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Abstract. Many real life networks present an average path length logarithmic with the number of nodes and

a degree distribution which follows a power law. Often these networks have also a modular and self-similar

structure and, in some cases - usually associated with topological restrictions- their clustering is low and

they are almost planar. In this paper we introduce a family of graphs which share all these properties and

are defined by two parameters. As their construction is deterministic, we obtain exact analytic expressions

for relevant properties of the graphs including the degree distribution, degree correlation, diameter, and

average distance, as a function of the two defining parameters. Thus, the graphs are useful to model some

complex networks, in particular technological and biological networks.

PACS. 89.75.Hc Networks and genealogical trees – 05.45.Df Fractals – 89.75.Fb Structures and organi-

zation in complex systems

1 Introduction

Ten years have past since the publication of the ground-

breaking papers by Watts and Strogatz [1] on small-world

networks and Barabasi and Albert [2] on scale-free net-
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works. Their works led researches to the design of new

network models to describe complex systems in nature

and society like the Internet, protein-protein interactions,

transportation systems or social and economic networks.

Their models try to match observational studies which

have identified at least three important common charac-

teristics for real-life networks: They exhibit a small aver-
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age distance and diameter (compared to a random net-

work with the same number of nodes and links); the num-

ber of links attached to the nodes obeys a power-law dis-

tribution (the networks are scale-free); and recently it has

been discovered that, often, real networks are self-similar,

see [3] sometimes showing a degree hierarchy related to

the modularity of the system.

Many of the proposed models are stochastic as this

is the case for the now classical preferential attachment

method [2]. Thus, the use of probabilistic techniques is re-

quired to estimate the main parameters of a network [4].

However, a deterministic approach has proven useful to

complement and enhance the probabilistic and simulation

techniques. Deterministic models have a clear advantage,

as they allow an analytical exact determination of rele-

vant network parameters, which then may be compared

with experimental data coming from real and simulated

networks

Among the different techniques to generate determin-

istic models are of particular interest those based in recur-

sive or iterative methods, where at each generation step

nodes are connected to a known substructure of the net-

work. This is the case of the pseudo-fractal networks [5]

where, at each step, all existing links are considered and a

new vertex is added to each of them. This construction can

be generalized if cliques of a given size are used instead of

links (which are 2-cliques), see [6]. Similar rules give the

interesting Apollonian networks [7–9]. A related technique

produces networks by duplication of certain substructures,

see [10].

A generalization of these former methods introduces at

each iteration a more complex substructure than a single

node which is added to the network in a deterministic way.

Substructures considered are triangles [11], cycles [12] and

paths [13].

In this paper we go an step further in the generaliza-

tion by considering the introduction of d parallel paths.

The result is a family of planar, modular, hierarchical and

self-similar networks, with small-world scale-free charac-

teristics and with clustering coefficient zero, and all these

parameter are determined by d as well as by the iteration

step t. We note that some important real life networks,

for example those associated to electronic circuits, Inter-

net and some biological systems [14,15], have these char-

acteristics as they are modular, almost planar and with

a reduced clustering coefficient and have small-world and

scale-free properties. Thus, these networks can be modeled

by our construction which can be considered as a new tool

to study their associated complex systems. In the next sec-

tion we introduce the family of graphs object of study and

in Section 3 we calculate analytically some relevant prop-

erties for the graphs, namely, the degree distribution, de-

gree correlations, the diameter and the average distance.

The last section provides some conclusions.

2 Generation of the graphs Md(t)

In this section we introduce a family of modular, self-

similar and planar graphs which have the small-world pro-

perty and are scale-free. The family depends on an ad-

justable parameter d and the iteration number t. We pro-
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vide an iterative algorithm, and also a recursive method,

for its construction. The construction methods allow a di-

rect determination of the order and size of the graph.

Iterative construction.– We give here an iterative for-

mal definition of the proposed family of graphs, Md(t),

characterized by t ≥ 0, the number of iterations and a

parameter d associated with the self-repeating modular

structure.

