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Abstract—Robot egomotion can be estimated from an ac-
quired video stream up to the scale of the scene. To remove
this uncertainty (and obtain true egomotion), a distance within
the scene needs to be known. If no a priori knowledge on
the scene is assumed, the usual solution is to derive “in some
way” the initial distance from the camera to a target object.
This paper proposes a new, very simple way to obtain such a
distance, when a zooming camera is available and there is a
planar target in the scene. Similarly to “two-grid calibration”
algorithms, no estimation of the camera parameters is required,
and no assumption on the optical axis stability between the
different focal lengths is needed. Quite the reverse, the non
stability of the optical axis between the different focal lengths is
the key ingredient that enables to derive our depth estimate, by
applying a result in projective geometry. Experiments carried
out on a mobile robot platform show the promise of the
approach.

I. INTRODUCTION

This paper presents a new method for inferring depth
information using a zooming camera. In previous works [1],
[2] we have shown how to recover robot egomotion from
the deformation of an active contour. We have proposed to
express the deformation of the contour in the image with a
6-dimensional affine shape vector. Then, with a non-linear
non-derivable algorithmic function the performed 3D motion
can be recovered up to a scale factor (as it is common in
monocular vision). Scaled 3D motion can be recovered also
in the context of a zooming camera [3]. Studying further
the characteristics of the proposed affine shape space, we
will show how the initial distance can be computed from the
affine shape deformation caused by a zoom-lens camera.

Being based on active contour tracking, our egomotion
recovery algorithm requires that the whole object projection
keeps into the image all along the robot trajectory. This is
sometimes too restrictive with a fixed camera, as the allowed
robot motion is highly limited. One of the more promising
solutions we have considered is to provide motion to the
camera by means of a pan-and-tilt unit, and to implement a
control algorithm to keep the target centered in the image (or
at least within the image) in the whole sequence. One of the
main problems of the control algorithm is that different gains
should be applied depending on the distance from camera to
target. Observe that, as usual in monocular imaging, it is not
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possible to disambiguate a priori the motion of a closer and
small object from that of a far and big one.
Metric egomotion may be obtained if some additional

information can be gathered. The scale factor depends on the
camera focal distance and also on the initial distance from the
camera to the viewed target. The camera focal distance can
be obtained easily by a camera calibration or autocalibration
method, even for zooming cameras [4]. The initial distance
from camera to target is harder to obtain. In [2] we used
a laser and other authors have proposed, for example, to
use the range scanner of an autofocus camera [5], stereo
correspondence, trifocal tensors [6], depth from defocused
images [7] and depth from zooming.
In depth from zooming both camera and scene should

be stationary and image deformation be caused only by
zooming. Ma and Olsen [8] proposed a method to recover
depth information from the variation in the focal distance and
the optical flow. They noticed that the equation that describes
the displacement obtained by zooming is similar to the one
describing the translation of a camera along the optical axis.
They assumed a thin-lens camera model (that nowadays
is known not to be the most suitable model for zoom
lenses [6]). In their mathematical formulation, they assumed
that the apparent object translation is due exclusively to
focal length variation. Lavest et al. [9] showed that this is
not correct. In their work they use the thick-lens camera
model, which is more accurate in modelling the focal change
process. The correspondence that they establish between a
thick-lens model and the corresponding pinhole configuration
is interesting. To obtain good reconstruction data, a very
accurate calibration process should be performed, including
intrinsic (with radial distorsion) and extrinsic parameters.
They were forced to use high-quality lenses, as they assumed
that the optical axis was stable during the zooming sequence.
Rodin and Ayache [10] introduced a calibration method

that does not require a physical axial camera. They used
a geometric rectification method, but distorsions were not
taken into account and the triangulation base they used was
very small (only 50 mm).
Later, Lavest et al. [11] proposed an implicit reconstruc-

tion method that uses a two-plane geometric calibration
procedure. The method was originally developed by Martins
et al. [12] to solve the back-projection problem, and extended
by Gremban et al. [13] to include also a solution to the pro-
jection problem, formulated with systems of linear equations.
The idea is to find, without any explicit camera model, the
ray in space that defines the line of sight of a given pixel. To
calibrate, Lavest et al. used a micrometric table to translate
the calibration pattern, as the reconstruction method that they
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proposed requires a high-precision calibration process. A
new point in the image (located manually in [11] and by
means of an iterative algorithm in [14]) can be triangulated
with the calibration data to find the 3D point location.
This method has the advantages of taking into account all
distorsions, the optical center displacement produced when
zooming, and not requiring the estimation of the camera
parameters. A common comment [15], [16] is that it doesn’t
take into account the blurring effects that in some situations
are produced when zooming.

