
 SAKARYA UNIVERSITY
INSTITUTE OF SCIENCE AND TECHNOLOGY

A TESTBED DESIGN FOR INTRUSION DETECTION
AND MITIGATION IN SDN ARCHITECTURE BY

USING DPI

M.Sc. THESIS

 Ahmed DIRIE

Department : COMPUTER AND INFO. ENGINEERING

Field of Science : COMPUTER AND INFO. ENGINEERING

Supervisor : Prof. Dr. Celal ÇEKEN

November 2017

DECLERATION

I declare that all the data in this thesis was obtained by myself in academic rules, all

visual and written information and results were presented in accordance with academic

and ethical rules, there is no distortion in the presented data, in case of utilizing other

people’s works they were refereed properly to scientific norms, the data presented in

this thesis has not been used in any other thesis in this university or in any other

university.

Ahmed DIRIE

11.11.2017

i

ACKNOWLEDGEMENT

Firstly, I would like to precise my thankfulness to “ALLAH” for giving me ability to

complete my thesis successfully. Without his wishes, I could not reach this milestone.

With deep appreciation and respect, I hope to give my exclusive credits to my research

and thesis supervisor Prof. Dr. Celal ÇEKEN for his valuable efforts, great support

and advice that he gives me since the first day I joined Department of Computer and

Information Engineering in different ways and for giving me the opportunity to be a

member of his research team. His productive and positive comments have been

inspiring and created a pleasant working atmosphere. He really inspired me to become

an outstanding independent researcher and helped me to build critical thinking and

reasoning toward solving the difficult research problems. Indeed, his aspirations and

determination toward achieving big goals influenced me to complete this thesis

successfully.

Furthermore, I would like to express my special thanks to all my lecturers in the

Department of Computer and Information Engineering at Sakarya University for their

remarkable contribution to my educational career. I also owe a great debt to Soumaine

BOUBA for proofreading my thesis and paper. Last but not least, I want to thank my

colleges and collaborators in the Internet of Things IoT-LAB team for providing an

environment that was enjoyable to be a part of.

Finally, I deeply thank my beautiful family especially my lovely mother and father for

their unconditional love, valuable advice, encouragement, trust, prayers, and endless

patience. Without them I could not complete this thesis successfully.

ii

TABLE OF CONTENTS

DECLERATION .. ൴

ACKNOWLEDGEMENT ….……………………………………….................... ൴

TABLE OF CONTENTS ……….………………………………………….......... ii

LIST OF SYMBOLS AND ABBREVIATIONS………………………........... v

LIST OF FIGURES ……………………………………………………………... v൴

SUMMARY ………………………………...........……….…………………….. v൴൴

ÖZET ……………………………………………………………………………. v൴൴൴

CHAPTER 1.
INTRODUCTION ...…………………………………………………………….. 1

1.1. Problem Statement and Mot൴vat൴on ... 3

1.2. Structure of The Thes൴s ……...…………………………………….... 4

CHAPTER 2.

SOFTWARE DEFINED NETWORKING ………………….………………….... 5

2.1. Software Def൴ned Network൴ng Def൴n൴t൴on…………... 7

2.2. Arch൴tecture and Concept of SDN …………………………………... 8

2.3. Northbound Interface ……………………………………………..…. 9

2.4. Southbound Interface ……………………………………………..…. 10

2.5. OpenFlow Protocol ………………………………………………..… 10

2.5.1. Sw൴tch components ………………………………….….….... 11

2.5.1.1. Flow table ………………………………………….... 12

2.5.1.2. Secure channel …………………………………...….. 12

2.6. SDN Controller …………………………………………………….... 13

2.6.1. Floodl൴ght SDN controller ………………………………….... 14

iii

CHAPTER 3.

ANOMALY DETECTION AND DOS ATTACKS ………………………..….… 16

3.1. Methodolog൴cal Overv൴ew .…………………………………………. 17

3.2. Us൴ng SDN For Anomaly Detect൴on ൴n User Traff൴c …….…………. 17

3.3. Deep Packet Inspect൴on .. 18

3.4. DoS Attack and Defense Methods .. 18

3.5. DoS and DDoS Attacks .. 19

 3.5.1. Attack class൴f൴cat൴on .. 20

 3.5.1.1. Protocol attacks .. 20

 3.5.1.2. Bandw൴dth attacks .. 20

 3.5.1.3. Log൴c attacks .. 21

 3.5.2. Defense class൴f൴cat൴on .. 21

 3.5.2.1. Attack prevent൴on .. 22

 3.5.2.2. Attack detect൴on .. 22

 3.5.2.3. Attack source ൴dent൴f൴caton ... 23

 3.5.2.4. Attack react൴on .. 24

CHAPTER 4.

EXPERIMENTAL IMPLEMENTATION.…………………………………….... 25

4.1. Tools Used for The Testbed ………………………………………... 27

4.1.1. M൴n൴net ………………………………………………………. 27

4.1.2. sFlow ………………………………………………………… 28

4.2. Env൴ronment ……….……………………………………………….. 28

4.2.1. Topology ……………………………………………………... 29

4.2.2. Attack scenar൴o ………………………………………………. 36

4.3. Results ………………………………………………………………. 38

CHAPTER 5.
CONCLUSION AND FUTURE WORK …………………………………......... 39

iv

REFERENCES …………………………………………………………………. 41

RESUME ……………………………………………………………………...... 45

v

LIST OF SYMBOLS AND ABBREVIATIONS

API : Application Programming Interface

CPU

DLP

: Central Processing Unit

: Data Loss Prevention

DDoS : Distributed Denial of Service

DoS : Denial of Service

DPI : Deep Packet Inspection

FTP : File Transfer Protocol

ICMP : Internet Control Message Protocol

IoT : Internet of Things

IPS

IP

: Intrusion Prevention System

: Internet Protocol

JSON

MAC

: JavaScript Object Notation

: Media Access Control

ONF

UDP

: Open Networking Foundation

: User Datagram Protocol

PCAP

RAM

: Packet Capture

: Random Access Memory

SDN : Software Defined Networking

SPI : Stochastic Packet Inspection

SYN : Synchronize

TCP : Transmission Control Protocol

TLS : Transport Layer Security

VLAN : Virtual Local Area Network

vi

LIST OF FIGURES

F൴gure 1.1. SDN topology used ൴n th൴s thes൴s .. 3

F൴gure 2.1. Trad൴t൴onal IP network dev൴ce ..……. 6

F൴gure 2.2. SDN ൴nfrascture network dev൴ce ... 7

F൴gure 2.3. SDN arch൴tecture ൴n deta൴l ... 9

F൴gure 2.4. OpenFlow algor൴thm ... 11

F൴gure 2.5. OpenFlow sw൴tch component ... 12

F൴gure 2.6. Floodl൴ght SDN controller .. 15

F൴gure 3.1. DDoS attack structure ... 19

F൴gure 4.1. Anomaly detect൴on system log൴n screen .. 25

F൴gure 4.2. F൴rewall module sett൴ngs ... 26

F൴gure 4.3. Deep packet ൴nspect൴on module .. 27

F൴gure 4.4. Launch൴ng floodl൴ght SDN controller .. 30

F൴gure 4.5. Floodl൴ght bu൴lt-൴n topology ... 31

F൴gure 4.6. Start൴ng sflow mon൴tor serv൴ces .. 31

F൴gure 4.7. Topology created by python scr൴pt .. 34

F൴gure 4.8. Launch൴ng node.js server ... 35

F൴gure 4.9. Mapp൴ng between m൴n൴net and sflow ... 36

F൴gure 4.10. Sequence d൴agram ... 37

F൴gure 4.11. Full packet capture ൴n w൴reshark ... 37

F൴gure 4.12. Anomaly detect൴on ൴n SDN .. 38

F൴gure 4.13. M൴t൴gat൴on of dos attack ... 38

vii

SUMMARY

Keywords: Software Defined Networking, Anomaly Detection, Deep Packet
Inspection, Testbed

Over the last few decades, computer technologies which are used to design and build
networks have remained unchanged. In the meantime, the number of connected
networking devices has raised exponentially, thereby increasing the size of computer
networks. Accordingly, the existing networks in data centres and companies have
become much more difficult and harder to administrate.