First, we call generating edge the only edge of Md(0)

and all edges of Md(t) whose endvertices have been in-

troduced at different iteration steps t. All other edges of

Md(t) will be known as passive edges. A generating edge

becomes passive after its use in the construction.

The graph Md(t) is constructed as follows:

For t = 0, Md(0) has two vertices and a generating

edge connecting them.

For t ≥ 1, Md(t) is obtained from Md(t−1) by adding,

to every generating edge in Md(t− 1), d parallel paths P4

of length three by identifying the two final vertices of each

path with the endvertices of the generating edge.

The process is repeated until the desired graph order

is reached, see Fig. 1. We note that the graph order can

be also adjusted with the parameter d (number of parallel

paths that are attached to each generating edge).

Recursive modular construction.– The graph Md(t) is

also defined as follows:

For t = 0, Md(0) has two vertices and a generating

edge connecting them.

For t = 1, Md(1) is obtained from Md(0) by adding

to its only edge d parallel paths P4 of length three by

identifying the two final vertices of each path with the

endvertices of the initial edge.

For t ≥ 2, Md(t) is made from 2d copies of Md(t − 1),

by identifying, vertex to vertex, the initial edge of each

Md(t − 1) with the generating edges of Md(1), see Fig. 1.

Fig. 1. Graphs Md(t) produced at iterations t = 0, 1, 2 and 3

for d = 2.

Order and size of Md(t).– We use the following nota-

tion: Ṽ (t), Ẽ(t) and Ẽg(t) denote, respectively, the set of

vertices, edges and generating edges introduced at step t,

while V (t) and E(t) denote the set of vertices and edges

of the graph Md(t).
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Notice that, at each iteration, a generating edge is re-

placed by 2d new generating edges and d passive edges.

Therefore: |Ẽg(t + 1)| = 2d · |Ẽg(t)|, and |Ẽg(t)| = (2d)t.

As each generating edge introduces at the next iteration

2d new vertices and 3d new edges we have |Ṽ (t+1)| = 2d ·

|Ẽg(t)| = (2d)t+1 and |Ẽ(t + 1)| = 3d · |Ẽg(t)| = 3d · (2d)t.

As |Ṽ (0)| = 2 and |Ẽg(0)| = 1, the order and size of M(t),

t ≥ 0, is:

|V (t)| =

t
∑

i=0

|Ṽ (i)| =
(2d)t+1 + 2d − 2

2d − 1
,

|E(t)| =

t
∑

i=0

|Ẽ(i)| =
3d(2d)t − d − 1

2d − 1
. (1)

Planarity.– A graph is planar if it can be drawn on the

plane with no edges crossing. By construction of Md(t),

the introduction at each iteration of d parallel paths con-

nected to each generating edge, which afterwards becomes

passive, adds 2d new vertices to the graph and they can

be drawn without crossing edges. Planarity could also be

proven from Kuratowski’s theorem or from the known pla-

narity test which states that a graph is planar if it has no

cycles of length 3 and |E| ≤ 2|V | − 4, |V | > 3, see [16].

3 Topological properties of Md(t)

Thanks to the deterministic nature of the graphs Md(t),

we can give exact values for the relevant topological pro-

perties of this graph family, namely, the degree distribu-

tion, degree correlations, the diameter and the average

distance.

Degree distribution.– Initially, at t = 0, the graph has

two vertices of degree one. When a new vertex i is added to

the graph at iteration ti, this vertex has degree 2 and it is

connected to only one generating edge. We use the follow-

ing notation: kg(i, t), kp(i, t) and k(i, t) are, respectively,

the number of generating edges, passive edges and total

edges connected to vertex i, at step t ≥ ti. Therefore

k(i, t) = kg(i, t) + kp(i, t) is the degree of vertex i at this

step.