The article is structured as follows. Section II presents the
shape space that parameterises the general 6 d.o.f motion,
and the reduced space corresponding to a zooming camera
used to extract the required scale. In Section III we present
the calibration algorithm and the proposed method to infer
depth. Experiments with real images taken from a mobile
robot are explained in Section IV. Finally, in Section V some
conclusions and ideas about the applicability of the method
in current approaches that require an initial depth estimate
are stated.

II. AFFINITY RECOVERY FROM THE
DEFORMATION OF AN ACTIVE CONTOUR

Under weak-perspective conditions (i.e., when the depth
variation of the viewed object is small compared to its
distance to the camera), every 3D motion of a planar object
projects as an affine deformation in the image plane.

The affinity relating two views is usually computed from
a set of point matches [17], [18]. In this work an active con-
tour [19] fitted to a target object is used instead. The contour,
coded as a B-Spline [20], deforms between views leading to
changes in the location of the control points. A relation can
be established between some extracted point features and
a contour, considering the list of points as the set of the
B-Spline control points. As a consequence, the method pre-
sented next, that obtains a motion parameterisation through
pseudoinverse multiplication, can be applied also with point
correspondences (as will be proved in Sec. IV).

It has been formerly demonstrated [19], [1], [3] that the
difference in terms of control points Q′ − Q that quantifies
the deformation of the contour can be written as a linear
combination of six vectors. Using matrix notation

Q′
− Q = WS (1)

where

W =

([

1

0

]

,

[

0

1

]

,

[

Qx

0

]

,

[

0
Qy

]

,

[

0
Qx

]

,

[

Qy

0

])

(2)

and S is a vector with the six coefficients of the linear
combination. This so-called shape vector

S = [tx, ty,M1,1 − 1,M2,2 − 1,M2,1,M1,2] (3)

encodes the affinity between two views d′(u) and d(u) of
the planar contour:

d′(u) =Md(u) + t, (4)

where M = [Mi,j ] and t = (tx, ty) are, respectively, the
matrix and vector defining the affinity in the plane.
The deformation of the contour parameterized as a planar

affinity permits deriving the camera motion in 3D space [1]
even in the presence of zooming [3]. It has shown before that
different deformation spaces can be defined corresponding
to several constrained robot motions [21]. I.e. in the case
of a planar robot, with 3 degrees of freedom, the motion
space is parameterised with two translations (Tx, Tz) and one
rotation (θy) yielding a three-dimensional shape space, which
should be enlarged with one additional degree of freedom to
cope with misalignments of the camera and robot coordinate
systems [2].
Here the proposed solution is similar to the one in [2]. We

need to define a reduced shape space able to deal with all
the possible image deformations caused by zooming. First,
the effect of zooming by a factor ρ is to translate the image
point x along a line going from the principal point v0 to
the point x′ = ρx + (1 − ρ)v0. At practical effects, this
can be implemented by multiplying the calibration matrix
corresponding to the first frame by the factor ρ, and it can
be introduced directly as one of the degrees of freedom in
the reduced shape space that we want to build. Second, the
optical axis in a zooming camera is not constant [9], since the
principal point position changes when zooming. To be able to
model the translation effects present when zooming, we use
the horizontal and vertical translation degrees of freedom1.
The resulting shape matrix is of the form

Wzoom =

([

1

0

]

,

[

0

1

]

,

[

Qx

Qy

])

(5)

and the shape vector is

S = [tx, ty, ρ] . (6)

III. DEPTH FROM THE AFFINITY

As we will show, the algorithm presented here shares the
main advantages of the ”two-grid calibration” algorithm [12],
[11]: no estimation of the camera parameters is required,
and no assumption on the optical axis stability between the
different focal lengths is needed. Quite the reverse, the non
stability of the optical axis between the different focal lengths
is the key ingredient that enables to derive our depth estimate.
Note that if we try to model a zooming camera with the
pinhole model we can assume neither that the optical axis
is constant nor that the projection center is at the same
place [4]. We only assume that the optical axis varies always
in the same way between some two given focal lengths. We
also suppose that the relation between two views of the same
scene taken by a static zooming camera is accurately approx-
imated by a planar homothetic transformation (a change in
scale and a translation). As explained before, the scale factor
(equivalently, the ratio of the homothetic transformation)
accounts for the change in focal length, and the translation
accounts for the displacement of the principal point, due to
the non stability of the optical axis.

