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Abstract

The Spectral Excess Theorem provides a quasi-spectral characterization for a
(regular) graph I' with d+1 different eigenvalues to be distance-regular graph,
in terms of the mean (d-1)-excess of its vertices. The original approach, due
to Fiol and Garriga in 1997, was obtained in a wide context from a local
point of view, so giving a characterization of the so-called pseudo-distance-
regularity around a vertex. In this paper we present a new simple method
based in a global point of view, and where the mean degree of the distance-d
graph I'y plays an essential role.
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1. Introduction

Throughout all this paper I' = (V, E)) denotes a (simple and finite) con-
nected graph of order n. For any vertex w € V, I'(u) denotes the set of its
adjacent vertices, and §(u) := |T'(u)| stands for its degree. The distance bet-
ween two vertices u, v is represented by 0(u,v). The eccentricity of a vertex
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u is denoted by e(u) := max,ey O(u,v) and the diameter of the graph is
D(T') := maxy,ev e(u) = max, ey 0(u, v).

Let T'x(u) be the set of vertices at distance k from u, for 0 < k < e(u),
and let 'y be the graph with the same vertex set as [' and where two vertices
are adjacent whenever they are at distance k in I'. Notice that I';(u) = I'(u)
and I'; = T'. The k-neighborhood of a vertex u, Ni(u), is the set of vertices
which are at distance at most k from wu, that is, Ny(u) := Uf:() ['y(u). The
cardinal of the set |V\ Ni(u)| is called the k-excess of the vertex u, and it is
denoted by ej(u). Trivially eg(u) =n — 1 and e, (u) = 0.

Now consider A, the adjacency matrix of I'. The algebra generated by A
denoted by A = A(A) := {p(A), p € R[]}, is called the adjacency algebra
or Bose-Mesner algebra. As usual J stands for the square matrix with all
entries equal to 1, and similarly 3 € R™ is the all-1-vector. The spectrum of I'
is the set of different eigenvalues of A together with their multipliticies, and
it will be denoted by spI' := {A{™, AT, ..., A}, with A\g > Ay > -+ > Ay,
and where mg = 1 since I' is a connected graph.

2. The predistance polynomials

Given a mesh of real numbers, A\g > Ay > -+ > Ay and a set of positive
real numbers called weights, go, g1, . . ., gq, verifying Z?:o g; = 1, consider the
following operation

(p,q) = Zgz’p()\z')qo\i)- (1)

It defines an scalar product in the quotient polynomial algebra R[z]/(Z),
where (Z) is the ideal generated by the polynomial Z = [[L,(z — \;). A
family of polynomials rg, 71, ..., 74, satisfying (rg,r,) = 0 for any k # h and
that every polynomial r, has degree k, is called an orthogonal system. For
such a family, it is well known that there exist constants a;,b;,c;, verifying the
recurrence condition xr; = b;_11;_1 + a;r; + ¢;117iv1, for any ¢ = 0,1,....,d,
where b_1 = ¢441 = 0. In particular, we are interested in the orthogonal
system associated to (1), called the canonical orthogonal system, as it is the
only orthogonal system pg, p1, . . ., pq verifying any of the following equivalent
conditions:

(a) llpell> = pe(Xo), 0 <k <d.
(b) po+p1+ -+ pa= 90%0 [T, (x — ).
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(C) b +ar+c =N, 0<Ek<d.

The symbol 7y and, in general, m; is defined as m; = Hzlh i) h=0 |A;i — Al for
every i = 0,1,...,d. For more details about the proofs of these results, we
refer the reader to [2].

Moreover, for our purpose we are interested in the explicit expression of
pa(Ao), which can be computed in terms of the eigenvalues as follows:

(&)
Pl = (Zgiwz?) ' (2>

=0

Now let I' = (V, E) be a connected graph of order n, and let A be its
adjacency matrix. From its spectrum spI', consider in R[z]/(Z) the scalar
product

(p,q) = Z —p(A)g(N). (3)

d
m;
n
=0

We define as the predistance polynomials of I' the polynomials constituting
the orthogonal canonical system associated to this scalar product(3). Ob-
serve that the scalar product (3) is the one defined in (1) when the numbers
of the mesh are the eigenvalues of A and the weights are the multiplici-

ties divided by n. Therefore, the predistance polynomials verify any of the
following equivalent conditions

(a) |Ipell? = pe(No), 0<k <d.
(b) po+p1++pa= 2Ty (z — M)
(c) b +ap+cp=2X, 0<k<d.