From the construction process we can write,











kp(i, t + 1) = kp(i, t) + kg(i, t)

kg(i, t + 1) = dkg(i, t)

(2)

with the initial conditions,

kg(i, ti) = 1 ∀ti and kp(i, ti) =











0 if ti = 0

1 otherwise

(3)

we have for d > 1,

kg(i, t) = dt−ti ∀ti and

kp(i, t) =











1 + dt−d
d−1 if ti = 0

2 + dt−ti−d
d−1 otherwise.

(4)

All the vertices that have been introduced at step ti

have the same degree at step t:

1. The two vertices introduced at step ti = 0 have degree,

k(i, t) = kg(i, t) + kp(i, t) =

= dt + 1 +
dt − d

d − 1
=

dt+1 − 1

d − 1
. (5)

2. The |Ṽ (ti)| = (2d)ti vertices introduced at step ti > 0

have degree,

k(i, t) = kg(i, t) + kp(i, t) =

= dt−ti + 2 +
dt−ti − d

d − 1
= 1 +

ddt−ti − 1

d − 1
.(6)
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Therefore the degree spectrum of the graph is discrete

and to relate the exponent of this discrete degree distri-

bution to the power law exponent of a continuous degree

distribution for random scale free networks, we use the

technique described by Newman in [15] to find the cumu-

lative degree distribution Pcum(k). If we denote by V (t, k)

the set of vertices that have degree k at step t,

Pcum(k) =

∑

k′≥k |V (t, k′)|

|V (t)|
=

2 +
∑ti

t′
i
=1(2d)t′i

(2d)t+1+2d−2
2d−1

=

=
(2d)ti+1 + 2d − 2

(2d)t+1 + 2d − 2
=

=
(2d)t−

ln(k+
2−k

d
−1)

ln(d)
+1 + 2d − 2

(2d)t+1 + 2d − 2
.

Fot t large, we obtain,

Pcum(k) ≈ (2d)−
ln(k+

2−k
d

−1)

ln(d) = (k +
2 − k

d
− 1)−

ln(2d)

ln(d)

= k−
ln(2d)
ln(d) (1 −

1

d
+

2 − d

kd
)−

ln(2d)
ln(d) .

For k >> 1 this expression gives

Pcum(k) ≈ k−
ln(2d)
ln(d) (1 −

1

d
)−

ln(2d)
ln(d) (7)

The degree distribution follows a power-law

Pcum(k) ∼ k−γ with exponent γ = ln(2d)
ln(d) , see Fig. 2.

Therefore the degree distribution is scale-free. Research

on networks associated to electronic circuits show that

many of them are almost planar, modular and have a small

clustering coefficient and in most cases their degree distri-

butions follow a power-law [14,15] with exponent values

in the same range than those of Md(t).
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Fig. 2. Log-log representation of the cumulative degree dis-

tribution for Md(t), d = 2, 3, 4, 5. The reference line has slope

-2.

Correlation coefficient.– We obtain here the Pearson

correlation coefficient, r(d, t), for the degrees of the end-

vertices of the edges of Md(t) [17].

r(d, t) =
|E(t)|

∑

i jiki − [
∑

i
1
2 (ji + ki)]

2

|E(t)|
∑

i
1
2 (j2

i + k2
i ) − [

∑

i
1
2 (ji + ki)]2

(8)

where ji, ki are the degrees of the endvertices of the ith

edge, with i = 1, · · · , |E(t)|.

To find r(d, t) we look at the degree distribution of the

endvertices of the edges in Ẽ(ti) at a given step ti. We

denote by 〈j, k〉 an edge connecting vertices of degrees j

and k.

The edges introduced at step ti are:

1. Edges 〈2, 2〉, connecting two vertices introduced at step

ti > 0. There are (2d)ti/2 edges (a half of the vertices

introduced at step ti). Notice that there is one edge

〈1, 1〉 introduced at ti = 0.

2. Edges 〈2, k(i′, ti)〉 connecting vertices of degree two,

introduced at step ti, with all the vertices i′ introduced

at step ti′ with 0 ≤ ti′ ≤ ti−1. For each vertex i′ there

are kg(i
′, ti) edges:
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From the two vertices introduced at ti′ = 0, see (5),

there are 2dti′ edges 〈2, dti+1−1
d−1 〉.