Software Defined Networking’s (SDN) idea brings the fact of separating the control
plane from the data plane which were previously tighten together in the same device,
and thus allows the network to be programmed from a logically centralized place
called the SDN controller. The data plane in this structure consists of dump devices
which are only capable of forwarding the data as instructed by the SDN controller.
OpenFlow is the well-known protocol used to take the communication between the
SDN controller and the forwarding devices.

In this study, a new testbed has been implemented for anomaly detection in SDN. The
testbed formed has several components such as a web based application, an anomaly
detection sub-system, an SDN structure with floodlight controller and sFlow protocol.
The system developed examines the payload of the packets in order to find any threats
in ongoing traffic. In order to investigate the performance of the testbed developed,
DoS attack has been considered. The results show that experiments related to security
aspects of the SDN systems can be realized by the testbed, easily.

viii

YAZILIM TANIMLI AĞ MİMARİSİNDE DERİN PAKET

ANALİZİ KULLANARAK SALDIRI TESPİTİ VE ÖNLEME İÇİN
DENEY DÜZENEĞİ TASARIMI

ÖZET

Anahtar kelimeler: Yazılım Tanımlı Ağ, Anomali Tespiti, Derin Paket Analizi, Test
Düzeneği

Son on yılda, ağları tasarlamak ve geliştirmek için kullanılan teknolojiler konusunda
köklü değişiklikler yaşanmamıştır. Bu süre zarfında, ağa bağlı cihazlarının sayısı üstel
olarak artarak bilgisayar ağlarının toplamı ve boyutunun artmasına yol açtı. Bu ise,
veri merkezlerinde ve şirketlerde mevcut ağ yapılarının yönetimini daha da zorlaştırdı.

Yazılım Tanımlı Ağ fikri, daha önce aynı cihazda sıkıştırılmış olan veri düzlemi ile
denetim düzlemini birbirinden ayırmayı getirir ve böylece tüm ağ yapısının SDN
denetleyici adı verilen merkezi bir yerden programlanmasına imkan verir. Bu yapı
içerisindeki very düzlemi, kendisine gelen verileri SDN denetleyici tarafından
belirlendiği şekilde bir sonraki düğüme ileten aptal cihazlardan oluşur. OpenFlow,
SDN denetleyici ile very düzelmi cihazları arasındaki bağlantıyı sağlamak üzere
yaygın olarak kullanılan haberleşme protokolüdür.

Oluşturulan test düzeneği web uygulaması, anormal durum tespiti alt sistemi,
floodlight denetleyiciye sahip SDN yapısı ve sFlow protokolü gibi çok sayıda bileşene
sahiptir. Geliştirilen system, akan trafık üzerindeki tehditleri bulabilmek için
paketlerin yük kısımlarını incelemektedir. Geliştirilen test düzeneğinin başarımını
sorgulamak için DoS saldırısı göz önüne alınımıştır. Elde edilen sonuçlar SDN
sistemlerin güvenliğiyle ilgili deneylerin oluşturulan bu test düzeneği ile kolayca
gerçekleştirilebileceğini göstermektedir.

Over the last few decades, computer technologies which are used to design and build

networks have remained unchanged. In the meantime, the number of connected

networking devices has raised exponentially, thereby increasing the size of computer

networks. Accordingly, the existing networks in data centres and companies have

become much more difficult and harder to administrate.

Though the quantity of Information Technology services is becoming quickly,

organizations are taking them out from self-guided infrastructure. Additionally, the

utilisation of cloud computing has turned out to be increasingly well known and the

advances in the Internet of Things (IoT) made each single device’s connection to the

internet a must. Those things are passing on the security to fundamental bit of

frameworks organization and especially in cloud and server farm, the security is

remaining an important factor.

The following vast development in Software Defined Networking is to move

conventional and fixed Ethernet systems to considerably unique and effortlessly

sensible ones. Software Defined Networking (SDN), changes the Ethernet layer 2 to

centrally directed layer 2 clouds, where the system’s activity can be managed utilizing

the advantage of programming languages. To state the preferred high-level network

policies, network administrators need to configure individual network devices

independently using low level and frequently vendor specific commands. Furthermore,

to the complexity of the configuration, network environments have to suffer the

dynamics of faults and adapt load changes. Automatic (re)configuration and response

methods are practically absent in traditional IP networks. Applying the required

policies in such a dynamic environment is therefore extremely challenging. that gives

 INTRODUCTION

2

us to fabricate more effective and further secure networks, in Figure 1.1. an example

of an SDN topology utilized as a part of this thesis is shown.

In this study, we are investigating and providing a testbed of SDN-based networks by

doing anomaly detection for the continuous packets, which will give better system

security. We are likewise discovering presented Software Defined Networking

applications constructed uniquely for Anomaly Detection and Deep Packet Inspection.

The motivation behind this study is to discover current situation with SDN idea and

assess its development for more extensive use on research and production

environments.

This thesis deals with creating a testbed to do anomaly detection in the new era of

networking called Software Defined Networking with an attack scenario to validate

the testbed, in order to do definite anomaly detection by using a static threshold value.

If the ping attack reaches beyond the threshold value, the created system will

automatically drop the packet from the machine originating the attack. Software

Defined Networking (SDN) provides an abstraction layer for the physical network and

separates what is called the or the so-called control plane which in human analogy is

the brain of the body from forwarding plane. Furthermore, SDN hype is growing

rapidly in big data centers like Google, Cisco and Facebook. Which the idea of SDN

is mainly aimed to reduce the complexity of designing the network configurations and

costs. Security is as always, a big concern in the business continuity and the issue of

security remains the same with traditional networks. A lot of study must be done and

unfortunately there is no such a system that is 100 persentage secure from anything,

every device which is connected to the Internet is vulnerable to certain attack must

well-known attacks are Denial-of-Service attack.

We will simulate an attack to a virtual server which resides in our SDN-based network

which will overwhelm the virtual server and cause unavailability to legitimate requests

from clients. This form of an attack is called Denial-of-Services (DoS) attack. There

are many techniques to protect networks from attackers, i.e. using middle boxes alike

devices Intrusion Prevention System (IPS) and/or Firewall. Although they cannot

3

mitigate DoS attack easily. This research will enhance the operation of DoS mitigation.

We apply another method by using SDN technology such as sFlow and OpenFlow.

The procedure of sFlow is to detect the attacker by taking some accumulative traffic

from agent(s) to send to the sFlow collector to analyze it. When sFlow collector

discovers some traffics as attacker, it will send to the Floodlight controller then will

modify the rule in OpenFlow-enabled switch table to mitigate attacks by preventing

attack(s) traffic. Thus, by mixing some cumulative traffic using sFlow and preventing

traffic using OpenFlow, we can detect and mitigate ping flood attack rapidly. In

addition to mitigating attacks, the testbed platform can also perform full packet capture

in SDN. These packet captures can be used later in Deep Packet Inspection (DPI) and

Data Loss Prevention (DLP).

Figure 1.1. SDN topology used in this study

1.1. Problem Statement and Motivation

The architecture idea of Software Defined Networking (SDN) is a novel and a new

way of programming the network. In SDN enabled networks, switches and routers do

not process the incoming packets. They consider their forwarding tables for a match

of incoming packet and if there is nothing matching, it will be sent to the controller for

4

handling. In SDN, the controller is the operating system. It handles the packets and

decides whether the packet will be sent in the switch or will be dropped. By applying

this method, SDN separate the data plane from control plane.

One of the potentials possibilities that can cause the emulated hosts and the controller

inside the SDN enabled networks to be unreachable is DoS attack. The main goal of

this research is to build a testbed and do anomaly detection in SDN enabled networks,

and mitigate the DoS attack towards the emulated hosts in our SDN networks.

