
Bumblebees: A Multiagent Combinatorial Optimization
Algorithm Inspired by Social Insect Behaviour.

Francesc Comellas
Universitat Politècnica de Catalunya

Dep. Matemàtica Aplicada IV - EPSC
Avda. Canal Olimpic 15

Castelldefels, Catalonia, Spain
comellas@ma4.upc.edu

Jesús Martínez-Navarro
Universitat Politècnica de Catalunya

Dep. Matemàtica Aplicada IV - EPSC
Avda. Canal Olimpic s/n

Castelldefels, Catalonia, Spain

 ABSTRACT
This paper introduces a multiagent optimization algorithm
inspired by the collective behavior of social insects. In our
method, each agent encodes a possible solution of the prob-
lem to solve, and evolves in a way similar to real life insects.
We test the algorithm on a classical difficult problem, the k-
coloring of a graph, and we compare its performance in rela-
tion to a standard genetic algorithm and another multiagent
system. The results show that this algorithm is faster and
outperforms the other methods for a range of random graphs
with different orders and densities. Moreover, the method
is easy to adapt to solve different NP-complete problems.

Categories and Subject Descriptors: I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems, G.1.6 [Optimiza-
tion]: Miscellaneous, G.2.2 [Graph Theory]: Graph algo-
rithms

General Terms: Algorithms, Experimentation.

Keywords: Multiagent System, Combinatorial optimiza-
tion, Graph coloring, Adaptative complex systems.

1. INTRODUCTION
A swarm of bees, an ant or a bumblebee colony, trans-

portation and supply systems (water, electricity, telephone,
Internet, etc.), are all adaptative complex systems where
the interaction of a large number of similar elements al-
lows the emergence of global patterns and the solution of
a complex problem without the need of a central control
mechanism or an administrative hierarchy. Adaptive com-
plex systems consists of a large number of interacting units
where different processes of learning, change and selection
take place and are driven very often by information obtained
from the environment. Their behavior does not depend only
on the individual characteristics of its parts, but also on the
structure and on the relations which they establish with the
environment. These systems, by mechanisms not yet well
known, can discriminate relevant details from random noise
and use this information in a collective way to perform an
optimization process which benefits the system as a whole.

Although these concepts could be implicit in some mul-
tiagent optimization algorithms, it is of interest to trans-
late them explicitly into a working combinatorial optimiza-
tion algorithm. One implementation is the angels & mor-
.

tals method [5], which is inspired by the ”prevalence of life”
principle introduced in [10]. In short, the authors show that
while continuum average based equations would predict the
extinction of a certain population, a microscopic detailed ap-
proach shows the existence of localized subpopulations with
collective adaptive properties that allow their survival and
further development. Moreover, they prove that this hap-
pens when the relations among the parts occur essentially
in two dimensions.

In this paper we provide, in the same context, a more sim-
ple optimization method, the bumblebees algorithm, which
results to be easier to program and more effective.

To test our implementation we have considered the k-
coloring of a graph. This is an NP-complete optimization
problem [8] and finding an optimal solution is a computa-
tionally hard task. There exist, however, efficient algorithms
like simulated annealing, genetic algorithms or ant colony
based systems, that produce quasi-optimal solutions in a
reasonable time, see [1].

Section 2 provides a short introduction to the k-coloring
problem and a global description of the genetic algorithm
and multiagent system approaches used to compare with
the bumblebees algorithm. In Section 3 we describe the mo-
tivation and general aspects of our bumblebees algorithm. In
Section 4, we present the details of the implementations and
the results obtained and in Section 5 we discuss briefly the
relevance and future of these new combinatorial optimiza-
tion methods.