From the (2d)ti′ vertices introduced at ti′ > 0, see (6),

there are (2d)ti′ dti−ti′ edges 〈2, 1 + d dti−t
i′ −1

d−1 〉.

Table 1 displays a summary of these results.

Using the results of Table 1, we can find the sums:

∑

i

jiki = (4 + 16 d − 51 d2 + 41 d3 − 8 d4 −

− 3 d5 + d6 + dt+1(40 + 8t − 80 · 2t) +

+ dt+2(−184 − 40t + 282 · 2t) +

+ dt+3(306 + 74t − 373 · 2t) +

+ dt+4(−236 − 64t + 227 · 2t) +

+ dt+5(86 + 26t − 63 · 2t) +

+ dt+6(−12 − 4t + 7 · 2t) +

+ d2t+2(10 + 4t) + d2t+3(−43 − 18t) +

+ d2t+4(62 + 28t) + d2t+5(−35 − 18t) +

+ d2t+6(6 + 4t))/((d − 1)3

(2d2 − 5d + 2)(d − 2)),

∑

i

(ji + ki) =
−2

(2d − 1)(d − 2)(d − 1)2
(−2 − 3d +

+ 10d2 − 6d3 + d4 + dt+1(−4 + 16 · 2t) +

+ dt+2(14 − 37 · 2t) + dt+3(14 + 26 · 2t) +

+ dt+4(4 − 5 · 2t) − d2t+2 + 3d2t+3 −

− 2d2t+4),

∑

i

(j2
i + k2

i ) = −2(−8 − 32d + 186d2 − 282d3 +

+ 145d4 + 49d5 − 96d6 + 48d7 − 11d8 +

+ d9 + dt+1(−72 + 160 · 2t) + dt+2(384 −

− 728 · 2t) + dt+3(−750 + 1252 · 2t) +

+ dt+4(606 − 882 · 2t) + dt+5(−33 − 39 · 2t) +

+ dt+6(−285 + 456 · 2t) + dt+7(201 − 286 · 2t) +

+ dt+8(−57 + 74 · 2t) + dt+9(6 − 7 · 2t) +

+ 4d3t+2 − 16d3t+4 + 17d3t+5 + 5d3t+6 −

− 19d3t+7 + 11d3t+8 − 2d3t+9)/((d2 − 2d + 1)

(2d − 1)(d − 2)(d3 − 2d2 − 2d + 4)(d − 1)2).

Replacing these sums into equation (8) we obtain di-

rectly, and for any d, a (long) exact analytical expression

for the Pearson correlation coefficient of Md(t). For d = 2

the equation is displayed in Eq.(9):

Table 2 shows numerical values of the correlation for

different instances of the graphs.

t = 1 t = 2 t = 3 t = 10

d = 2 −0.1667 −0.0886 −0.0460 −0.0003

d = 10 −0.4091 −0.2338 −0.1174 −0.0009

d = 100 −0.4901 −0.2057 −0.0934 −0.0007

Table 2. Correlation coefficient at steps t = 1, 2, 3, 10 for se-

veral values of d.

From the values of the correlation coefficient we see

that this family of graphs has the degrees of the endver-

tices negatively correlated, large degree vertices tend to

be connected with low degree vertices, and the graphs are

disassortative.
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Step ti Edges at step ti Number Edges at step t > ti

ti = 0 〈1, 1〉 1 〈 d
t+1

−1
d−1

, d
t+1

−1
d−1

〉

1 ≤ ti ≤ t

〈2, 2〉

〈2, d
ti+1

−1
d−1

〉

(2d)ti

2

2dti

〈1 + dd
t−ti

−1
d−1

, 1 + dd
t−ti

−1
d−1

〉

〈1 + dd
t−ti

−1
d−1

, d
t+1

−1
d−1

〉

2 ≤ ti ≤ t

1 ≤ ti′ ≤ ti − 1

〈2, 1 + dd
ti−t

i′ −1
d−1

〉 (2d)ti′ · dti−ti′ 〈1 + dd
t−ti

−1
d−1

, 1 + dd
t−t

i′ −1
d−1

〉

Table 1. Number of edges in Md(t) according to the degrees of their endvertices.