1.2. Structure of The Thesis

This thesis is structured as follows; in Chapter 2 we will talk in detail about Software

Defined Networking, what is it? The definition of SDN, the difference between SDN

and traditional networks, and OpenFlow protocol, the most well-known southbound

API in SDN architecture. In Chapter 3, we will talk about Anomaly Detection in the

context of SDN, what is called Anomaly Detection? Furthermore, how it can be

integrated into SDN, and Denail of Service attacks, classification of attacks and

defense, and briefly what is Deep Packet Inspection and how to look deeply in the

payload of the packets. In the fourth Chapter, we will experiment the testbed and we

will discuss the tools that we have used. We will also discuss the web-based system

that we created. Finally, in Chapter 5 we will conclude the thesis and we will discuss

the future improvements that are possible to enhance this work.

SDN is a new model in how we create and manage networking devices nowadays, it

is the norm in networking and it enables programmable, dynamic and flexible network

architectures. Software Defined Networking idea can dramatically reduce operational

costs in large data centers and increase the flexibility in design and implementation in

the network. Thus the main concept is taking off the control plane from the data plane

[1]. In other words, decoupling the data plane and the control plane from each other,

in this regard the traditional network devices, let say for example routers or switches,

were having the control plane and the data plane in the same device. In Figures 2.1.

and 2.2. We will present the differences between the traditional network infrastructure

and the SDN based infrastructure. In Figure 2.1. we can see that the control plane

(which decides how to forward packets) and the data plane (which is responsible to

forward the packet) are tighten together in the same hardware device. On the other

hand, in Figure 2.2. we can see that the control plane is decoupled from the data plane

into a place where is it logically centralized.

The logical processing of network packets is taken over by a logically centralized

instance, called the SDN controller (i.e. Floodlight). Thus, SDN exploits the fact that

software is more flexible than hardware in terms of design, implement and improve.

In large networks, the configuration of network elements is error-prone, SDN provides

the advantage that configurations are centralized in one component. Furthermore, SDN

bears the potential for network virtualization.

Several concepts such as Virtual Local Area Networks (VLAN) were developed in the

past, but the consequence was an increased complexity, especially in wide network

infrastructures. Existing SDN software solutions allow network virtualization based

on flexible criteria, such as network packet header fields. This provides a network

 SOFTWARE DEFINED NETWORKING

6

abstraction layer which allows multiple tenants to share a single physical network.

Additionally, SDN controllers provide APIs (Application Programming Interface) for

third-party applications, allowing customizable and manageable networks. However,

the centralization of the management plane entails risks: the controller is a critical

component, and, if compromised, affects the availability of network services.

Network security has been widely addressed in researches, and several tools and

techniques exist for traditional IP network security. Network-based firewalls is a

device that monitors incoming and outgoing network traffic and decides whether to

allow or block specific traffic based on a defined set of security rules. Intrusion

Prevention System (IPS) inspects traffic flowing through a network and is capable of

blocking or otherwise remediating flows that it determines are malicious. Usually uses

a combination of traffic and file signatures and heuristic anlysis of flows. Intrusion

Detection System (IDS) similar to IPS but does not affect flows in any way, only logs

or alters on mmalicious traffic. But in SDN architecture there is no such devices yet,

and widely deployed to mainstream networks. For the case of anomaly detection and

deep packet inspection, researchers are still looking for developing such a device.

Figure 2.1. Traditional IP networks device

7

Figure 2.2. SDN infrastructure network device

2.1. Software Defined Networking Definition

In Information Technology and in computer networking engineering, the thought of

Software Defined Networking (SDN) or programmable network devices is still

growing, through different visions from different designers of its range. A user-driven

organization called Open Network Foundation (ONF) is created with the aim of

adopting the advancement of SDN, describes it as: “The physical separation of the

network control plane from the forwarding plane, and where a control plane controls

several devices” [2]., which means in the traditional network device, let’s say a Cisco

router, this device was doing all the intelligent work, be it routing between paths, or

doing network address translation, or even doing some security like access control list

to prevent certain devices or networks from accessing each other, all this work was

done in the same hardware device. SDN comes to decouple this integration, and allows

8

certain cheap hardware or software devices to do the data forwarding action, where the

intelligence is taken off the device, centralized logically and configured from one spot.

The control plane is directly programmable through coding and programming using

Application Programming Interface (API) which conveys to the flexibility of the

control plane to exchange information with networking devices. An Application

Programming Interface (API) allows to modify network services through the

communication to the control plane. This make computer networking more flexible to

design and manage at the same time. The idea of old fashioned networking devices

was containing data and control planes in the same hardware device and was tightly

integrated together.

2.2. Architecture and Concept of SDN

During the last decade, Information Technology was growing very rapidly, and the

work needed for administering the computer networks has become more serious and

time consuming. As the information networks grow, more computer networking

devices as well are required.

The fundamental idea of SDN is to isolate the control plane from the data plane and

bring it to one single piece of device, which implies that each system device requires

just to deal with the data plane and move information packets starting with one point

then onto the next in view of the sending choices made by the SDN controller [1]. In

this way, every change is controlled from one controller through Application

Programming Interface (API) and the controller is directed with application layer SDN

applications. The essential SDN architecture is illustrated in detail in Figure 2.3. and

the SDN controller is depicted more precisely in upcoming sections 2.6.

9

Figure 2.3. SDN architecture in detail [1].

The application layer is the layer on top of the SDN controller where the entire SDN

is administered. The administration component might be one SDN application

composed for some task of a significantly more complex framework. For instance,

OpenStack distributed computing cloud can administer networks by utilizing its own

network administration modules. SDN controller constructs flows to SDN-enabled

switches and rules how the devices connected to the switch can communicate.

2.3. Northbound Interface

The northbound API is an approach to administer the controller and the entire SDN

based networks. By creating an external SDN application we can change network

policies and structures. Northbound API is typically applied using restful API

(representational state transfer) which causes handling of the controller simple with

basic HTTP methods like POST, PUT, GET and DELETE.

External SDN applications are the one managing SDN network by using northbound

API, and they are running outside the controller using programming interface for

communication. That type of application is capable to administer the controller and

10

send instructions for it. Northbound APIs are debatably the utmost critical APIs in the

SDN network, since the value of SDN is attached to the innovative applications it can

possibly support and enable. Because they are so critical, northbound APIs must

support a wide variety of applications, so one size will likely not fit all. This is feasibly

why SDN northbound APIs are presently the utmost vague element in an SDN

network.

2.4. Southbound Interface

Southbound APIs are used to communicate between the switches and routers to the

SDN Controller of the network. They can be proprietary or open. Southbound APIs

accelerate effective control over the network and enable the SDN Controller to

dynamically make changes matching to real-time needs and demands. OpenFlow,

which was developed by the Open Networking Foundation (ONF), is the first and

perhaps most well-known southbound interface. It is an industry standard that defines

the way the SDN Controller should interact with the forwarding plane to modify the

network, so it can better adapt to changing business requirements. With OpenFlow,

entries can be added and removed to the internal flow-table of switches and potentially

routers to make the network more responsive to real-time traffic demands. Beside

OpenFlow, Cisco OpFlex (the company’s response to OpenFlow) is also a well-known

southbound API.

2.5. OpenFlow Protocol

Traditional network has been questioned after the explosion of server virtualization,

cloud computing and mobile devices, security issues and the advent of cloud services

are among the reasons for the computer networks industry to do dramatical changes.

OpenFlow protocol is planned to solve the problem of allocating resources to users in

an easy way by giving them the control of the network without interrupting traffic

flows [3].

11

In the old switches and routers, both the data plane and the control plane are in the

same device. An OpenFlow Switch splits these functions into two. The function of the

data plane still exists on the switch, while the function of the control plane is pushed

to a separate device called the SDN Controller that handles the communication

between switches and the controllers through Secure Channel, via the OpenFlow

Protocol.

