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Abstract

The Spectral Excess Theorem provides a quasi-spectral characterization for a
(regular) graph Γ with d+1 different eigenvalues to be distance-regular graph,
in terms of the mean (d-1)-excess of its vertices. The original approach, due
to Fiol and Garriga in 1997, was obtained in a wide context from a local
point of view, so giving a characterization of the so-called pseudo-distance-
regularity around a vertex. In this paper we present a new simple method
based in a global point of view, and where the mean degree of the distance-d
graph Γd plays an essential role.
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1. Introduction

Throughout all this paper Γ = (V, E) denotes a (simple and finite) con-
nected graph of order n. For any vertex u ∈ V , Γ(u) denotes the set of its
adjacent vertices, and δ(u) := |Γ(u)| stands for its degree. The distance bet-
ween two vertices u, v is represented by ∂(u, v). The eccentricity of a vertex

Email addresses: fiol@ma4.upc.edu (M.A. Fiol), sgago@ma4.upc.edu (S. Gago),
egarriga@ma4.upc.edu (E. Garriga)

Preprint submitted to Linear Algebra and its Applications April 1, 2009



u is denoted by ε(u) := maxv∈V ∂(u, v) and the diameter of the graph is
D(Γ) := maxu∈V ε(u) = maxu,v∈V ∂(u, v).

Let Γk(u) be the set of vertices at distance k from u, for 0 ≤ k ≤ ε(u),
and let Γk be the graph with the same vertex set as Γ and where two vertices
are adjacent whenever they are at distance k in Γ. Notice that Γ1(u) = Γ(u)
and Γ1 = Γ. The k-neighborhood of a vertex u, Nk(u), is the set of vertices
which are at distance at most k from u, that is, Nk(u) :=

⋃k
l=0 Γl(u). The

cardinal of the set |V \Nk(u)| is called the k-excess of the vertex u, and it is
denoted by ek(u). Trivially e0(u) = n− 1 and eε(u)(u) = 0.

Now consider A, the adjacency matrix of Γ. The algebra generated by A
denoted by A = A(A) := {p(A), p ∈ R[x]}, is called the adjacency algebra
or Bose-Mesner algebra. As usual J stands for the square matrix with all
entries equal to 1, and similarly j ∈ Rn is the all-1-vector. The spectrum of Γ
is the set of different eigenvalues of A together with their multipliticies, and
it will be denoted by sp Γ := {λm0

0 , λm1
1 , . . . , λmd

d }, with λ0 > λ1 > · · · > λd,
and where m0 = 1 since Γ is a connected graph.

2. The predistance polynomials

Given a mesh of real numbers, λ0 > λ1 > · · · > λd and a set of positive
real numbers called weights, g0, g1, . . . , gd, verifying

∑d
i=0 gi = 1, consider the

following operation

〈p, q〉 =
d∑

i=0

gip(λi)q(λi). (1)

It defines an scalar product in the quotient polynomial algebra R[x]/(Z),
where (Z) is the ideal generated by the polynomial Z =

∏d
i=0(x − λi). A

family of polynomials r0, r1, . . . , rd, satisfying 〈rk, rh〉 = 0 for any k 6= h and
that every polynomial rk has degree k, is called an orthogonal system. For
such a family, it is well known that there exist constants ai,bi,ci, verifying the
recurrence condition xri = bi−1ri−1 + airi + ci+1ri+1, for any i = 0, 1, . . . , d,
where b−1 = cd+1 = 0. In particular, we are interested in the orthogonal
system associated to (1), called the canonical orthogonal system, as it is the
only orthogonal system p0, p1, . . . , pd verifying any of the following equivalent
conditions:

(a) ‖pk‖2 = pk(λ0), 0 ≤ k ≤ d.

(b) p0 + p1 + · · ·+ pd = 1
g0π0

∏d
h=1(x− λh).
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(c) bk + ak + ck = λ0, 0 ≤ k ≤ d.