r(2, t) =
4tt2 − 2t+1t + 3 · 22t+1t − 23t+2t + 13 · 4t − 3 · 2t+1 + 42t+1 − 3 · 23t+2 + 1

24t+1t2 + 22t+1t − 23t+3t + 24t+3t − 2t + 5 · 4t − 23t+4 + 3 · 24t+3 − 3 · 25t+2
(9)

We notice that most technological and biological net-

works have this property, see [15].

For d >> 1, we obtain

r(d, t) ≈
1

1 − 3 · 2t−1
,

which for t large gives r(d, t) ∼ 0.

Diameter.– At each iteration step we introduce, for

every generating edge, 2d new vertices. These vertices are

among them at distance at most 3. As each vertex joins

the graph of the former step through one new edge, the

diameter will increase by exactly 2 units. Therefore D(t) =

D(t−1)+2, t ≥ 2. As D(1) = 3, we have that the diameter

of Md(t) is D(t) = 3 + 2 · (t − 1), t ≥ 1. Therefore, from

Eq. 1, and as for t large, t ∼ ln |V (t)| we have in this limit

that D(t) ∼ ln |V (t)|.

Average distance.– The average distance of Md(t) is

defined as:

D̄(t) =
1

|V (t)|(|V (t)| − 1)/2

∑

i,j∈V (t)

di,j , (10)



8 Alicia Miralles et al.: Planar unclustered graphs to model technological and biological networks

where di,j is the distance between vertices i and j. In what

follows, S(t) will denote the sum
∑

i,j∈V (t) di,j .
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Fig. 3. Md(t + 1) is obtained from the juxtaposition of 2d

copies of Md(t).

The modular recursive construction of Md(t) allows us

to calculate the exact value of D̄(t). At step t, Md(t + 1)

is obtained from the juxtaposition of 2d copies of Md(t),

which we label M
(η)
d,t , η = 1, 2, · · · , 2d, see Figures 1 and 3.

Whenever possible, we drop the subscript d and represent

M
(η)
d,t as M

(η)
t to keep the notation uncluttered. The copies

are connected one to another at 2d + 2 vertices which

we call connecting vertices such as u, v, w, x, y, and z

in Fig. 3. Thus, the sum of distances St+1 satisfies the

following recursion:

St+1 = 2dSt + ∆t. (11)

where ∆t is the sum over all shortest path length whose

endpoints are not in the same M
(η)
t branch.

To compute ∆t, we classify the vertices of Md(t + 1)

into two categories: the two vertices with the largest de-

gree (i.e., w and x in Fig. 3) are called hubs, while any

othe vertex is named a non-hub vertex. Thus ∆t can be

obtained by summing the following path lengths that are

not included in the distance between vertex pairs of M
(η)
t :

length of the shortest paths between non-hub vertices,

length of the shortest paths between a hub and non-hub

vertices, and length of the shortest paths between hubs

(for example, duv, dux, and duz).

Let us denote ∆α,β
t as the sum of all shortest paths be-

tween non-hub vertices, whose endpoints are in M
(α)
t and

M
(β)
t , respectively. Thus, ∆α,β

t rules out the paths with

endpoints at the connecting vertices belonging to M
(α)
t or

M
(β)
t . For example, each path contributing to ∆1,2

t does

not end at vertex u, v, w or x, and each path contributing

to ∆1,4
t does not end at vertex u, w, x or z. According to

its value, ∆α,β
t can be split into three classes, where the

three representatives are ∆1,2
t , ∆1,3

t , and ∆1,4
t , and the car-

dinality of the three classes are d, d(d − 1), and d(d − 1),

respectively. Analogously, the length of the shortest paths

between a hub and all non-hub vertices can be classified

into two classes, while the shortest paths between hubs

can be partitioned into three classes with path lengths

equal to 1, 2, or 3.