The switch contains one or more flow tables, OpenFlow protocol is responsible for

adding, updating and deleting switch flow entries. When the packet flow comes to the

switch, the OpenFlow enabled switch will check it. If the packets match the flow table;

the action described at the flow entry is performed. If not, the packet is either dropped

or sent to the SDN Controller. In the following figure we briefly demonstrate an

OpenFlow algorithm, how it handles for the coming new packets that entering the

OpenFlow enabled switch.

Figure 2.4. OpenFlow algorithm

2.5.1. Switch components

An OpenFlow enabled switch as shown in the Figure 2.5. contains one or more flow

tables, which does the following; packet forwarding, packet lookup, and a secure

12

channel to an external SDN controller and then the SDN controller points the

OpenFlow enabled switch over the secure channel using the OpenFlow protocol.

2.5.1.1. Flow table

This section describes the components of flow table entries. A flow entry consists of

header fields, counters, and actions.

Each flow table entry holds the following:

a. Header fields are for matching against packets

b. Counters for updating the packets

c. Actions will apply for matching packets

Figure 2.5. OpenFlow switch component [3].

2.5.1.2. Secure channel

An OpenFlow switch and the controller communicate through a secure channel and is

instantiated as a single network connection between the controller and the switch,

using Transport Layer Security (TLS). One controller can manage multiple secure

channels within the topology.

13

2.6. SDN Controller

In Software Defined Networking, the control plane is a special network component,

called the controller. Since it is purely software-based, the developer community is

quite large compared to OpenFlow-switches. However, most projects are driven by the

same companies (Big Switch, IBM, HP, Cisco, etc.). In addition to commercial

solutions, many open source controllers are available. They vary mostly in the way the

northbound API is implemented. While the southbound API is standardized, the

interfaces on top of the controllers are very different. The Open Daylight project was

launched by several ONF members to deal with these disparities.

Big Network Controller and Floodlight are two controllers developed by Big Switch.

While the Big Network Controller is a commercial solution [4]. Floodlight was

published under an open source license. Since the commercial software is based on

Floodlight, modules are compatible with both controllers [5]. The Architecture of

Floodlight SDN controller is shown in Figure 2.6. Developers can implement their

own Floodlight modules to handle specific OpenFlow traffic. This can be done by

extending abstract classes and implementing interfaces that are available in the

Floodlight core. Floodlight itself provides core modules that offer basic controller

functionalities like layer 2 forwarding and topology discovery.

The Open Daylight Project was started to provide a consistent northbound interface.

This was necessary, since controller projects have diverged in the past years. The

controller software is open source, making it easy for developers to improve the core

components and implement their own applications. The Open Daylight controller

provides a northbound API that can be used by applications [6].

Other controller implementations have been developed since the emergence of

OpenFlow.

1. NOX was the first OpenFlow controller. It provides an interface for additional

modules and is written in C++ and Python. The core components include topology

14

discovery, layer 2 and layer 3 switching. The first version was published in 2007. Since

2008, NOX is open source. Newer versions of NOX are implemented exclusively in

C++. A pure python controller was released under the name POX [7].

2. Beacon is an open source controller, implemented in Java. It was released in 2010

and was widely used in research and as a basis for Floodlight [8]. Beacon uses the

OpenFlow J library, which is a Java implementation of the OpenFlow 1.0

specification.

2.6.1. Floodlight SDN controller

Floodlight SDN Controller [9]. is written in Java programming language, it is an open

source controller maintained by a team of engineers and programmers from Big Switch

Networks. Floodlight is invented to work with the growing number of different types

of routers, switches, virtual switches, and access points that support the OpenFlow

standard [3].

Floodlight OpenFlow Controller has different features to solve the user requirements,

and it is built on top of the Floodlight controller. The Figure 2.6. shows the architecture

of Floodlight and the relationship between applications built on top of it. The

applications are built using Java modules and compiled with Floodlight, and there are

applications built over the Floodlight REST API.

Features of Floodlight:

a. Offered easy to extend and improvements.

b. Support a wide range of physical and virtual OpenFlow enabled switches.

c. Possibility to mix OpenFlow and non-OpenFlow networks and it can direct

Multiple of OpenFlow enabled switches.

d. OpenStack cloud is supported.

15

Figure 2.6 Figure 2.6. Floodlight SDN controller [9]

The goal of anomaly detection in the perspective of computer networks is to discover

potentially harmful traffic. Anomalies are outlined as Forms in data that do not follow

a clear notion of normal activities [10].

Anomaly detection used for intrusion detection firstly have been seen almost 40 years

ago [41]. Nowadays, network anomaly detection is a very comprehensive and deeply

searched subject but the issue that is still unsolved is finding a general method for a

wide range of network anomalies. Commonly used intrusion detection systems against

new malicious software are ineffective.

Anomalies might appear in a network for different reasons, for example because of

malicious software, misconfigured network elements or software errors. If an anomaly

occurs because of malicious packets (e.g. originating from malware), inspecting the

packet’s payload is an effective way to recognize abnormal traffic. Two types of

payload-based classifiers exist: Deep Packet Inspection (DPI) and Stochastic Packet

Inspection (SPI) [11].

Those two methods provide very accurate results; however, the computational costs

are high. Thus, approaches that merely need header fields instead of packet payload

are required. However, building a strict model which can isolate the normal network

traffic is very difficult. Hence, detecting anomalies in network traffic is a difficult task

[11]. Several machine learning algorithms are suited for this task. This section will

give an overview on what can be considered an anomaly in SDN, control traffic will

be treated, and possible attack scenarios described.

 ANOMALY DETECTION AND DOS ATTACKS

17

3.1. Methodological Overview

The first phase to building an anomaly detection tool is to define what kind of data

will be used. One option is to aggregate the data based on network flows and/or periods

of time [12]. An instance of the dataset would then be composed of header fields

describing the network packets and additional meta-data such as the number of

transmitted packets. Next, the dataset is analyzed to identify the attributes which seem

relevant for classification. With better knowledge of the data, one can choose the

appropriate techniques. For example, small datasets can be analyzed and labelled by

experts, thus supervised machine learning is suitable. Conversely, it is difficult and

very time consuming to label large datasets. The structure of the data allows for

deciding a priori what algorithms might be appropriate for classification. However, a

more accurate evaluation of the algorithms is necessary, e.g. with the precision/recall

metric [13]. When predicting a Boolean output variable (normal or anomaly), two

kinds of errors are possible: the case is an anomaly but was not classified as such (False

Negative) or the case was wrongly classified as an anomaly (False Positive).

3.2. Using SDN For Anomaly Detection in User Traffic

To perform anomaly detection, data needs to be collected. In traditional networks, the

data must be stored and aggregated at different network nodes. In SDN, the controller

has a centralized view of the entire network, hence the data collection can be performed

at a single point. Furthermore, OpenFlow switches update counters each time a packet

is transmitted or received. The controller can therefore request the byte count and

packet count for a given network flow. Previous work shows that SDN provides the

opportunity to collect and aggregate data more easily [14, 15, 16]. The data that is

collected can then be used for anomaly detection.

Several approaches remain conceivable when using SDN for anomaly detection. The

OpenFlow protocol can be used to send packets to the controller, to inspect the payload

(i.e. DPI). The advantage is that the packets are inspected centrally, without having to

deploy the DPI-implementation on multiple network elements. This method, however,

18

has a downside: the network load is substantially increased, since the packets need to

be sent across the network to the controller.

SDN has the potential to simplify the implementation of well-known anomaly

detection tools. Mehdi et al. showed that algorithms like Rate-Limiting can easily be

ported to SDN networks [17].