The symbol π0 and, in general, πi is defined as πi =
∏d

(h6=i) h=0 |λi − λh| for
every i = 0, 1, . . . , d. For more details about the proofs of these results, we
refer the reader to [2].
Moreover, for our purpose we are interested in the explicit expression of
pd(λ0), which can be computed in terms of the eigenvalues as follows:

pd(λ0) =
1

g2
0π

2
0

(
d∑

i=0

1

giπ2
i

)−1

. (2)

Now let Γ = (V,E) be a connected graph of order n, and let A be its
adjacency matrix. From its spectrum sp Γ, consider in R[x]/(Z) the scalar
product

〈p, q〉 =
d∑

i=0

mi

n
p(λi)q(λi). (3)

We define as the predistance polynomials of Γ the polynomials constituting
the orthogonal canonical system associated to this scalar product(3). Ob-
serve that the scalar product (3) is the one defined in (1) when the numbers
of the mesh are the eigenvalues of A and the weights are the multiplici-
ties divided by n. Therefore, the predistance polynomials verify any of the
following equivalent conditions

(a) ‖pk‖2 = pk(λ0), 0 ≤ k ≤ d.

(b) p0 + p1 + · · ·+ pd = n
π0

∏d
h=1(x− λh).

(c) bk + ak + ck = λ0, 0 ≤ k ≤ d.

We note that in the regular case n
π0

∏d
h=1(x−λh) is the Hoffman polynomial

H, which verifies H(A) = J . Moreover, we have an expression for pd(λ0) in
terms of the eigenvalues of the graph, that is

pd(λ0) =
n

π2
0

(
d∑

i=0

1

miπ2
i

)−1

. (4)
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3. The algebras A and D
Given a graph Γ, the set A = A(Γ) = {p(A), p ∈ R[x]} is a vectorial

space of dimension d + 1 and also an algebra with the ordinary product
of matrices, known as the Bose-Mesner algebra, and {I,A, . . . , Ad} is a
basis of A. Since I,A, A2, . . . , AD are linearly independent, we have that
dimA(Γ) = d + 1 ≥ D + 1 and, therefore, the diameter is always at most
equal to the number of different eigenvalues, or D ≤ d. Then, a natural
question is to enhance the case where the equality is attained, that is D = d.
In such case, we say that the graph Γ has spectrally maximum diameter.

Let D = D(Γ) be the linear span of the set {A0,A1, . . . , AD}, of which
it is a basis or, equivalently, the linear span of {A0,A1, . . . , Ad}, where if
D < d we take Ak = 0 for every D + 1 ≤ k ≤ d. It turns out that it forms
an algebra with the componentwise Hadamard product of matrices, defined
by (X ◦ Y )uv = XuvY uv. In our context, we will work with the vectorial
space T = A + D. Note that in the regular case I, A and J are matrices
in A ∩ D, as A0 + A1 + · · · + AD = J = H(A) ∈ A. Thus we have that
dim T ≤ d + D − 1. It also holds the equality

A0 + A1 + · · ·+ AD = J = p0(A) + p1(A) + · · ·+ pd(A). (5)

For any pair of matrices R, S ∈ T , we obtain

tr(RS) =
∑

u

(RS)uu =
∑

u

∑
v

RuvSvu =
∑
uv

RuvSuv.

Thus we can define an scalar product into T , in two equivalent forms

〈R,S〉 =
1

n
tr(RS) =

1

n

∑
uv

RuvSuv =
1

n

∑
uv

(R ◦ S)uv. (6)

Observe that the factor 1/n provides ‖I‖ = 1. Furthermore, we point out
that the scalar product (3) in A can also be expressed as

〈p(A), q(A)〉 =
1

n
tr(p(A)q(A)) =

1

n

d∑
i=0

mip(λi)q(λi) = 〈p, q〉 ,

which is the scalar product (3) in R[x]/(Z) from which we construct the
predistance polynomials.