Let Ωα
t be the set of non-hub vertices in M

(α)
t , then

the total sum ∆t is given by

∆t = d∆1,2
t + d(d − 1)

(

∆1,3
t + ∆1,4

t

)

+ 2d(d + 1)

∑

j∈Ω2
t

dwj + 2d(d − 1)
∑

j∈Ω4
t

duj +

+ (d + 1)duv + d(d + 1) duy + d(d − 1) duz, (12)

where duv = 1, duy = 2, and duz = 3 are easily seen.
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Having ∆t in terms of the quantities of ∆1,2
t , ∆1,3

t ,

∆1,4
t ,

∑

j∈Ω2
t
dwj

∑

j∈Ω2
t
duj , and

∑

j∈Ω2
t
duj , the next step

is to explicitly determine these quantities. To this end, we

classify non-hub vertices in Md(t + 1) into two different

parts according to their shortest path lengths to either

of the two hubs (i.e. w and x). Notice that the vertices w

and x themselves are not partitioned into either of the two

parts represented as P1 and P2, respectively. The classi-

fication of vertices is shown in Fig. 3). For any non-hub

vertex ϕ, we denote the shortest path length from ϕ to

w, x as a, and b, respectively. By construction, a and b

can differ at most by 1 since vertices w and x are adja-

cent. Then the classification function class(ϕ) of vertex ϕ

is defined to be

class(ϕ) =











P1 for a < b,

P2 for a > b.

(13)

It should be mentioned that the definition of the vertex

classification is recursive. For instance, class P1 and P2 in

M
(1)
t belong to class P1 in Md(t + 1), class P1 and P2 in

M
(2)
t belong to class P2 in Md(t+1), and so on. Since the

two hubs w and x are symmetrical, in the graph we have

the following equivalent relations from the viewpoint of

class cardinality: classes P1 and P2 are equivalent one to

each other. We denote the number of vertices in network

Md(t) that belong to class P1 as Nt,P1 , and the number

of vertices in class P2 as Nt,P2 . By symmetry, we have

Nt,P1 = Nt,P2 , which will be abbreviated as Nt hereafter.

It is easy to see that

Nt =
|V (t)|

2
− 1 =

d(2d)t − d

2d − 1
. (14)

For a vertex ϕ in Md(t + 1), we are also interested in

the smallest value of the shortest path length from ϕ to

either of the two hubs w and x. We denote the shortest

distance as this value by fϕ, and it can be defined as

fϕ = min(a, b). (15)

Let δt,P1 (δt,P2) denote the sum of fϕ for all vertices

belonging to class P1 (P2) in Md(t). Again by symmetry,

we have δt,P1 = δt,P2 that will be written as δt for short.

Taking into account the recursive method of constructing

Md(t), we notice that the vertex classification follows also

a recursion. Therefore we can write the following recursive

formula for δt+1:

δt+1 = 2d δt + dNt + d. (16)

Substituting equation (14) into equation (16), and consid-

ering the initial condition δ0 = 0, equation (16) is solved

inductively

δt =
2d − 2d2 − (2d)1+t + d(2d)1+t − dt(2d)t + dt(2d)1+t

2(2d − 1)2
.