3.3. Deep Packet Inspection

Deep packet inspection is a method of checking the header and/or payload of Internet

Protocol (IP) packets. It is, still, also used to show those architectural methods to

network traffic monitoring that use DPI in an automated way; DPI is combined into

fundamentally automated systems. Packet capture and additional analysis can be either

distinct processes in both time and space or it can be joint in one task pipeline. The

traffic capture method can work as a source of a PCAP file for additional Deep packet

inspection based analysis [18].

For the advent of new applications, the so called Deep Packet Inspection technology

has been extensively applied to numerous forms of networks, and have seen a speedy

development. Administrators can apply policies in all layers and prevent malware and

threats by parsing the payload of Internet Protocol (IP) packets.

3.4. DoS Attack and Defense Methods

A denial of service (DoS) attack is described as an effort made by an attacker to block

legitimate users from using services provided by an application network or server [19].

This kind of attack can be launched in many ways, one way is sending crafted packets

to cause the system to be crashed and exploit a certain software vulnerability in the

target system [20]. Another way is by sending massive useless volumes of traffic to

devastate and occupy the resources available for legitimate users to benefit from. In

this thesis we are focusing on overwhelming the server and occupy the resources

available in the server.

19

3.5. DoS and DDoS Attacks

In order to consume the target’s resource, the capacity of traffic for the attack must be

large enough. To deny services and achieve more complex attack detection, the attack

is originated from several sources. This type of denial of service (DoS) attack is known

as distributed denial of service attack (DDoS).

A standard distributed denial of service (DDoS) attack contains three main parts as

shown in Figure 3.1. At the first step the attacker selects a group of vulnerable systems

(we call them zombies) and installs attack systems in them. After the attack method is

installed, the attacker has all the capability to launch attack commands to the zombies

through using a secure channel to carry out the DoS attack on the target. The difficulty

of this kind of attack increases due to the bots modifying the packets, generally

spoofing the source. Therefore, it becomes even more difficult to trace the origin of

the attack.

Figure 3.1. DDoS attack structure

20

Botnet is a group of bot systems, also known as zombie and the arrange of elements

the attacker can launch to attack systems over them, and carry out combined attacks,

is commonly known as botnet. A significant characteristic of botnets is the ability to

update software from the attacker over the security channel between the bots and the

attacker.

3.5.1. Attack classification

In order to plan a classification of DDoS attacks, we have to consider some

characteristics of the attacks, as well as the means used to prepare and perform the

attack, the features of the attack itself and the selection and the effects upon the victim.

In this study, we will classify attacks depending on the victim type, and based on that

classifying will be protocol attacks, logic attacks, and bandwidth attacks. There are

some other classifications and they are mentioned in greater detail in [21, 22, 23].

3.5.1.1. Protocol attacks

To take advantage of the inherent design of common network protocols, the attacker

continuously sends packets to the server at a particular rate. In other words, these kinds

of attacks try to exploit the weakness of the system, bearing in mind the expected

behavior of protocols such as ICMP, UDP, and TCP. A UDP flood attack is a protocol

attack which has the purpose of bringing down the server by sending UDP packets, the

victim will be forced to send back ICMP packets, but to an unreachable destination

[24]. SYN flooding attacks, as the name implies, flood the server by sending SYN

packets that consume its resources and fill up the backlog. Other examples are Smurf

attacks [25]. and ICMP attack (This thesis focuses on this type of attack, which is

further explained in Chapter 4).

3.5.1.2. Bandwidth attacks

Bandwidth attacks can consume all available data volume between an Internet Service

Provider (ISP) and the target. To route from many resources to many destinations the

21

ISP networks need to have high bandwidth due to the heavy traffic that is required for

routing. The connections between the victim and the ISP usually have less volume than

the ones internal to an ISP, so when high volume of traffic generated from the ISP go

through these connections, the links are filled up and legitimate traffic slows down.

An attacker then can easily consume the bandwidth by transmitting any traffic to all

network connection [26]. For example, high capacity of simple ICMP packets can

consume the bandwidth [27].

3.5.1.3. Logic attacks

In software or logic attacks, a small number of malformed packets exploit known

specific software bugs in an application or in the operating system of the target system.

This can actually disable the target’s machine with one or multiple packets. These

kinds of attacks can be avoided by installing or updating the software that eliminates

vulnerabilities [28]. or by adding specialized filter rules to filter out malformed packets

[29]. In the ping of death attack, the attacker sends a ping message with the packet

size over the internet. Other examples include Land attacks, Teardrop attack [24].

3.5.2. Defense classification

DoS defense methods have become one of the most significant challenges in network

security. Therefore, a large number of defense taxonomy and classifications have

emerged [22,23]. In this study, we will present four broad categories. The intention of

this classification has been to highlight the core features of each group of defenses.

Attack Prevention: its purpose is to stop the attack before it can reach its targets (see

3.5.2.1); Attack Detection: this section aims to detect the attack when it occurs (see

3.5.2.2); Attack Source Identification: its purpose is locating the source of the attack

(see 3.5.2.3); and Attack Reaction: its aim is to reduce or eliminate the effects of the

attack (see 3.5.2.4).

22

3.5.2.1. Attack prevention

This kind of category aims to stop attacks before they actually cause damage, and tries

to deny traffic that can be recognized as malicious, based on known patterns. The best

place to put this kind of devices is in the edge routers and edge hosts, which implies

fixing all the vulnerabilities of all Internet hosts that can be misused for an attack.

Some useful methods to prevent DDoS attack against a target machine are:

Filtering: This measure implies installing ingress and egress packet filters on all the

routers. In order to protect the target from attacks arriving to the network and prevent

the network itself from being a potential attacker, filtering all the packets entering and

leaving the network might be a good option.

Firewall: Before an attack is carried out, a firewall might be useful to filter out traffic

according to the protocol, ports or incoming IP addresses. But, the problem is that

firewalls cannot differentiate between an attack and legitimate traffic, and denying all

traffic for a specific port or protocol is not appropriate. Only in those attacks in which

the signature patterns are known, may these patterns be avoided. However, an

insignificant variation or new attacks can make the attack go undetected.

Protocol Security: Addresses the problem of protocol design weaknesses in order to

prevent Protocol Attacks such as a TCP SYN Attack, ICMP Ping Flood Attack,

malformed packets, UDP Flooding, etc. [30].

3.5.2.2. Attack detection

When the attack is in process, an attack detection method must recognize if it is

actually an attack or just legitimate traffic. Also, in an attack situation, legitimate

traffic must flow without being misclassified and disrupted. False positive occur when

the IPS reports certain benign activity as malicious. False negatives occur when the

IPS does not detect and report actual malicious activity [31]. An effective attack

23

detection method must keep the balance between false positives and false negatives.

There are basically two kinds of detection structures [32, 33].

Pattern Detection: An attack can constantly be detected by comparing incoming traffic

with known attacks signatures stored in a database. These patterns are constructed by

network security experts based on previous attacks. If the attack matches the database,

this method becomes very efficient with almost no false positives. Problems arise

when there are new attacks or slight variants that can dodge the defense. SNORT [33].

and Bro [34]. Are two commonly used pattern detection methods.

Anomaly Based Detection: It identifies malicious activity in a network by detecting

anomalous network traffic patterns. Some network analysis behavior such as detecting

the attacks based on the size of the packet, since those being too short violate specific

application layers protocols. Rate-based detection is also an important network

analysis. It perceives changes in the traffic flow, detecting floods by using a time-

based model of normal traffic volumes. The parameters on which the defense method

is based to detect the anomaly can be standard, they rely on protocol standards for

example, an attack detection can detect half-open TCP connections and trained, which

generates allowed threshold values normal conditions based on the system’s behavior

under normal conditions.

3.5.2.3. Attack source identification

Once an attack is detected, the best response is to block the attack traffic at its source.

It aims at locating the attack sources regardless of whether the source address field in

each packet contains correct or erroneous information. Once the attack detection phase

is over, the IP attack traffic should be traced back to its source. This is taken care of in

phase [20]. Unfortunately, it is not easy to track IP traffic down to its source. This is

due to two aspects of the IP protocol. The first is the ease with which IP source

addresses can be forged. The second is the stateless nature of IP routing, where routers

normally know only the next hop for forwarding a packet, instead of the complete end-

to-end route taken by each packet.