2. ALGORITHMS FOR THE GRAPH COL-
ORING PROBLEM.

Given a graph G = (V, E), a proper coloring of G is a
function from the vertices V (G) of the graph to a set C of
colors such that any two adjacent vertices have different col-
ors. If |C| = k, we say that G is k-colored. The chromatic

number of G is the minimum possible number of colors for
which there exists a proper coloring of G. Finding the chro-
matic number and a proper coloring of a graph is of interest
for its many applications in areas such as scheduling and
timetabling and frequency assignment in radio networks [2,
11]. Like many problems in graph theory, it is an NP-
complete problem [8], and efficient polynomial algorithms
for this problem are known only for a few particular classes
of graphs, e.g. outerplanar, series-parallel and triangle-free
graphs with maximum degree three. However, sometimes
it is sufficient to obtain an approximate solution with a fast
and easy to implement method, such as simulated annealing,

a genetic algorithm, a neural network or an ant colony based
system. To implement any of these optimization methods,
there is need to find a representation of the problem and
a system to quantify the “goodness” of a possible solution.
The k-coloring problem can be encoded with a list such that
each position is associated to a vertex of the graph and its
value is the color assigned to this vertex. Then, the cost
function just counts the number of edges joining vertices
with the same color.

To test the bumblebees algorithm, first we decided to com-
pare its performance with that of a standard genetic algo-
rithm (GA). Although different in concept, a GA has many
aspects in common with our new algorithm. Both algo-
rithms, for example, consider a set of individuals or pop-
ulation which evolves over time. However in our method
the physical distance between individuals, and their relation
with the environment plays an essential role which does not
exist in a classical genetic algorithm. The second method
considered in our tests, angels & mortals is similar in con-
cept, to the bumblebees algorithm. We have chosen it to
show that bumblebees is an step forward to a fully simplified
version of a adaptative complex system based optimization
method. At this point, we have to highlight that for graph
coloring problems, there exist other more efficient methods
than the standard genetic algorithm or the angels & mor-

tals algorithm chosen for the comparative tests. The aim of
this paper is to fully describe this new optimization tech-
nique, compare it with equivalent methods and identify the
basic aspects that can be extracted from the behavior of an
adaptative complex system to produce better optimization
algorithms.

3. THE BUMBLEBEES ALGORITHM
This algorithm associates possible solutions to the prob-

lem considered with individual bumblebees living in an arti-
ficial world which evolves following a set of simplified rules
based on the behavior of a real bumblebee colony. Like in
some other optimization algorithms, a fitness or cost func-
tion measures the quality of the solution, but in our algo-
rithm this fitness is also tied to the lifespan of the evolving
individual.

The algorithm can be seen as an loosely implementation as
combinatorial optimization algorithm of the ideas in the sim-
ple model by Shnerb, Louzon, Bettelheim and Solomon [10,
4]: They distribute randomly a certain number of mortals on
a square grid. These individual have a given lifespan which
at each clock tick is reduced by one unit. In this grid there
are also a few eternal agents, or angels. Mortals and angels
move randomly from cell to cell of the grid. The optimiza-
tion process is driven by this simple rule: when a mortal
meets an angel the mortal is cloned to a near place. They
wondered what will be the evolution of this world, and the
interesting result is that this depends on the way of looking
at it. From the average population densities of angels and
mortals, it is not difficult to write an equation that predicts
the death and birth rates. Under some initial conditions
this continuum approach predicts the extinction of mortals.
However a computer exact simulation at the individual level
leads to a totally different outcome. After an initial reduc-
tion of the mortals population, later this recovers. This con-
tradiction between the continuum and discrete approaches
is explained by the adaptive behavior of the mortals. When
they meet an angel new births take place in its neighbor-

hood and the overall mortal population increases at these
sites and form clouds of mortals moving around following
their angels. These clouds grow, split up and join again,
but the population of mortals survive. Individual mortals
have no explicit rules other than they duplicate when they
meet an angel and thus they differ from standard adaptive
agents with complex rules embedded in them. Thus, this
model shows how a set of nonadaptive individuals produces
an adaptive global world.

The bumblebees algorithm is more simple and efficient
than the version introduced as the angels and mortals al-
gorithm [5], which is a direct translation of the Shnerb et al.
simulations into a combinatorial optimization method. In
our case the mortals role is performed by bumblebees, and
the equivalent to angels are static food cells. These food
cells, and the fixed position of the nest introduces a simu-
lated environment which affects the behavior of bumblebees
and helps to drive the optimization process.