(17)

We now return to compute equation (12). For conve-

nience, we use Γ η,i
t to denote the set of non-hub vertices

belonging to class Pi in M
(η)
t . Then ∆1,2

t can be written

as

∆1,2
t =

∑

r∈Γ
1,1
t

⋃

Γ
1,2
t

s∈Γ 2,1
t

⋃

Γ 2,2
t

drs

=
∑

r∈Γ
1,1
t

s∈Γ 2,1
t

(drw + dwx + dxs) +
∑

r∈Γ
1,1
t

s∈Γ 2,2
t

(drw + dwv + dvs)

+
∑

r∈Γ
1,2
t

s∈Γ 2,1
t

(dru + dux + dxs) +
∑

r∈Γ
1,2
t

s∈Γ 2,2
t

(dru + duv + dvs)

= 8Ntδt + 6(Nt)
2. (18)



10 Alicia Miralles et al.: Planar unclustered graphs to model technological and biological networks

Analogously, we find

∆1,3
t = 8Ntδt + 4(Nt)

2 (19)

and

∆1,4
t = 8Ntδt + 8(Nt)

2. (20)

Next we will determine other quantities in equation (12),

with
∑

j∈Ω2
t
dwj given by

∑

j∈Ω2
t

dwj =
∑

j∈Γ 2,1
t

(dwx + dxj) +
∑

j∈Γ 2,2
t

(dwv + dvj)

= 2 δt + 3 Nt. (21)

Analogously, we can obtain

∑

j∈Ω4
t

duj = 2 δt + 5 Nt. (22)

Substituting equations (18), (19), (20), (21) and (22)

into equation (12), we have the final expression for cross

distances ∆t,

∆t = 1 + 5d2 + 4d(4d − 1)Nt + 6d(2d − 1)(Nt)
2 +

+ 8dδt[d + (2d − 1)Nt] =

=
1

(1 − 2k)2
(1 − 4d + 5d2 − 2d3 + (1 − d)(2d)2+t +

+ (5 + 2t)41+td4+2t − (7 + 2t)d2(2d)1+2t).

(23)

Inserting equation (23) into equation (11) and using

the initial condition S0 = 1, equation (11) is solved induc-

tively,

St =
1

(−1 + 2d)3
(−1 + 4d − 5d2 + 2d3 + 21+td1+t −

− 7 · 22td2+2t + 3 · 21+2td3+2t − 21+td1+tt +

+ 3 · 21+td2+tt − 22+td3+tt − 21+2td2+2tt +

+ 22+2td3+2tt). (24)

Substituting equation (24) into equation (10) yields the

exact analytic expression for the average path length of

Md(t) as

D̄(t) = (−1 + 4d − 5d2 + 2d3 + 21+td1+t − 7 · 22td2+2t +

+ 3 · 21+2td3+2t − 21+td1+tt + 3 · 21+td2+tt −

− 22+td3+tt − 21+2td2+2tt + 22+2td3+2tt)

/ ((−1 + 2d)(−1 + d + 2td1+t)(−1 + 21+td1+t)).

(25)

Notice that for a large iteration step, t → ∞, D̄(t) ≃

t ∼ ln |V (t)|, which shows a logarithmic scaling of the

average distance with the order of the graph. As we have

a similar behavior for the diameter, the graph is small-

world.

4 Conclusion

The graphs Md(t) introduced and studied here are planar,

modular, have a disassortative degree hierarchy and are

small-world and scale-free. Another relevant characteris-

tic of the graphs is their clustering zero. A combination of

a low clustering coefficient, modularity, and small-world

scale-free properties can be found in some real networks,

in particular in technical and biological networks [15,14],

and most of them are also disassortative. As examples,

the largest benchmark considered in [14] –a network with

24097 nodes, 53248 edges, average degree 4.34 and average

distance 11.05– has a degree distribution which follows a

power-law with exponent 3.0, and it has a small clustering

coefficient C = 0.01 and other network properties (diame-

ter, average distance, average degree, etc.) are also in the
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same range than those of the graph M6(4), see [15] . Also,

the S. cerevisiae protein-protein interaction network has

1870 and 2240 edges, see [18], and again most of its net-

work parameters, as described in [15] can be compared

directly with those of the graph M6(3).

Finally, we should emphasize that the planar property

and the deterministic character of the family, in contrast

with more usual probabilistic approaches, should facili-

tate the exact determination of other network parameters

and the development of new network algorithms that then

might be extended to real-life complex systems.
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