24

3.5.2.4. Attack reaction

Attack reaction tries to eliminate the effects of an attack and filter the attack traffic

without disturbing legitimate traffic. The reaction to the attack must minimize the

damage caused by the attack by developing a reaction scheme while the attack is in

progress.

Rate Limiting: The rate of malicious traffic packets is reduced with this method when

there is a high number of false positives and traffic has been identified as malicious by

the detection methods. Max-Min fair share sets up maximum and minimum thresholds

by the routers fixed by the servers. Level-K controls the traffic admission rates of the

routers; k hops away the victim using a max-min fairness approach [35].

Filtering: Dropping the traffic conserved as unwanted or malicious is an effective way

to prevent a DDoS attack. The problem is that some attacks use well-formed packets

and legitimate requests to servers, making them non-filterable. There is also the risk

of accidentally denying service to legitimate traffic. However, it is an efficient method

against spoofed IP packets. Dropping spoofed incoming packets by ingress filtering

[36]., identifying and dropping packets based on the change of the time-window-size,

saving proved previously legitimate IPs are some of the attack reaction method on

filtering [37].

In this chapter, we will present the experimental implementation in a virtual

environment as well as the attack scenario to validate this testbed. As previously

mentioned in Chapter one the scope of this work is to study how SDN can do anomaly

detection and help to stop one of the most harmful attacks called denial-of-service

(DoS). This work presents a network-based defense mechanism developed with the

floodlight controller. To test this method, a virtual set-up is simulated, using the

following technologies: We carried this experiment in a virtual environment using

Mininet [38]. As a testbed, in Mininet virtual machine we have installed several things

like sFlow monitor tool, Mongo database for storing the packets for later use in data

loss prevention but it is out of the scope of this project, and we have created a system

which has a graphical user interface where we can simplify the administration tasks

Figure 4.1. is the login page of the developed system.

Figure 4.1. Anomaly detection system login screen

 EXPERIMENTAL IMPLEMENTATION

26

We developed the web based system using PHP as back-end and it has several

modules, one of the modules that we created in our system is a firewall module shown

in Figure 4.2. This firewall setting is simple, it sends commands that the user can

provide in the textbox provided, and the example is shown in the figure. To enable the

firewall module is made easy, only in the textbox provided write the command and

click the enable button to be enabled. On the other hand, if you want to disable the

firewall module, write the command then click disable button to disable the firewall

module. If you enable the firewall with the default settings it means all the connections

will be blocked and only the specified IP addresses will be allowed to pass through the

network, and if you click disable with the default settings provided, all the

communication will be allowed, unless otherwise you specify which part you want to

not pass the network.

Figure 4.2. Firewall module settings

Our system also has a module doing deep packet inspection, where we are capturing

all ongoing packets, the captured packets consists of the following parameters, source

and destination MAC addresses, IPV4 source and destination, and finally transport

layer whether it is TCP or UDP. The created testbed is doing full packet capture, and

later we can investigate the payload of the packet, we can dig deep and do analysis to

the packet in order to find any anomalies and suspicious attacks like SQL injection or

cross site scripting (CSS) in the packet that is captured. A screenshot about the module

is provided in the Figure 4.3.

27

Figure 4.3. Deep packet inspection module

4.1. Tools Used for The Testbed

There are a several tools that we used in this thesis. Mininet is an emulator program

that will handle all the topology, OpenFlow-enabled switches, simulated hosts, as well

as the servers, sFlow on the other hand will monitor ongoing packets and it will feed

sFlow agents, on the background we are collecting all the data and we are storing it

into mongo database, in case we need to do data loss prevention. In the following

section, we will briefly describe them in detail.

4.1.1. Mininet

Mininet is a system that allows us to quickly emulate a big and complex network on

the limited resources of a single computer. Mininet can be used as a standalone

appliance or in virtual machine, Mininet can emulate a realistic network which is

running in real Linux kernels. Mininet allows to experiment Software Defined

Networks using OpenFlow and any controllers. This experiment and the creation of

this network topology is done through Mininet [19]. Mininet the new architype

environment keeps this workflow by using trivial virtualization. Users can employ a

28

new prototype network, check it on big topologies with normal traffic, and then utilize

the literal equivalent code and check the script into a real network. The following are

some of Mininet features but not limited to:

a. Flexibility: by using familiar programming languages and common operating

systems.

b. Deployability: to deploy a prototype on physical hardware does not require to

change the code.

c. Scalability: the architype should scale well to the networks with hundreds of

switches on one computer.

d. Realistic: architype performance should signify real performance with a high

degree of confidence.

e. Share-able: architype created with Mininet should be easily shared with co-

workers, who can then run and change our experiments.

4.1.2. sFlow

sFlow [39]. Is used for complex networks to monitor and manage traffics. It can be

used in real hardware or virtual networks. It has a JSON API, which will inform the

Floodlight controller about the ongoing packets. sFlow offers the data required to

excellently manage and control usage of networks, confirming the services of the

network to provide a competitive advantage. Here are a few examples of sFlow

applications:

a. Diagnosing, detecting, and fixing problems of the networks.

b. Congestion management in real-time.

c. Familiarity of applications mix and changes (e.g. Web).

d. Audit trail analysis to identify unauthorized network activity and trace the

source of denial-of-service attacks.

e. Capacity and trending planning.

f. Peering optimization and route profiling.

sFlow is sampling technology that converges the key needs for network traffic

monitoring solution:

29

a. sFlow is scalable, without affecting the operation of the core internet routers

and switches it can monitor links of speed up to 10Gb/s and without adding

significant network load.

b. sFlow provides an active route of a wide network view and usage. It is a

scalable method for computing network traffic, gathering, storing, and

analyzing traffic data. This enables tens of thousands of interfaces to be

observed from a specific location.

c. sFlow is a low-cost solution. It has been implemented on a wide range of

devices, from simple L2 workgroup switches to high-end core routers, without

requiring additional memory and CPU.

d. sFlow is an industry standard with a growing number of vendors delivering

products with sFlow support.

Using sFlow to constantly observe flows of the traffic on all ports gives network wide

visibility into the use of the network. This visibility replaces presumption, basically

changing the way that network services are administered.

4.2. Environment

After the virtual environment is ready and well prepared, it is significant to carry out

the essential tests to analyze its behavior. Therefore, a virtual network topology has

been implemented through Mininet with the purpose of emulating a real environment.

In this topology, some of the hosts will act as attackers and some of them will act as a

server which behind the scenes is running an HTTP server based on Python.

4.2.1. Topology

Any system such as a Web server, FTP server, or Mail server, connected to the Internet

and providing TCP/UDP based network services, is a real target to Denial of Service

attacks [21]. In this implementation, a Web Server has been used as the victim of the

attack.

30

To run this system several services should be run. Here we will present how to run

each application with the commands associate with it. Firstly, we will start the

Floodlight SDN controller, our SDN controller is listening to switch connection on

port 6633, by running the command shown in the figure below Floodlight is up and

running and waiting to be connected by any OpenFlow enabled switch.

Figure 4.4. Launching floodlight SDN controller

After running the background process of the Floodlight SDN controller, here is a

simple screenshot for the topology created, the created topology consists of three

OpenFlow enabled switches and three emulated hosts connected to each other, and all

the OpenFlow enabled switches are connected to Floodlight SDN controller. The

graphical user interface of Floodlight SDN controller is made simple, it consists of a

dashboard, topology, switches, and hosts. In the dashboard it shows how much RAM

it consumes, how much CPU it runs on, and for how long the controller was up and

running. In the topology section as shown in the figure below, it shows the exact

topology created in SDN environment, how many hosts and how many switches are

there, how they are linked to each other, and all the details about the topology is shown

in this section. While in Switches it shows the switch IDs, and switch MAC address

and the like, on the last section which is the hosts section, it shows the hosts IP address

and host IDs. The only part was captured is the topology which is the most important

part where it shows the whole topology created in our testbed.