1This can be derived in a similar manner as was done in [21].
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Furthermore, the proposed algorithm overcomes one of
the major difficulties of the existing algorithms: it works
well under affine viewing conditions. Moreover, from a
computational point of view, it is a straightforward cali-
bration algorithm: it avoids time-consuming minimization
calculations, since the input data are ratios of three planar
homothetic transformations. The estimation of these ratios
relies on the restriction of a planar affine shape-space, which
parameterizes the deformation of the projected target in the
image (see Sec. II), combined with a quick an robust feature
location method, such as an active contour tracking [19] or
an affine-transfer based method [22].

A. Calibration algorithm

A planar target is located at a distance z1 of the camera.
The target is viewed by the camera at zoom A. Then the
camera switches to zoom B and the homothetic transforma-
tion h1 (whose ratio will be denoted ρ1) that relates these
two views (from zoom A to zoom B) is computed. This
process is repeated at a distance z2 of the camera: a planar
target (it may be different from the preceding one) is viewed
by the zooming camera, from zoom A to zoom B, and the
homothetic transformation h2 (whose ratio will be denoted
ρ2) that relates the initial and final views is computed.
If a new planar target (at an unknown distance z) is

acquired with the zooming camera, again from zoom A
to zoom B, then the homothetic transformation h (whose
ratio will be denoted by ρ) that relates the initial and
final views is computed. We claim that the ratio of depths
z2−z1

z−z1
may be computed from the ratios of the preceding

homothetic transformations and is given by
ρ(ρ2−ρ1)
ρ2(ρ−ρ1)

. Thus,
we obtain a straightforward estimation of the unknown depth
z, without knowing any camera parameter. Moreover, the
tedious use of metric instruments, such as a micrometric
table, is avoided in the calibration process, since the relative
orientation between the planes containing the two calibration
targets is not relevant; besides, there is no need to use grids,
hence the two calibration targets may be familiar objects in
the scene (such as a door, window, board ...). The problem
of computing accurately the ratio of the homothetic trans-
formation relating the initial and final views of a zooming
camera is overcome by reducing the dimension of the shape
vector, which encodes the affine relation between the two
views (see Section II).

B. Inferring the depth

We will show, as announced, how the non stability of the
optical axis between the different focal lengths is used to
infer our depth estimate.
We suppose that the direction of the optical axis in focal

length A differs slightly from the direction of the optical axis
in focal length B. Hence there exists an optical ray l in zoom
A, which goes through an image point x, whose direction
equals the direction of the optical axis aB in zoom B (see
Fig. 1).
This ray l is close to the optical axis in zoom A, and it cuts
the calibration planes in the points X1 and X2, and the target

aB

l

PB

x X1 X X2

h3(x)

h2(x)

h1(x)

PA

A

B

Fig. 1. A static zooming camera views the same scene with zoom A and
zoom B. The variation of the optical axis between the two focal lengths
has been magnified in order to exhibit the relevant features (see III-B) to
infer the depth in the algorithm of Section III-A.
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Fig. 2. Scene line r with three reference points Y1, Y2, Y3 projected in
the image R to x̄ and Ȳ1, Ȳ2, Ȳ3 respectively. P is the vanishing point
of r. Auxiliary points are drawn on R and lines to derive the equality of
simple ratios (Y1, Y2, Y3) = (Y

′

1
, Y ′

2
, Y ′

3
) claimed in Theorem 1.

plane in the point X . Thus the simple ratio of these points
(X1, X2, X) = d(X1,X2)

d(X1,X) (where d(Y1, Y2) is the distance
between two points Y1 and Y2) is a sharp estimate of the
ratio of depths z2−z1

z−z1
.