We note that in the regular case - szl(x — A\n) is the Hoffman polynomial
H, which verifies H(A) = J. Moreover, we have an expression for pg(Ao) in
terms of the eigenvalues of the graph, that is

pl) = 25 (Z m;) . 0

i=0 i




3. The algebras A and D

Given a graph I', the set A = A(I') = {p(A), p € R[z]|} is a vectorial
space of dimension d + 1 and also an algebra with the ordinary product
of matrices, known as the Bose-Mesner algebra, and {I,A,...,Ad} is a
basis of A. Since I, A, A% ..., AP are linearly independent, we have that
dim A(T') = d+ 1 > D + 1 and, therefore, the diameter is always at most
equal to the number of different eigenvalues, or D < d. Then, a natural
question is to enhance the case where the equality is attained, that is D = d.
In such case, we say that the graph I' has spectrally maximum diameter.

Let D = D(I") be the linear span of the set {Ag, A1,..., Ap}, of which
it is a basis or, equivalently, the linear span of {A, A1,..., As}, where if
D < d we take Ap = 0 for every D + 1 < k < d. It turns out that it forms
an algebra with the componentwise Hadamard product of matrices, defined
by (X oY)y = XuwYup In our context, we will work with the vectorial
space T = A+ D. Note that in the regular case I, A and J are matrices
in AND, as Ag+ A1 +---+ Ap = J = H(A) € A. Thus we have that
dim7 < d+ D — 1. It also holds the equality

A+ A1+ +Ap=J =po(A) +p1(A) + - + pa(A). (5)

For any pair of matrices R, S € 7, we obtain

tr(RS) =) (RS)u, = Z Z R.Su =) RuSu.

u

Thus we can define an scalar product into 7, in two equivalent forms

(R, S) = 1 tr(RS) Z RS, =~ Z(R 0 8)uo- (6)

uv

Observe that the factor 1/n prov1des |II|| = 1. Furthermore, we point out
that the scalar product (3) in A can also be expressed as

(P(A),4(A)) = tr(p( Al Zmzp — (pq),

which is the scalar product (3) in Rlz]/ (Z ) from which we construct the
predistance polynomials.

Lemma 1. The algebras A and Rlz|/(Z), with their respective scalar pro-
ducts (6) and (3), are isometric.

Proof. Just identify both algebras through the isometry p = p(A). O]



4. The orthogonal projection D — A

Throughout all this section we suppose that ' is a regular graph with
spectrally maximum diameter. Consider the euclidean space 7 with the scalar
product (6) and the orthogonal projection

7 — A denoted by S S.

Using in A the orthogonal base pg, p1, ..., pg of predistance polynomials, this
projection can be expressed as

= =S (S
S~ L T T 2 0™ v

1=0 =0 pz()\O)
Now consider the projection of Ay
Zdj Avps) _ (Asp) (Act)  (AnAd
= llpsl? P P T pah) © pa(Xo) pa(Xo)
. (8)
where 04 = || Ag* = — Z Z |Tq(u)| is the mean degree of I'y.
n
u,v uEV

Theorem 2. For any regular graph I, we have §q4 < pa(No), and equality is
attained if and only if Aq = pa(A).

Proof. Consider the equality A; = A+ N ,on N € A+. Combining both
Pitagoras Theorem and Equation (8), we obtain

~ 52 )
N2 = ||AJ2 = [|Ay> =6, — —2_ = (1——d).
NI = [|Agll* — || Aql 4T gy EW

This implies the inequality. Moreover, equality is attained if and only if IN
is zero. O

A similar result was recently proved by Van Dam [6] by using the har-
monic mean of the degrees of I'y (see also [5]).

We point out that the relation d; < pg(Ag) holds for any graph, not
only for graphs with spectrally maximum diameter. In the other cases the
inequality is trivial since 0 < pg(Ao).



5. Characterizing distance-regular graphs

A connected graph I' of diameter D is distance-regular if for any vertex
pair (u,v) and integers 0 < 4,5 < D, the numbers p;;(u,v) of vertices at
distance i from u and at distance j from v only depends on k := 9(u,v), and
we write p;;(u,v) = pfj for some constants pfj called the intersection numbers
(see e.g. [1]). This definition or characterization can be simplified to some
weaker statements.

(A) A graph T with diameter D is distance-regular if and only if, for any
two vertices u, v € V' at a distance k, there exist the numbers piHJ,

pllzla p]]z—l,p f07“ any 0 S k S D.