Bumblebees Algorithm():
Begin
Initialize random solutions;

Generate N random solutions of the problem;

Set MaxGenerations,
Initialize an n×m cells world;

Create the colony nest with N bumblebees;

Put F food cells at random;

Associate a random solution to each bumblebee;

Assign the lifespan of each bumblebee;

accordingly to its solution fitness;

Repeat Until (currentGeneration > MaxGenerations) Do
Look for the best bumblebee;

If (its solution is the global optimum) Then
Report solution and exit algorithm;

endIf
Decrease life counters;

Reap bumblebees;

Create a new bumblebee in the nest

every G generations;

Move randomly every bumblebees to a neighbor cell;

If (a bumblebee finds food) Then
Decrease food counter;

Increase lifespan of the bumblebee;

Move bumblebee back to the nest;

endIf
Mutate bumblebees solutions;

Recalculate fitnesses and assign new lifespans;

Increment currentGeneration;

endDo
End.

Figure 1: Basic version of the Bumblebees’ Algo-
rithm.

The algorithm can be described as follows: It first reads
the adjacencies of the graph to be colored and the number
of colors that the algorithm will try. The next step consists
of generating as many random solutions (lists of colors, such
that each list position is associated to a vertex of the graph)
as bumblebees, will be placed in the world. Then, the algo-
rithm constructs a toroidal world with n × n cells and the
nest with the bumblebees and the queen is placed in a fixed
cell. Food is placed at random in different cells. The fitness
of each solution is calculated and, according to this fitness, a
lifespan is assigned to the corresponding bumblebee (a bet-
ter fitness translates into a longer lifespan). A generation
consists of moving each bumblebee to one of its 24 nearest
cells. If it reaches a food cell, then the bumblebee goes im-

Table 1: k-coloring problem for graphs of orders 30,50,70 100 and 200 with edge densities of 10% and 20 %.
Comparative values between a standard genetic algorithm (GA), the angels & mortals algorithm (A&M) and
the bumblebees algoritm (B).

Colors Time Gen. # Suc.
Vert Edges GA A&M B GA A&M B GA A&M B GA A&M B

30 44 3 3 2 0.08 0.02 0.12 22 43 113 10 20 20

50 123 4 4 2 0.39 0.13 0.38 85 256 306 9 19 20

70 242 5 5 3 0.90 0.28 0.40 159 672 325 3 19 19

100 495 6 6 4 2.01 0.68 0.50 206 1875 431 2 17 18

200 1990 12 12 10 5.25 1.66 0.71 201 3465 347 5 17 17

Colors Time Gen. # Suc.
Vert Edges GA A&M B GA A&M B GA A&M B GA A&M B

30 87 4 4 2 0.21 0.06 0.18 84 167 201 8 19 20

50 245 6 6 3 0.63 0.20 0.33 115 503 280 8 19 19

70 483 8 7 3 1.11 0.54 0.47 229 1524 522 5 13 19

100 990 11 10 7 2.06 0.81 0.49 166 2155 340 8 16 18

200 3980 20 19 19 6.19 2.05 0.79 390 4751 503 6 16 15

mediately back to the nest, increases its lifespan and saves
the food position which will be used by bumblebees leaving
the nest until another bumblebee supersedes it. Next, the
algorithm decreases by one unit the life counter of all the in-
dividuals and eliminates (the reaper) bumblebees that reach
zero life or have a very low fitness. Finally all individuals are
mutated. Every few generations a new bumblebee is born
in the nest and it is assigned one of the best solutions and
the route to food which are stored by the queen. The pro-
cess is repeated until a solution to the problem is found or
a predefined maximum number of generations has elapsed.
Fig. 1 provides a pseudocode version of the algorithm.

We discuss now briefly the main operators of this algo-
rithm.

The world.- The artificial world where the bumblebee colony
evolves is a toroidal square grid with n × n cells. Any cell
can be in one of the following states: empty, with food, with
a bumblebee or contain the nest. The world constitutes an
environment that shapes the behavior and lifespan of bum-
blebees. Therefore it is an essential part of the algorithm.

Figure 2: Attainable neighborhood from a bumble-
bee’s position.