31

Figure 4.5. Floodlight built-in topology

In Figure 4.4. We will start sFlow as a monitoring tool. The command which is used

to run the sFlow service in our system is shown below. To run the sFlow monitoring

tool, the following command will be run in the command line, it is background process

and it is listening to port 6343. To access it by using graphical user interface, we will

write http://localhost:8008 in any browser available in the system. Usage of sFlow and

its benefit is discussed later in the upcoming sections.

Figure 4.6. Starting sFlow monitor services

Figure 4.7. Shows a topology created through Mininet in a virtual environment. This

topology is initialized and created by executing a Python script which is easily

understandable and configurable, it is meant to create the topology with OpenFlow

enabled switches, emulated hosts, and the connection between hosts and switches, also

it creates the connection between switches and our SDN controller. In the following

32

section we will present the code in Python and we will explain briefly what each part

does.

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch

from mininet.node import IVSSwitch

from mininet.cli import CLI

from mininet.log import setLogLevel, info

from mininet.link import TCLink, Intf

from subprocess import call

def myNetwork():

 net = Mininet(topo=None,

 build=False,

 ipBase='10.0.0.0/8')

 info('*** Adding controller\n')

 c0=net.addController(name='c0',

 controller=RemoteController,

 ip='127.0.0.1',

 protocol='tcp',

 port=6633)

 info('*** Add switches\n')

 s2 = net.addSwitch('s2', cls=OVSKernelSwitch, dpid='00:00:00:00:00:00:00:02')

 s3 = net.addSwitch('s3', cls=OVSKernelSwitch, dpid='00:00:00:00:00:00:00:03')

 s1 = net.addSwitch('s1', cls=OVSKernelSwitch, dpid='00:00:00:00:00:00:00:01')

 info('*** Add hosts\n')

 h1 = net.addHost('h1', cls=Host, ip='10.0.0.1',

mac='00:00:00:00:00:01',defaultRoute=None)

 h3 = net.addHost('h3', cls=Host, ip='10.0.0.3',

mac='00:00:00:00:00:03',defaultRoute=None)

33

 h2 = net.addHost('h2', cls=Host, ip='10.0.0.2',

mac='00:00:00:00:00:02',defaultRoute=None)

 info('*** Add links\n')

 net.addLink(h1, s1)

 net.addLink(h2, s2)

 net.addLink(h3, s3)

 net.addLink(s1, s2)

 net.addLink(s1, s3)

 net.addLink(s2, s3)

 info('*** Starting network\n')

 net.build()

 info('*** Starting controllers\n')

 for controller in net.controllers:

 controller.start()

 info('*** Starting switches\n')

 net.get('s2').start([c0])

 net.get('s3').start([c0])

 net.get('s1').start([c0])

 info('*** Post configure switches and hosts\n')

 CLI(net)

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 myNetwork()

The first part of the code will import the necessary libraries, including importing

Mininet from mininet.net, the controller, open virtual switch controller and remote

controller. Also, it is necessary to import hosts, nodes, open virtual switch kernel

switch will be imported, and last but not least, command line interface (CLI) will also

be imported in the above commands in python.

34

The second part of the code will define the topology, the controller which in this case

is a remote controller, and the range of IP addresses, and transport protocol being used

and on which port is listening is mentioned in this section of the code Last but not

least, switches are added into the network. In this testbed we are using open virtual

switch (OVS), and later it will build the connection and it gives readable MAC

addresses to the open virtual switches.

The last section of the code consists of adding hosts and assigning IP addresses to

them, then building the connections between hosts and switches. It also shows for

example how host 1 is connected to switch 1. Then later starting the function and

running the network.

Figure 4.7. Topology created by python script

The black computer shown in the Figure 4.7. represent the attacker, whose attack

mechanism or attack method is flooding the server with tens of thousands of pings

called ping of death and it is a type of denial of service attack, i.e. sending too many

echo requests which the server cannot handle because it has limited resources available

in it. To check the availability of the server which will be overwhelmed the server and

cause denial of service for legitimate users. The red one is the web server, in the server

35

there is a web services running on port 80 which is based on simple python script

emulated in our testbed.

Overall, in the anomaly detection module that we created using in Nodejs is logically

in the central point of the system where all packets pass through, the system does full

packet capture, and triggers the Floodlight SDN controller when the packet reaches

beyond the threshold value to block the source of the packet, in the coming figure

below we will show some of the code that starts the anomaly detection server build by

Node.js.

Figure 4.8. Launching node.js server

36

The code above shows running Node.js and lunching the server, it is an event based

server execution procedure. Here we defined some important variables, like port

number which is on port 8001, IO variable and it is using socket IO library.

Figure 4.9. Mapping between mininet and sflow

In the above Figure we present some of the codes that is so important, we defined some

variables like the threshold value, http variable which requires the library to be

imported, the overall code above maps between our OpenFlow enabled switches with

sFlow monitoring tool that we used as part of the research experiment.

4.2.2. Attack scenario

To carry out a ping flooding attack, the attackers will send tens of thousands of packets

per second to the server, which means flooding it with echo request packets. Figure

4.10. illustrates a sequence diagram, where it explains the attack scenario and how the

testbed deals with ping flooding attacks. In the sequence diagram shown below, the

attacker sends normal ping, the ping goes to the OpenFlow enabled-switch, which is

called packet-in. The switch checks the flow table, and because the destination is

unknown to the switch (table miss), it forwards the packet to the SDN controller

(Floodlight SDN controller) to ask the path to where it should send the packet. The

SDN controller replies with a packet-out which includes information needed by the

switch, then the switch stores the destination of the route into its flow table.

37

Figure 4.10. Sequence diagram

In the ongoing attack spectrum, we tried to capture in Wireshark to see the flooding

attack, in the below Figure, we can see how many pings have been sent to the victim

in less than a second. In Wireshark it is easy to illustrate in graphical interface, the

source who originates the attack, the destination who receives the packet, and the

protocol type as well as the length of the packet, Moreover the information related to

the single packet is presented in the Figure below.

Figure 4.11. Full packet capture in wireshark.

38

4.3. Results

After running the virtual environments and executing the attack, we will test our

system. We fire up everything and here is the screenshot for doing anomaly detection.

In the following Figure we are monitoring the packets checking for anomalies. As we

can see there are packets going on and we defined a static value for the threshold. If

the packets reach beyond the static value, it will indicate anomalies and trigger the

SDN controller to take an action to drop the specified machines, causing the denial of

service attack.

Figure 4.12. Anomaly detection in SDN.

Then finally, after lunching the denial of service attack the mitigation script will be

generated to block the attacker from sending any further packets to the victim in the

network. Figure 4.13. shows the dropping down the packets.

Figure 4.13. Mitigation of DoS attack.

In this final chapter, we will present the conclusion and the future work for this study.

Software Defined Networking (SDN) technologies help centralize the control plane

which creates many suitable benefits. Firstly, network configuration and policies can

be specified at a single location, decreasing an otherwise difficult management

overhead. Secondly, the same applies for security concepts and fault detection

facilities, which uses from centralized processing of all network events.

This work shows the Anomaly Detection mechanism in the new era of networking

called Software Defined Networking by leveraging Deep Packet Inspection (DPI), to

test our project, we have used a virtual environment with Mininet, and we have taken

data results graphics with the help of sFlow and the created system.

Using static value for thresholding in anomaly detection can be improved by using

dynamic value instead of static, for this study we present when the packets reach

beyond the baseline it will identify it as anomalies, hence the packet will be dropped

and no longer will be accessible for that device in the network.

Mininet is the emulation platform which helps us to simulate Software defined

networking topology easily, we have used Floodlight SDN controller to help us control

the entire network and command it from one place, sFlow is a monitoring tool which

takes sample for flowing packets and represent it in a graphical user interface.