Lemma 1. The algebras A and R[x]/(Z), with their respective scalar pro-
ducts (6) and (3), are isometric.

Proof. Just identify both algebras through the isometry p = p(A).
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4. The orthogonal projection D → A
Throughout all this section we suppose that Γ is a regular graph with

spectrally maximum diameter. Consider the euclidean space T with the scalar
product (6) and the orthogonal projection

T → A denoted by S 7→ S̃ .

Using in A the orthogonal base p0, p1, . . . , pd of predistance polynomials, this
projection can be expressed as

S̃ =
d∑

i=0

〈S, pi〉
‖pi‖2

pi =
d∑

i=0

〈S, pi〉
pi(λ0)

pi. (7)

Now consider the projection of Ad

Ãd =
d∑

j=0

〈Ad, pj〉
‖pj‖2

pj =
〈Ad, pd〉
‖pd‖2

pd =
〈Ad, H〉
pd(λ0)

pd =
〈Ad, Ad〉
pd(λ0)

pd =
δd

pd(λ0)
pd ,

(8)

where δd = ‖Ad‖2 =
1

n

∑
u,v

(Ad)uv =
1

n

∑
u∈V

|Γd(u)| is the mean degree of Γd.

Theorem 2. For any regular graph Γ, we have δd ≤ pd(λ0), and equality is
attained if and only if Ad = pd(A).

Proof. Consider the equality Ad = Ãd + N , on N ∈ A⊥. Combining both
Pitagoras Theorem and Equation (8), we obtain

‖N‖2 = ‖Ad‖2 − ‖Ãd‖2 = δd − δ2
d

pd(λ0)
= δd

(
1− δd

pd(λ0)

)
.

This implies the inequality. Moreover, equality is attained if and only if N
is zero.

A similar result was recently proved by Van Dam [6] by using the har-
monic mean of the degrees of Γd (see also [5]).

We point out that the relation δd ≤ pd(λ0) holds for any graph, not
only for graphs with spectrally maximum diameter. In the other cases the
inequality is trivial since 0 < pd(λ0).
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5. Characterizing distance-regular graphs

A connected graph Γ of diameter D is distance-regular if for any vertex
pair (u, v) and integers 0 ≤ i, j ≤ D, the numbers pij(u, v) of vertices at
distance i from u and at distance j from v only depends on k := ∂(u, v), and
we write pij(u, v) = pk

ij for some constants pk
ij called the intersection numbers

(see e.g. [1]). This definition or characterization can be simplified to some
weaker statements.

(A) A graph Γ with diameter D is distance-regular if and only if, for any
two vertices u, v ∈ V at a distance k, there exist the numbers pk

k+1,1,

pk
k1, pk

k−1,1, for any 0 ≤ k ≤ D.

This characterization can also be translated in terms of k-distance matrices
terms as follows:

(B) A graph Γ with diameter D is distance-regular if and only if, for any
two vertices u, v ∈ V at a distance k, if there exist numbers bk, ak, ck

(the proper intersection numbers) such that

AAk = bk−1Ak−1 + akAk + ck+1Ak+1 (0 ≤ k ≤ D), (9)

where b−1 = cD+1 = 0. Besides for any 0 ≤ k ≤ D the sum bk + ak + ck is
equal to the degree of the graph, and bk = pk

k+1,1, ak = pk
k1, ck = pk

k−1,1.
By iteratively applying (9) we obtain that there exist polynomials pk, with

degree equal to their subindex, such that Ak = pk(A) for every 0 ≤ k ≤ D.
In this case we say that the distance-matrices are polynomial. In particular
it holds (xpD − bD−1pD−1 − aDpD)(A) = 0 , that is, there is a polynomial of
degree D + 1 that annihilates A. Therefore d + 1 ≤ D + 1, implies D = d
and the distance-regular graphs have spectrally maximum diameter. Con-
versely, suppose that, in a regular connected graph Γ, the distance-matrices
A0,A1, . . . , Ad, with Ad 6= 0 , are polynomial: Ak = pk(A). This implies
that the graphs Γk are regular of degree pk(λ0). Then, from