Movement.-. In the beginning all the bumblebees are in
the nest. When they go out (one by one at each generation)
they move randomly from their current position to anyone of
the 24 nearest cells (if it is free or it has food). If it reaches
a food cell, then the bumblebee goes immediately back to
the nest, increases its lifespan by two units and saves the
food position which will be used by the next bumblebees

leaving the nest until another bumblebee supersedes it. The
counter of the food cell diminishes by one unit (initially it
has 20 units) and if it reaches zero, a new food cell is created
at random elsewhere.

Bumblebees’ birth.- At initialization time, all bumblebees
are in the nest and their associated solutions have been ran-
domly generated. The nest has the queen, who allways keeps
a record of some of the best solutions found so far and passes
one of them to the new bumblebee born every few genera-
tions. Keeping the best solutions and starting a new bum-
blebee with it is a way to make more efficient the algorithm.
Local minima are avoided thanks to mutation.

Mutation.- Mutation is the driving mechanism towards
the best solution. This operator is identical to the mutation
considered in a GA, but while in a GA the probability of
mutation uses to be small, in the bumblebees algorithm mu-
tation is performed at each generation to all the individuals.
Mutation considers a list position at random and replaces
the current color by the best possible color, it this is possi-
ble, otherwise no change is performed. It would seem that
this definition of mutation, the only source of change for
the solutions, would drive the fitness to a local minimum,
but the birth and death of bumblebees produces enough di-
versity to avoid minima as new bumblebees can evolve very
differently and explore other paths of the state space.

The reaper.- After each generation a bumblebees’ life is
decreased by one unit. When it reaches 0, the individual
is removed from the world. We see that the association of
fitness to lifespan is crucial for the right convergence of the
algorithm and is also directly related with the world size.
If life is too long the world could become overcrowded. Set
too short a life and the bumblebee population will disap-
pear. We have introduced also a reaper mechanism that
kills an individual which has more than 40 percent of its
edges joining vertices with the same color. The reaper helps
to improve the performance of the algorithm as there are
less individuals to compute and facilitates the movement of
the colony.

In the next section we provide the programming details
considered in our implementation and the results obtained.

4. RESULTS
For our study, a large number of instances of the k-coloring

problem have been generated and we have tested and com-
pared the performance of the bumblebee algorithm with a
standard genetic algorithm and the multiagent system an-

gels & mortals [5].
We use random graphs of orders ranging from 30 to 200

vertices and densities of 10% and 20% (the density of a graph
is the ratio between the number of edges that actually has
the graph and the maximum number that may contain). For
each case 20 simulation runs were performed.

All simulations were programmed in C++ (about 500
lines), compiled with DevC++ and executed on a PC (AMD
Athlon at 1.8 GHz) under Windows XP.

In all three algorithms, possible solutions have been coded
as lists where each position represents a vertex of the graph
and has values 0 to k − 1 according to the color assigned to
it. The cost function calculates the number of edges that
do not allow, in the associated graph, a proper coloring and
substracts this number from the size of the graph |E(G)|
(total number of edges). All the algorithm use also the same
mutation mechanism that changes, when possible, the value
in a randomly chosen position in the list for the best possible
value.

The standard genetic algorithm considered [7, 9], is a gen-
erational method. The population size is constant and se-
lection, crossing and mutation is performed for the best so-
lutions who contsitute the parent pool. Children solutions
are obtained by interchanging random parts of their parents
(i.e. fragments of the corresponding lists). Therefore, the
relevant parameters are population size, the size of the par-
ent pool, and the probabilities of crossover and mutation:
pop. size= 600, parent pool size=450, crossing prob.= 0.9
and mutation prob.= 0.001.

The parameters for the angels & mortals algorithm are: A
toroidal 20× 20 world with 25 angels and 300 mortals. The
maximum number of mortals allowed at any time is also
300. The lifespan of a mortal is 100 ⌊fitness/|E(G)|⌋. When
a mortal encounters an angel, its lifespan is extended by a
fixed amount of 6 units. Mortals associated to solutions with
more than 40% of its edges joining vertices with the same
color are eliminated. After a mutation the life of the mortal
is modified according to its new fitness.