We have created a graphical user interface which simplifies the overall control of the

network by simply clicking and behind the scenes the required commands will be

generated. DoS attacks is one of the most harmful attacks in the history of computing,

defeating such kind of attack requires a lot of work and study, we presented in this

 CONCLUSION AND FUTURE WORK

40

study a way to stop this attack, with dropping the packets generated from the attacker

if it reaches beyond the threshold value.

We can conclude in this study that SDN helps defeat such an attack by logically

centralizing the whole network in one place, and all necessary commands will be

written in the controller which on the other hand controls and monitors the network,

OpenFlow on the other hand is the suitable protocol which takes the instructions from

the controller and pass them to the physical or virtual forwarding device.

REFERENCES

[1] Kreutz, D., Ramos, F., Esteves, P., Verissimo, C., Uhlig, S., Software-
Defined Networking: A Comprehensive Survey. Proc. IEEE, vol. 103, no.
1, pp. 14–76, 2015.

[2] O.N.F., Software-defined networking: The new norm for networks, ONF
White Pap., vol. 2, pp. 2–6, 2012.

[3] Mckeown, N., Anderson, T., Balakrishnan, H., OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM, vol. 38, no. 2, pp. 69–
74, 2008.

[4] http://www.bigswitch.com, Access Date: 13.08.2017.

[5] http://www.bigswitch.com, Access Date: 13.07.2017.

[6] https://www.opendaylight.org, Access Date: 13.06.2017.

[7] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., Mckeown, N.,
Shenker. S., Nox. ACM SIGCOMM Comput. Commun. Rev., vol. 38, no.
3, p. 105, 2008.

[8] https://openflow.stanford.edu/display/Beacon, Access Date: 13.05.2017.

[9] https://floodlight.atlassian.net/wiki, Access Date: 13.04.2016.

[10] Chandola, V., Banerjee, A., Kumar. V., Anomaly detection: A survey.
ACM Comput. Surv., 15:1–15:58, 2009.

[11] Valenti, S., Rossi, D., Dainotti, A., Pescape, A., Finamore, A., Mellia. M.,
Data Traffic Monitoring and Analysis, volume 7754 of Lecture Notes in
Computer Science, pages 123–147, 2013.

[12] Callegari, C., Coluccia, A., D’alconzo, A., Ellens, W., Giordano, S.,
Mandjes, M., Pagano, M., Pepe, T., Ricciato, F., Zìuraniewski. P., A
methodological overview on anomaly detection., volume 7754 of Lecture
Notes in Computer Science, pages 148–183, 2013.

42

[13] Manning, C., Raghavan, P., SchüTze. H., Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[14] Zhang. Y., An Adaptive Flow Counting Method for Anomaly Detection in
SDN. In Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’13, pages 25–30,
2013.

[15] Moshref, M., Yu, M., Govindan. R., Resource/accuracy tradeoffs in
software-defined measurement. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 73–78, 2013.

[16] Yu, M., Jose, L., Miao. R., Software defined traffic measurement with
opensketch. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 29–42,
2013.

[17] Mehdi, S., Khalid, J., Khayam. S., Revisiting traffic anomaly detection
using software defined networking. In Proceedings of the 14th
International Conference on Recent Advances in Intrusion Detection,
RAID’11, pages 161–180, 2011.

[18] Kumar, S. Sehgal, R., Bhatia, J. S. Hybrid honeypot framework for
malware collection and analysis. In Industrial and Information Systems
(ICIIS), 2012.

[19] http://www.cert.org/tech_tips, Access Date: 02.03.2016

[20] Peng, T., Leckie, C., Ramamohanarao, K., Survey of network-based
defense mechanisms countering the dos and ddos problems. ACM
Computing Surveys (CSUR) 2007.

[21] Huusain, A., Heidamann, J., Papadopoulos, C., A framework for
classifying denail of service attacks. In Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communications, ACM, pp. 99-110, 2003.

[22] Mirkovic, J., Reiher, P., A taxonomy of ddos attack ddos defense
mechanisms. ACM SIGGOMM Computer Communication Review, 39-53
2004.

[23] Specht, S. M., Lee, R. B., Distributed denial of service: Taxonomies of
attacks, tools and countermeasures. In ISCA PDCS, pp. 543-550, 2004.

43

[24] Gupta, B., Joshi, R. C., Misra, M., Defending against distributed denial of
service attacks: issues and challenges. Information Security Journal: A
Global Perspective., 224-247, 2009.

[25] http://www.cert.org/historical/advisories., Access Date: 01.12.2016

[26] Kumarasamy, S., Gowrishankar, A., An active defense mechanism for tcp
syn flooding attacks. 2012.

[27] Bellovin, S. M., Leech, M., Taylor, T., Icmp traceback messages. Internet
Engineering Task Force, Marina del Rey, Calif. 2003.

[28] Srivastava, A., Gupta, B., Tyagi, A., Sharma, A., Mishra, A., A recent
survey on ddos attacks and defense mechanisms. In Advances in Parallel
Distributed Computing. Springer., pp. 570-580, 2011.

[29] Molsa, J., Mitigating denial of service attacks: A tutorial. Journal of
computer security., 807-837, 2005.

[30] Chang, R. K., Defending against flooding-based distributed denial of
service attacks: A tutorial. Communications Magazine, IEEE. 42-51, 2002.

[31] Carl, G., Kesidis, G., Brooks, R. R., Rai, S., Denial of service attack
detection techniques. Internet Computing, IEEE., 82-89, 2006.

[32] Keshariya, A., Foukia, N., DDoS defense mechanisms: a new taxonomy.
In Data Privacy Management and Autonomous Spontaneous Security.
Springer., pp. 222-236, 2010.

[33] Roesch, M., Snort: Lightweight intrusion detection for networks. In LISA.,
vol. 99, pp. 229-238, 1999.

[34] Paxson, V., Bro: a system for detecting network intruders in real-time.
Computer networks., 2435-2463, 1999.

[35] Yau, D. K., Lui, J., Liang, F., Yam, Y., Defending against distributed
denial of service attacks with max-min fair servercentric router throttles.
IEEE/ACM Transactions On Networking (TON)., 29-42, 2005.

[36] Ferguson, P., Network ingress filtering: Defeating denial of service attacks
which employ ip source address spoofing. Amaranth Networks Inc. 2000.

[37] Peng, T., Leckie, C., Ramamohanarao, K., Protection from distributed
denial of service attacks using history-based ip filtering. In
Communications. ICC'03. IEEE, pp. 482-486, 2003.

44

[38] Lantz, B., Heller, B., Mckeown, N., A network in a laptop: rapid
prototyping for software-defined networks., pp. 1–6, 2010.

[39] http://www.sflow.org., Access Date: 08.04.2016.

[40] Siris, V., Papagalou, F., Application of anomaly detection algorithms for
detecting SYN flooding attacks. Comput. Commun., vol. 29, no. 9 SPEC.
ISS., pp. 1433–1442, 2006.

[41] Denning, D., An intrusion-detection model. IEEE Trans. Softw. Eng., 13,
222–232, 1987.

RESUME

Ahmed M. Dirie was born in 16.02.1989 in Yunbu Albahr in Kingdom of Saudi

Arabia. He completed his primary school in Alhuda Primay School in 2004, he studies

his secondary school at Hamdan Secondary School, 2007. In 2012, he received his first

degree in Information and Communication Technology (ICT) from Admas University

College, Somaliland. Ahmed starts his career as Mathematic Teacher in Iftin Schools,

in 2011. In 2012 Ahmed starts his role in Information Technology Administrator at

CAC Financial Service, Hargeysa, Somaliland. Ahmed Holds multiple certification

which improve his hands-on skills from Cisco Company, CCNP Cisco Certified

Networking Professional in 2016. CCNA Security and CCNA Route & Switch in 2015

and 2013 respectively.

