ be a semivalue on GN defined by the weighting
vector (ps)

n
s=1. The ψ–potential map is the endomorphism P ∗

ψ of GN that transforms
any game v in the game P ∗

ψ(v) defined by

P ∗
ψ(v)(S) = Pψ(v|S) for all S ⊆ N. (13)

Thus P ∗
ψ(v), the ψ–potential game of v, assigns to each coalition S the potential of

the semivalue ψ for the restricted game v|S .

Theorem 4.3 Let ψ be a semivalue on GN defined by the weighting vector (ps)
n
s=1.

Every unanimity game uT is an eigenvector for the linear mapping P ∗
ψ with eigenvalue

ptt, i.e.,
P ∗
ψ(uT ) = ptt uT if ∅ 6= T ⊆ N. (14)

Proof. For each S ⊆ N we write P ∗
ψ(uT )(S) according to (12):

P ∗
ψ(uT )(S) = Pψ(uT |S) =

∑

U⊆S

psuuT (U).

If S + T , then no coalition U ⊆ S contains T and hence P ∗
ψ(uT )(S) = 0. Moreover,

P ∗
ψ(uT )(T ) = ptt. If S ⊃ T , then

P ∗
ψ(uT )(S) =

∑

U⊆S: T⊆U

psu =
s

∑

u=t

(

s− t

u− t

)

psu =
s−t
∑

j=0

(

s− t

j

)

pst+j = ptt. �
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Corollary 4.4 Let ψ be a semivalue on GN defined by the weighting vector (ps)
n
s=1.

The ψ–potential map P ∗
ψ satisfies the following properties:

(i) P ∗
ψ is a bijection iff pnn > 0.

(ii) P ∗
ψ is the identity map in GN iff ψ = µ, the marginal index.

(iii) If v is an additive game then P ∗
ψ(v) = v. If pnn 6= 1 then the converse is true.

Proof. (i) It is very similar to the proof of Corollary 3.5(i).
(ii) P ∗

ψ(v) = v for all v ∈ GN is equivalent to P ∗
ψ(uT ) = uT for all nonempty

T ⊆ N , and also to ptt = 1 whenever 1 ≤ t ≤ n. And this set of conditions is merely
equivalent to pnn = 1, i.e., to the fact that ψ is the marginal index.

(iii) Every additive game v is a linear combination of unanimity games uT with
|T | = 1; since these games are eigenvectors for P ∗

ψ with eigenvalue 1, it follows that
P ∗
ψ(v) = v. Now, let us suppose that P ∗

ψ(v)(S) = v(S) for all S ⊆ N . We will
prove that v(S) =

∑

i∈S v({i}) for all S ⊆ N by induction on s = |S|. For s = 2,
S = {i1, i2} and formula (12) gives

v({i1, i2}) = P ∗
ψ(v)({i1, i2}) = p2

2v({i1, i2}) + p2
1[v({i1}) + v({i2})]

and therefore
(1 − p2

2)v({i1, i2}) = (1 − p2
2)[v({i1}) + v({i2})].

Condition pnn 6= 1 implies that pss 6= 1 for s = 2, . . . , n − 1, and hence v({i1, i2}) =
v({i1}) + v({i2}). Now, let 2 < k ≤ n, assume that v(S) =

∑

i∈S v({i}) whenever
|S| < k, and consider a coalition S = {i1, . . . , ik} of cardinality k. Then

(1 − pkk)v({i1, . . . , ik}) =
∑

U⊂{i1,...,ik}

pkuv(U) =

k−1
∑

u=1

(

k − 1

u− 1

)

pku
[

v({i1}) + · · · + v({ik})
]

.

Since
k−1
∑

u=1

(

k − 1

u− 1

)

pku =

k
∑

u=1

(

k − 1

u− 1

)

pku − pkk = 1 − pkk 6= 0,

we conclude that v(S) = v({i1}) + · · · + v({ik}). �

The next property allows us to compute the allocations given by any semivalue on
any game v by using convenient modifications of the MLE of v. From the Harsanyi
dividends αT = αT (v), given in equation (1), we define the following amounts for any
nonempty coalition T ⊆ N , any i ∈ T and each u = 1, 2, . . . , t = |T |:

γui (v, T ) =
∑

U⊆T :

i∈U, |U|=u

αU .