The scene points X1, X2 and X are projected in zoom
B to the image points h1(x), h2(x) and h(x), respectively
(see Fig. 1). Our goal is to determine the simple ratio of
the scene points (X1, X2, X) from the image points h1(x),
h2(x) and h(x). This is done by applying the following result
of projective geometry:

Theorem 1: Given the vanishing point P of a scene line
r, with three reference points Y1, Y2, Y3, then the simple
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Fig. 3. Pioneer 3AT mobile platform used in the experiments

ratio (Y1, Y2, Y3) can be computed from their imaged points
Y 1, Y 2, Y 3 as follows: choose an image point O (not on the
imaged line r) and an image line s (not going through O)
parallel to the line joining O and P ; for i = 1, 2, 3, determine
the point Y ′

i lying on s and on the line joining O and Y i;
then (Y1, Y2, Y3) = (Y ′

1 , Y ′

2 , Y ′

3) (see Fig. 2).
The case that concerns us is when r = l and Y1 = X1,

Y2 = X2, Y3 = X . The vanishing point of l (the image
point of the point at infinity of l) is the principal point PB =
P in zoom B. The assumption that the optical axis varies
always in the same way between zoom A to zoom B is
equivalent to PB = h1(PA) = h2(PA) = h(PA), where
PA is the principal point in zoom A. Therefore, if we fix
an image reference system centered at P = PB , with first
vector in the direction of r and unit length d(x, PA), then
h1(x), h2(x) and h(x) have coordinates (ρ1, 0), (ρ2, 0) and
(ρ, 0), respectively. By choosing, for instance, O = (0,−1)
and the line x = 1, and by applying Theorem 1, we obtain
the desired result

(X1, X2, X) =
ρ(ρ2 − ρ1)

ρ2(ρ − ρ1)
. (7)

IV. EXPERIMENTS

The performance of the proposed algorithm has been
tested on real images acquired with a Sony DFW-VL500
digital camera. The camera brochure states that the zoom
of the camera can be moved to predefined positions ranging
from 40 to 1432 corresponding to focal lengths from 5.5 to
64 mm. The camera is mounted on a Pioneer mobile platform
(see Fig. 3). The translations performed with the robot are
roughly estimated with marks on the floor. The drawers of
a table and a stool serve as natural landmarks from which
calibration information is extracted. Although the focus of
the camera is kept constant, no defocus problems have been

TABLE I

RESULTS OF ESTIMATED DEPTHS USING DIFFERENT CALIBRATION

DISTANCES AND DIFFERENT TARGET OBJECTS.

Exp. ID Cal1 Cal2 Estimated Measurements
1 240 360 277.6 280
2 321.4 320
3 401.7 400
4 269.8 280
5 240 320 288.2 280
6 357.8 360
7 281.6 280
8 320 360 367.7 400

observed in the range of zoom positions and distances that
we have used.
The robot takes an image pair with zoom in positions

40 and 708, at distances 240, 280, 320, 360 and 400 cm
with respect of the table drawers. From Figure 4(a) to
Figure 4(d) the image pairs corresponding to 240 and 360
cm are plotted. For the distance 280 we use also a wood
stool (see Fig. 4(e) and 4(f)) to validate that the proposed
method is only dependent on the zooming camera, and not on
the calibration object. The idea is to perform the calibration
off-line with a natural landmark, and use this calibration in
real-time operations with any given new landmark, as usual
with other calibration methods. The steps to compute the
unknown depth are detailed in Alg 1.

for i=1 to 2 do1

Place camera at distance di from the calibration2

object
Compute the shape vector Si produced by the3

deformation between the image taken at zoom1 and
the one at zoom2

end4

Place the camera at unknown distance from the target5

object
Compute the shape vector S produced by the6

deformation between the image taken at zoom1 and the
one at zoom2

With S1, S2 and S find the unknown distance by7

applying (7)

Algorithm 1: Steps of the depth estimation algorithm

Four points are manually extracted for each drawer image
in order to construct the corresponding shape vector. For
the stool images, six points are extracted instead, in order
to assess the robustness of the shape vector obtained. As
the method to obtain the shape vector through pseudoinverse
multiplication can be seen as a minimization [19], the more
point location measures are available, the more precision can
be obtained.
Some results are summarized in Table I. The columns

labelled Cal1 and Cal2 indicate the two distances used to
perform the geometric calibration, and the other two columns
show the estimated distance by the presented algorithm and
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(a) d=240cm, Zoom=40.

(b) d=240cm, Zoom=708.

(c) d=360cm, Zoom=40.

(d) d=360cm, Zoom=708.

(e) d=280cm, Zoom=40.

(f) d=280cm, Zoom=708.