〈ph, pk〉 = 〈ph(A), pk(A)〉 = 〈Ah,Ak〉 = 0 for h 6= k,

‖ph‖2 = ‖Ah‖2 =
1

n
npk(λ0) = pk(λ0) for h = k,

we obtain that the pk’s are the predistance polynomials. Their recurrent
relation turns out into the equalities (9) and the graph is distance-regular.
Therefore the distance-regularity of a graph can also be characterized in the
following way:
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(C) A graph Γ is distance-regular if and only if the k-distance matrices of
the graph are polynomials, for every 0 ≤ k ≤ D.

(These polynomials are just the predistance polynomials which, in the
case of having distance-regularity, are simply called the distance poly-
nomials).

As before, the number of conditions in (C) can reduced drastically, as it
was shown in [3].

(D) A graph Γ is distance-regular if and only if Γ is regular, has spectrally
maximum diameter and the matrix AD is polynomial.

Here we will give a shorter proof of (D). Let us see that, within the
above conditions on Γ, if Ad ∈ A then Ak ∈ A for every 0 ≤ k ≤ d − 1.
If Ad = q(A) it is clear that q has degree d, and also that Γd is a regular
graph with degree δd = q(λ0). Let us prove that q = pd. Indeed, ‖q‖2 =
〈Ad,Ad〉 = 〈Ad, J〉 = δd = q(λ0). Moreover, for every r ∈ Rd−1[x], we have
〈q, r〉 = 〈Ad, r(A)〉 = 0. Therefore, q = pd. From the equality (5) and the
recurrence satisfied for the predistance polynomials, we get:

A0 + A1 + · · ·+ Ad−1 = p0(A) + p1(A) + · · ·+ pd−1(A) (10)

AAd = bd−1pd−1(A) + adAd (11)

Then, if ∂(u, v) > d−1 we have (pd−1(A))uv = 0, since pd−1 has degree d−1. If
∂(u, v) = d−1, the equality (10) implies that (pd−1(A))uv = 1. Otherwise the
equality (11) implies (pd−1(A))uv = 0. Therefore, pd−1(A) = Ad−1. Suppose
now that pi(A) = Ai for d ≥ i ≥ k + 1. Then, we have the equalities:

A0 + A1 + · · ·+ Ak = p0(A) + p1(A) + · · ·+ pk(A) (12)

AAk+1 = bkpk(A) + ak+1Ak+1 + ck+2Ak+2 (13)

As before, from the degree of pk we can deduce that, if ∂(u, v) > k then
(pk(A))uv = 0. If ∂(u, v) = k, using (12) we have (pk(A))uv = 1. Otherwise
the equality (13) yields (pk(A))uv = 0. Thus, we get pk(A) = Ak which, by
recurrence, proves the result in (D).

Now observe that in a distance-regular graph, the (d − 1)-excess of any
vertex is the mean degree of Ad, which can be calculated as pd(λ0), and
recall Equation (4). As a consequence of the projection method introduced
in Section 4, we present a simple proof of the Spectral Excess Theorem, first
given in [4]. Another simple approach was used by Van Dam [6] to prove the
same result.
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Theorem 3. A regular connected graph Γ with d + 1 different eigenvalues is
distance-regular if and only if the mean (d − 1)-excess of the vertices of the
graph is

n

π2
0

(
d∑

i=0

1

miπ2
i

)−1

. (14)

Proof. First suppose that Γ is distance-regular, then Ad = pd(A) and Γd is
regular of degree pd(λ0). From Equation (4) the condition yields. Conversely,
if the mean degree of Γd is not null, the graph Γ has spectrally maximum
diameter, as D = d. Thus δd = pd(λ0) and by Theorem 2 it holds that
Ad is polynomial. Finally, the characterization (D) establishes the distance-
regularity of the graph.
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