Proposition 4.5 Let ψ be a semivalue on GN , defined by the weighting vector (ps)
n
s=1,

and let the MLE of v ∈ GN be given by equation (7). Then:

(i) The MLE of game P ∗
ψ(v) is

fP∗
ψ
(v)(XN ) =

∑

T⊆N : T 6=∅

pttαT
∏

i∈T

xi.
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(ii) If ∅ 6= T ⊆ N , the allocation to player i ∈ T in the restricted game v|T given by
the induced semivalue ψt is

ψti [v|T ] =
∂fP∗

ψ
(v)(XT , 0N\T )

∂xi

∣

∣

∣

∣

∣

1T

=
t

∑

u=1

puuγ
u
i (v, T ). (15)

Proof. (i) Since all unanimity games are eigenvectors of P ∗
ψ , we have

P ∗
ψ(v) =

∑

T⊆N : T 6=∅

αTP
∗
ψ(uT ) =

∑

T⊆N : T 6=∅

pttαTuT ,

and the expression of the MLE of game P ∗
ψ(v) follows from property (iii) of the MLE.

(ii) Let |T | > 1. On one hand, and according to characteristic (i) in Definition
4.1, we have

ψti [v|T ] = Pψ(v|T ) − Pψ(v|T\{i}) = P ∗
ψ(v)(T ) − P ∗

ψ(v)(T \{i}).

On the other hand, fP∗
ψ
(v)(XT , 0N\T ) is the MLE of the restriction of game P ∗

ψ(v) to

T . Using property (iv) of the MLE, the partial derivative of this MLE with respect to
a variable xi, evaluated at 1T , gives the marginal contribution of player i to coalition
T , that is, P ∗

ψ(v)(T ) − P ∗
ψ(v)(T \{i}), and the first equality follows at once. As for

the second equality, it suffices to see that the computation of the partial derivative
with respect to variable xi in fP∗

ψ
(v)(XT , 0N\T ) leads us to consider only the terms of

those U such that i ∈ U ⊆ T . Then, when we replace the remaining variables with 1,
each αU (v) appears with the corresponding factor puu according to the number u of
variables in each initial product.

Finally, let |T | = 1. Then T = {i} and ψ1
i [v{i}] = v({i}) = p1

1v({i}). �

Example 4.6 We go back to Example 3.9 and use the same semivalue as there. The
MLE of the ψ–potential game P ∗

ψ(v) is

fP∗
ψ

(v)(x1, x2, x3, x4, x5) =
5

12
[x1x2 + x1x3] +

1

6
[−x1x2x3 + x1x4x5 + x2x3x4+

+ x2x3x5] −
1

16

∑

i<j<k<l

xixjxkxl +
1

24
x1x2x3x4x5.

The payoffs given by ψ in v can be computed from the MLE. To this end, we apply
the second equality in equation (15) for T = N . Thus,

ψ1[v] = (1, 5/12, 1/6, 1/16, 1/48) · (0, 2, 0,−4, 2) = 5/8,
ψ2[v] = ψ3[v] = (1, 5/12, 1/6, 1/16, 1/48) · (0, 1, 1,−4, 2) = 3/8,
ψ4[v] = ψ5[v] = (1, 5/12, 1/6, 1/16, 1/48) · (0, 0, 2,−4, 2) = 1/8.

We can also compute allocations on restricted games. For instance, for game v|T
where T = {1, 2, 3}, we first write the restricted MLE

fP∗
ψ
(v)(X{1,2,3}, 0{4,5}) =

5

12
(x1x2 + x1x3) −

1

6
x1x2x3

and find therefore
ψ3[v|T ] = (2/3, 1/4, 1/4).
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Remark 4.7 The procedure for computing semivalue allocations from the MLE of a
game consists, in general, of two steps. In the case of the Banzhaf value (Owen [19]),
for each player i we first obtain the partial derivative with respect to variable xi and
replace next all the other variables with 1/2. For products where variable xi appears,
this action replaces each product of k variables in the MLE with the amount 1/2k−1,
which is nothing but pkk, the last weighting coefficient of the induced Banzhaf value
on cardinality k.