Fig. 4. For each camera position two images are needed to estimate the scale factor. The shown images correspond to the experiment labelled 4 in
Table I. (a) (b) First calibration pair. (c)(d) Second calibration pair. (e)(f) Testing pair. Note that the calibration object and the one used for testing are not
the same, and also different numbers of location measures are used to estimate the shape vector, 4 for the drawer images and 6 for the stool ones.

the measured one. For the experiments labelled 1 and 2,
the camera is placed at 280 and 320 cm from the drawer,
respectively. These depths are between the two calibration
distances (240 and 360 cm), and the estimated depth is
correctly computed by the algorithm in each experiment. In
the experiment labelled 3 the camera is placed farther than
the second calibration distance (out of the calibration range),
and the depth is also recovered with small error, compared
to the measured one. With these calibration parameters we
perform a fourth experiment (numbered 4) using the 6 points
extracted from the stool images. In this case depth is also
reasonably recovered, although worse than in the previous
cases.

In experiments 5, 6 and 7 the calibration range is short-
ened, using the calibration distances 240 and 320 cm. When
the distance is between the calibration ones, as in experiment
5, the error is of the same order as in the previous experiment.
When the camera is located farther than the second calibra-
tion distance, the depth is correctly recovered but with more
error, compared to experiment 3. As typical in geometric
calibration, the depth is correctly recovered within the range
defined by the first and the second calibration distances as
the algorithm is interpolating. Out of this zone the depth
can be also inferred extrapolating, but the error grows as the
distance increases. We find also that the larger the distance
between calibration positions the more precision is obtained.

Finally, with experiment 8 we test the effect of moving
both calibration camera positions farther away. Calibration
was done with images taken at 320 and 400cm. A test is
performed placing the camera in the middle obtaining a

correct recovered depth.

V. CONCLUSIONS AND FUTURE WORKS

We have presented a simple method to determine the depth
of a robot placement with respect to a landmark. The image
deformation caused by zooming is modelled by a 3 degrees
of freedom shape vector in a presented shape space, where
the third element is the scale of the associated homotecy. This
simple scale value is recorded at each calibration step. When
a new scale is computed from the zooming of a new object,
it can be compared to the calibration scales and, knowing
the depth of the calibration objects, deduce the depth of the
current target with a simple operation.
A minimum set of 3 point correspondences are needed to

construct the affinity, but more correspondences will result in
a better shape vector estimation, as a minimisation process
is used. Here we have presented experiments using 4 and 6
correspondences between zooming images.
With the experiments we have demonstrated the validity

of the method. The distance between calibration positions
determines a calibrated zone where the algorithm is more
precise. Out of this zone the algorithm also infers the
depth but is less precise as the distance increases. We have
demonstrated that the required shape vector can be calculated
from different objects and using different numbers of point
correspondences.
We have observed that the zooming sometimes drops the

target out of the image. For practical purposes it is convenient
to calibrate with some different zoom positions to be able to
find one zoom range that contains the target in both images
and for which we have calibration information.
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Our objective has been mainly to remove from the ego-
motion algorithm the scaling uncertainty, common in all
monocular systems. But this method can be used also for
other purposes, for instance, the initialisation of the pan and
tilt controllers of our active vision system. Experiments with
the PTZ control show that the obtained precision is enough
to initialize the controllers in a good response zone.

In [2] we estimate the initial distance with a laser, and
in [23] with a calibration pattern. Several other algorithms
could benefit from the estimation of the initial distance of a
given landmark. Let us just enumerate a few. Davison [24]
estimate the depth of a landmark in monocular vision using
a particle filter. In order to acquire the scale of the scene in
the first frame a known object is used. Our method can be
used thus changing the known object by any object in the
scene. Sola [25] proposed to solve the depth initialisation
problem with an approximation of the Gaussian Sum Filter,
and Jensfelt et. al. [26] proposed to exclude from the SLAM
process those features for which the depth had not been
determined. When little disparity between matched features
is present, for example in approaching robot motions and
distant targets, all these methods could not extract significant
information.

Recently Caballero et. al. [27] presented a monocular vi-
sual odometer for aerial vehicles. They proposed to measure
the distance between the camera and the various targets used
in the experiments with a sonar or a laser range sensor, but
finally they did it manually.

Obviously, for traditional point-based maps it is not prac-
tical to perform the zoom positioning for each landmark
initialisation. However, the presented algorithm is useful for
those situations where an average depth is needed, as those
mentioned before.
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