This characterization can also be translated in terms of k-distance matrices
terms as follows:

(B) A graph T with diameter D is distance-reqular if and only if, for any
two vertices u, v € V' at a distance k, if there exist numbers by, ax, cx
(the proper intersection numbers) such that

AA, =bp 1Ak1 + ap Ay + 1Ak (0 <k< D), (9)

where b_; = cpy1 = 0. Besides for any 0 < k < D the sum by + aj + ¢ is
equal to the degree of the graph, and b, = p’,jJrLl, ap = pk,, e = pﬁ_l’l.

By iteratively applying (9) we obtain that there exist polynomials py, with
degree equal to their subindex, such that Ay = p(A) for every 0 < k < D.
In this case we say that the distance-matrices are polynomial. In particular
it holds (zpp — bp_1pp—1 — appp)(A) = 0, that is, there is a polynomial of
degree D + 1 that annihilates A. Therefore d +1 < D + 1, implies D = d
and the distance-regular graphs have spectrally maximum diameter. Con-
versely, suppose that, in a regular connected graph I', the distance-matrices
Ay, Aq,..., Ay, with Ay # 0, are polynomial: Aj = pi(A). This implies
that the graphs [y are regular of degree px(Xg). Then, from

(pn, k) = (pr(A), p(A)) = (A, Ap) =0 forh #k,
1
lpall” = (| Anl* = —npr(Xo) = pr(Xo)  forh =4k,

we obtain that the pg’s are the predistance polynomials. Their recurrent
relation turns out into the equalities (9) and the graph is distance-regular.
Therefore the distance-regularity of a graph can also be characterized in the
following way:



(C) A graph T is distance-reqular if and only if the k-distance matrices of
the graph are polynomaals, for every 0 < k < D.

(These polynomials are just the predistance polynomials which, in the
case of having distance-regularity, are simply called the distance poly-
nomials).

As before, the number of conditions in (C) can reduced drastically, as it
was shown in [3].

(D) A graph T is distance-regular if and only if ' is regular, has spectrally
maximum diameter and the matriz Ap is polynomial.

Here we will give a shorter proof of (D). Let us see that, within the
above conditions on I', if A; € A then A, € A for every 0 < k < d — 1.
If A; = q(A) it is clear that ¢ has degree d, and also that I'; is a regular
graph with degree d; = q(\o). Let us prove that ¢ = pg. Indeed, ||¢||* =
(Ag, Ag) = (Ag, J) = dqg = q(Ng). Moreover, for every r € R;_1[z], we have
(q,ry = (A4,7(A)) = 0. Therefore, ¢ = pg. From the equality (5) and the
recurrence satisfied for the predistance polynomials, we get:

Ag+Ar+-+ A1 = po(A)+p(A)+- - +paa(A)  (10)
AAd = bd_lpd_l(A) + CldAd (11)

Then, if O(u, v) > d—1 we have (pg_1(A)),,, = 0, since ps_; has degree d—1. If
O(u,v) = d—1, the equality (10) implies that (pg_1(A)),, = 1. Otherwise the
equality (11) implies (pg—1(A)),, = 0. Therefore, ps_1(A) = A4_1. Suppose
now that p;(A) = A, for d > i > k + 1. Then, we have the equalities:

Ag+ A+ + Ay = po(A)+pi(A) + - +pe(A) (12)
AApyr = bipr(A) + app1 Ap + CrroAggo (13)

As before, from the degree of p, we can deduce that, if d(u,v) > k then
(p(A)),, = 0. If O(u,v) = k, using (12) we have (py(A)),, = 1. Otherwise
the equality (13) yields (py(A)),, = 0. Thus, we get pi(A) = Ay which, by
recurrence, proves the result in (D).

Now observe that in a distance-regular graph, the (d — 1)-excess of any
vertex is the mean degree of A,, which can be calculated as pg(\g), and
recall Equation (4). As a consequence of the projection method introduced
in Section 4, we present a simple proof of the Spectral Excess Theorem, first
given in [4]. Another simple approach was used by Van Dam [6] to prove the
same result.



Theorem 3. A regqular connected graph I' with d+ 1 different eigenvalues is
distance-regular if and only if the mean (d — 1)-excess of the vertices of the

graph s
i -1
n
— ) 14
oy <Z mm2> (1)

=0 i

Proof. First suppose that I" is distance-regular, then A; = py(A) and T'y is
regular of degree py(A\g). From Equation (4) the condition yields. Conversely,
if the mean degree of I'; is not null, the graph I" has spectrally maximum
diameter, as D = d. Thus 64 = pa(Ao) and by Theorem 2 it holds that
A, is polynomial. Finally, the characterization (D) establishes the distance-
regularity of the graph. m
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