The bumblebees algorithm starts with a toroidal 20 × 20
world with 40 food cells, each with 5 units of food, and
200 bumblebees in the nest. The maximum simultanoeus
number of bumblebees out of the nest allowed is 200. The
lifespan of a bumblebbe is 100 ⌊fitness/|E(G)|⌋. When a
bumblebee finds food, its lifespan is extended by 2 units.
Bumblebees associated to solutions with more than 40% of
its edges joining vertices with the same color are eliminated.
Every 40 generations a new bumblebee is created in the nest
and one of the 5 best solutions assigned to it. After a muta-
tion the bumblebee‘s life is modified according to the change
in the fitness.

Table 1 has the results corresponding to graphs of orders
30, 50, 70, 100 and 200 with edge densities of 10% and 20%.
It shows, for all three algorithms and each graph, the mini-
mum number of colors reached by the methods, the average
CPU time required and the average number of generations
needed to find the best solution. The last column displays
the number of times (from 20 runs) that the algorithm has
reached this best solution.

We have performed a wide range of experiments testing
different world sizes, mutation operators, parameter values
etc. In most cases the algorithm converges similarly or bet-
ter than the genetic algorithm. In that sense, Table 1 does
not represent runs corresponding to the best possible per-

formance of the algorithms but just a complete set of exper-
iments. Moreover, and as it has been reported in Section
2, there are other methods more suitable for graph coloring
problems. The implementation, for example, of a simple ver-
sion of a multi-start local search algorithm (around 100 lines
of code in C++ language) finds solutions of a similar qual-
ity slightly faster. Here, however, we decided to compare
our bumblebees algorithm with a technique computationally
equivalent as the final aim of this research is to obtain a
simplified version of a combinatorial optimization algorithm
inspired by mechanisms of adaptative complex systems.

5. CONCLUSIONS
The model presented is a contribution to a new range

of optimization algorithms based on artificial life and other
adaptive complex systems.

The bumblebees algorithm is efficient and robust. We have
tested worlds with sizes from 15 × 15 to 40 × 40, number of
bumblebees from 20 to 200, maximum number generations
from 1000 to 20000 and other variations. In all cases the
algorithm finds a solution of a better quality than a stan-
dard genetic algorithm and many times improves the results
found with the related angels and mortals method. On the
other hand , the bumblebees algorithm might be very eas-
ily adapted to solve other problems by adapting the cost
function and mutation mechanism to the new problem.

Finally, this algorithm suggests that it should be possible
to find more simple algorithms based on artificial life sys-
tems for which a problem is coded into an individual and
the fitness of the corresponding solution is associated to a
relevant characteristic of this individual, e.g. its lifespan.

6. ACKNOWLEDGMENTS
Supported by the Ministerio de Ciencia e Innovación, Spain,

and the European Regional Development Fund under projects
TEC2005-03575 and MTM2008-06620 and the Catalan Re-
search Council under project 2005-SGR00256.

7. REFERENCES
[1] E. Aarts and J.K. Lenstra. Local Search in Combinatorial

Optimization. John Wiley & Sons Ltd., Chichester, New York
, 1997.

[2] S.M. Allen, D.H. Smith, and S. Hurley. Lower bounding
techniques for frequency assignment. Discrete Math.
197/198:41-52, 1999.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for
optimization from social insect behaviour. Nature 406:39-42,
2000.

[4] M. Brooks. Ordinary miracles. New Scientist 2237:26, May
2000.

[5] F. Comellas and R. Gallegos. Angels & mortals: A new
combinatorial optimization algorithm. Stud. Fuzziness Soft.
Comput. 166: 397–405, 2005.

[6] D. Costa D and A. Hertz. Ants can colour graphs. J. Oper.
Res. Soc. 48:295–305, 1997.

[7] D.E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, 1989.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman,
New York, 1979.

[9] J.H. Holland. Genetic algorithms. Scientific American
267:44–50, 1992.

[10] N.M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon. The
importance of being discrete: Life always wins on the surface.
Proc. Natl. Acad. Sci. USA 97:10322-10324, 2000.

[11] D.H. Smith and S. Hurley. Bounds for the frequency
assignment problem. Discrete Math 167/168:571–582, 1997.