A similar procedure is stated in Amer and Giménez [1] for all binomial semivalues.
In this case, after partial differentiation we replace the remaining variables with α so
that, again, each product of k variables in the MLE of the game has been replaced
with αk−1, the last weighting coefficient of the induced semivalue ψkα.

The procedure for the Shapley value is not different. According to Owen [18],
after partial differentiation with respect to xi we replace the remaining variables with
a unique variable and integrate between 0 and 1. Each product of k variables in the
MLE containing variable xi gives rise to amount 1/k, which is also the last weighting
coefficient of the (induced) Shapley value on cardinality k.

These three situations exhibit a common procedure: first, the marginal contribu-
tions appear (after partial differentiation) and, second, they are weighted according
to the selected solution (after introducing 1/2, α, or a variable with integration).

Instead, the consideration of the modified MLE fP∗
ψ
(v) obtained from the initial

one has changed the procedure: first, we weight the terms of the initial MLE and,
second, we obtain players’ marginal contributions by partial differentiation. This new
procedure has an advantage with respect to the traditional method: the allocations
given by any semivalue are available since the weighting coefficients pkk can be always
obtained. In addition, we can split the allocations into two components, as indicated
in Proposition 4.5(ii): for every nonempty T ⊆ N ,

ψti [v|T ] =

t
∑

u=1

puuγ
u
i (v, T ).

Here, the coefficients puu are related to the semivalue, whereas the amounts γui (v, T )
depend only on the considered game. They are combined in equation (15) by means
of the inner product in Rt.

5 Comparing the maps

In this final section we consider together the power and potential maps attached to a
given semivalue ψ. We first show their matrices in the basis of the unanimity games.
Incidentally, we would like to mention that these matrices might be used to supply
alternative proofs for Corollaries 3.5 and 4.4. For e.g. n = 3, this basis is

B = {u{1}, u{2}, u{3}, u{1,2}, u{1,3}, u{2,3}, u{1,2,3}}

and the matrices are

Π∗
ψ :





















1
1

1
2p2

2

2p2
2

2p2
2

3p3
3





















, P ∗
ψ :





















1
1

1
p2
2

p2
2

p2
2

p3
3





















.
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Then these maps commute: Π∗
ψ ◦ P ∗

ψ = P ∗
ψ ◦ Π∗

ψ for any semivalue ψ.

In the particular case where ψ = ψα (α–binomial semivalue), with ptα,t = αt−1 for
1 ≤ t ≤ n, these matrices reduce to

Π∗
ψα

:





















1
1

1
2α

2α
2α

3α2





















, P ∗
ψα

:





















1
1

1
α

α
α

α2





















.

Coming back to the general case of ψ (always for n = 3), it follows that the maps
can be given the following formulas in terms of the Harsanyi dividends αT = αT (v)
(let us use here a slightly simplified notation): if

v =
[

α1u{1}+α2u{2}+α3u{3}
]

+
[

α1,2u{1,2}+α1,3u{1,3}+α2,3u{2,3}
]

+
[

α1,2,3u{1,2,3}
]

,

then

Π∗
ψ(v) =

[

α1u{1} + α2u{2} + α3u{3}
]

+

+2p2
2

[

α1,2u{1,2} + α1,3u{1,3} + α2,3u{2,3}
]

+ 3p3
3

[

α1,2,3u{1,2,3}
]

,

P ∗
ψ(v) =

[

α1u{1} + α2u{2} + α3u{3}
]

+

+p2
2

[

α1,2u{1,2} + α1,3u{1,3} + α2,3u{2,3}
]

+ p3
3

[

α1,2,3u{1,2,3}
]

.

Let us pay attention to the difference Π∗
ψ(v) − P ∗

ψ(v) for any v ∈ GN . One might
say, in general, that games v, v′ ∈ GN are equivalent iff v − v′ ∈ AGN : this would
be interpreted in the sense that these games are not very distinct since the difference
game is an additive (i.e., inessential) game. Then Π∗

ψ(v) and P ∗
ψ(v) are equivalent

from this viewpoint iff Π∗
ψ(v) = P ∗

ψ(v). This occurs iff either v ∈ AGN or ψ = δ (in
which case the equality holds for all v ∈ GN ). Thus, if v is not additive and ψ is not
the dictatorial index then the difference between the ψ–power and ψ–potential games
of v could be considered as essential.

