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Two-stage Stochastic Programming Model for the Thermal Optimal Day-Ahead
Bid Problem with Physical Future Contracts

Cristina Corchero and F. Javier Heredia

Abstract:The reorganization of electricity industry in Spain has finished a new step with the
start-up of the Derivatives Market. Nowadays, all electricity transactions in Spain and Portugal
are managed jointly through the MIBEL by the Day-Ahead Market Operator and the Derivatives
Market Operator. This new framework requires important changes in the short-term optimiza-
tion strategies of the Generation Companies. One main characteristic of MIBEL’s Derivatives
Market is the existence of physical futures contracts; they imply the obligation to settle physically
the energy. The market regulation establishes the mechanism for including those physical futures
in the day-ahead bidding of the Generation Companies. Thus, the participation in the derivatives
market changes the incomes function and it could imply changes in the optimal planning, both
in the optimal bidding and in the unit commitment. The goal of this work is the optimization
of the coordination between the physical futures contracts and the Day-Ahead bidding follow-
ing this regulation. We propose a stochastic quadratic mixed-integer programming model which
maximizes the expected profits taking into account futures contracts settlement. The model gives
the simultaneous optimization for the Day-Ahead Market bidding strategy and power planning
production (unit commitment) for the thermal units of a price-taker Generation Company. The
uncertainty of the day-ahead market price is included in the stochastic model through a scenario
set. There has been applied both simulation and reduction techniques for building this scenario
set from a time series ARIMA model. The implementation of the model is done with the model-
ing language AMPL. Implementation details and some first computational experiences for small
real cases are presented.

1 Introduction

In the last years there is an on-going phase of reorganization of electricity industry. The dereg-
ulation of the generation and distribution of electricity carried out in most countries in Europe
and the creation of the Electricity Markets has changed the problems that the companies have
to face.
The most important change that affects the daily operation is the increase of risk factors. In
particular, with the introduction of the Electricity Markets, the electricity price has become
a significant risk factor. One of the techniques for hedge against the market-price risk is the
participation in futures markets [5] and, for this reason, the creation of Derivatives Electricity
Markets has been the next natural step after the deregulation.
In the case of Spain, the Electricity Market was launched in 1998 and it includes a Day-Ahead
Market, a reserve market and a set of balancing and adjustment markets. As the introduction
of competition and the deregulation process did not behave as expected, the Spanish market
has been improved in 2007 with the start-up of the MIBEL1 and some other new regulations.
The MIBEL joins Spanish and Portuguese electricity system and it complements the previous
Spanish Electricity Market with a Derivatives Market.
In this work we focus on a generation company (GenCo) and the new challenges introduced by
the liberalization in its planning. In a deregulated market, the GenCo objective is the maximiza-
tion of profits. This profits are defined as the difference between revenues from the Market and
generation cost. So, in this new framework, the GenCo has to face all the technical problems

1Mercado IBerico de ELectricidad - Iberian Electricity Market
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of generation, such as the coordination of the unit’s commitment and, also, the uncertainty of
electricity prices.
Within the products that the Derivatives Markets offers, this work focus on the futures contracts.
A futures contract is an exchange-traded derivative that represents agreements to buy/sell some
underlying asset in the future for a specified price [9].
The participation in the Spot Market and in the Derivatives Market has traditionally been
studied independently but there are some evidences that indicates it could be interesting a
joint approach. Firstly, most of the Derivatives Markets has some short-term futures contracts,
as week or day futures contracts, that could be included in short-term strategies of a GenCo.
Secondly, futures contracts with physical settlement affect directly GenCo’s unit commitment.
And finally, the participation of the generation company in those markets changes its incomes
function, thus it changes its optimal planning.
This paper is organized as follows. In section 2 we present the concepts needed for understand-
ing the framework of the problem. In sections 3 and 4 we describe the first and second problem
approaches, respectively. In section 5 the results of the study case with real data is presented
and in section 6 we discuss the conclusions of our work.

2 Previous considerations

Following the idea that the participation in the Spot and the Derivatives Markets has to be
studied jointly, the main objective of this work is to build a model which includes the coordina-
tion between physical futures contracts and Day-Ahead Market bidding following the MIBEL
rules. In other words, we want to see how the inclusion of futures contracts in the model affects
the short term strategies of the GenCo in the Day-Ahead Market.
The acronyms used in this work correspond to the MIBEL’s operators and units.