Now, let us denote as GtN , for 1 ≤ t ≤ n, the subspace spanned by {uT : |T | = t}.
Notice that G1

N = AGN . We have a splitting of GN as a direct sum of these subspaces,

GN = G1
N ⊕ G2

N ⊕ · · · ⊕ GnN ,

which are, moreover, invariant under both Π∗
ψ and P ∗

ψ: these endomorphisms act
proportionally to each other on each such subspace and, in particular, both of them
coincide on G1

N with the identity map. As for the kernel and the subspace of invariant
games of each map, different possibilities arise according to the semivalue ψ we are
using. For simplicity, we will restrict the discussion to the binomial semivalues ψα.

If 1 ∈ H ⊆ {1, . . . , n}, let QH be the projection from GN onto
⊕

h∈H

GhN , defined by

QH(v) =
∑

T⊆N : |T |∈H

αTuT if v =
∑

T⊆N : T 6=∅

αTuT .

Then we have:

(a) If α = 0 then ψ0 = δ, the dictatorial index. In this case Π∗
δ = P ∗

δ = Q{1} and:

13



(1) The common kernel is the greatest one: ker(Π∗
δ) = ker(P ∗

δ ) =
⊕n

t=2 G
t
N .

(2) The common subspace of invariant games is the smallest: ker(Π∗
δ − id) =

ker(P ∗
δ − id) = G1

N .

(b) If α = 1 then ψ1 = µ, the marginal index. In this case P ∗
µ = id and:

(1) The common kernel is the smallest one: ker(Π∗
µ) = ker(P ∗

µ) = {0}.

(2) The subspaces of invariant games are, respectively, the smallest and the
greatest one: ker(Π∗

µ − id) = G1
N and ker(P ∗

µ − id) = GN .

(c) If 0 < α < 1 (in particular, α = 1/2 gives rise to ψ1/2 = β, the Banzhaf value)
then:

(1) ker(Π∗
ψα

) = ker(P ∗
ψα

) = {0}.

(2) The subspaces of invariant games are as follows. While ker(P ∗
ψα

−id) = G1
N

in all cases, ker(Π∗
ψα

−id) contains G1
N but may well include other subspaces.

For instance, if n ≥ 2, ker(Π∗
β − id) = G1

N ⊕ G2
N ; in general, if α = t

1

1−t for

some t among 2, . . . , n then GtN lies also in ker(Π∗
ψα

− id).

Finally, as to the asymptotic behavior when compounding each endomorphism
with itself, for ψ in general we have (n ≥ 2):

(a) lim
m→∞

(

Π∗
ψ

)m
=











∄ if ptt > 1/t for some t ≥ 2,

Q{1} if ptt < 1/t for all t ≥ 2,

QH otherwise, where H = {t : ptt = 1/t},

(b) lim
m→∞

(

P ∗
ψ

)m
=

{

Q{1} if ptt < 1 for t = 2, . . . , n,

id if ptt = 1 for t = 2, . . . , n,

and for ψα in particular:

(a’) lim
m→∞

(

Π∗
ψα

)m
=











∄ if α > 1/2,

Q{1,2} if α = 1/2,

Q{1} if α < 1/2,

(b’) lim
m→∞

(

P ∗
ψα

)m
=

{

Q{1} if α < 1,

id if α = 1.

The third case of (a) includes the Shapley value ϕ, for which ptt = 1/t for all t, thus
H = {1, 2, . . . , n}, the sequence is constant and QH = id; and also, e.g., the semivalue
defined for n = 5 by (ps)

5
s=1 = (0.60, 0, 0, 0.05, 0.20), which gives Q{1,4,5} as a limit.

The second case of (b) corresponds to the marginal index µ, and the sequence is
constant again. The second case of (a’) is the Banzhaf value. The first case of (b’)
includes the dictatorial index δ (constant sequence) and the Banzhaf value, while the
second case corresponds once more to the marginal index µ.

Two elementary points are useful to derive the above classification: (i) if (ps)
n
s=1

is the weighting vector defining ψ, then all ptt for t ≥ 2 are simultaneously either = 1
or < 1; and (ii) if 2α ≤ 1 then tαt−1 < 1 for all t > 2.
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