2.1 Futures contracts

The derivative product considered in this work is the futures contract. Nowadays futures con-
tracts are traded at organized Derivatives Markets in most Electricity Markets. The GenCos
and other participants send the offers for the futures contracts to the market operator who does
the clearing process.
The main characteristics of a futures contract are:

- Procurement : futures contracts could have physical or financial settlement. Physical fu-
tures contracts have cash settlement and physical delivery whereas financial ones have cash
settlement only.

- Delivery period : the delivery period defines the duration of the contract. In most common
products the delivery period is a year, a quarter, a month, a week or a day.

- Load : futures contracts could be base or peak load. In base load futures contracts the
quantity to procure is constant for all the delivery period intervals. In peak load futures
contracts there is procurement only in peak intervals (from 8 am to 24 pm, Monday to
Friday).

Suppose the GenCo has a futures contracts portfolio F for day d as a result of the Derivatives
Market clearing process. Those contracts are defined by a pair of price and quantity, (λf

j , Lj), j ∈
F . The futures contracts are settled by differences, i.e., each futures contract has daily cash
settlement of the price differences between the market reference price and the futures settlement
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price. The incomes function of the Derivatives Markets at interval i is:

If
i =

∑

∀j∈F

(λf
j − λd

i )Lj

where λd
i is the clearing Day-Ahead Market price.

The futures contracts included in this study are physical and base load, meaning an agreement to
sell some constant quantity of electricity at some price with physical delivery and cash settlement
along a specific delivery period. Those contracts are available in the MIBEL.

2.2 Day-Ahead Market

Nowadays all GenCos participate in one or more Spot Markets. Typically, Spot Markets are
organized as a set of successive market mechanisms: the Day-Ahead Market, the Automatic
Generation Control, the Adjustment Market and a market for ancillary services. This work
focus on the Day-Ahead Market because it presents large transactions volumes when compared
to the other Spot Market mechanisms and because the coordination with the futures contracts
is done in it.
Usually, the Day-Ahead Market is form by twenty-four hourly auctions. Both offers from selling
agents (i.e. generation companies) and bids from buying agents (i.e. distribution companies)
are submitted to each auction. Each agent can submit several offers but it is unaware of the
offers submitted by the rest of agents [2].
The offer for each interval and unit is defined by a quantity and a price. To derive the aggregate
offer curve, offers are sorted by increasing prices and their quantities are accumulated. The
clearing-price is determined by the intersection of the aggregate supply and demand curve.
The incomes that a GenCo takes in from the Day-Ahead Market depends on the results of the
clearing process. The offers are called matched if their price is lower or equal to the clearing-
price. Only the matched offers produce benefits. The incomes function of the Day-Ahead Market
for interval i is:

Id
i =

∑

∀t∈T

λd
i pit

where T is the set of thermal units, λd
i is the clearing-price and pit is the quantity that has to

be produced by unit t.

2.3 Coordination between Day-Ahead and Derivatives Markets

As stated above, in the MIBEL there are two possible settlements for the futures contracts either
financial or physical. The difference is that the energy Lj of a physical futures contract j must
be allocated through the thermal units of the GenCo. The MIBEL regulation [14] describes
the coordination between this physical futures contracts portfolio and the Day-Ahead bidding
mechanism, which is shown in figure 1 and described below.
Firstly, for every derivatives product the GenCo is interested in, it has to define the Term Con-
tract Units (UCP2) which are the virtual units allowed to offer in the Derivatives Market. Each
UCP is formed by the subset of the physical units of the GenCo which will generate the energy
to cover the corresponding contract. For each product a physical unit can only participate in
one UCP.
Secondly, two days before the delivery date every GenCo receives from the Derivatives Mar-
ket Operator (OMIP3) the quantity of electricity every UCP has to produce for covering the

2Unidad Contratación a Plazo - Term Contract Units
3Operador Mercado Ibérico de Enerǵıa. Polo Portugués - Portuguese Iberian Market Operator
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Figure 2: Optimal Offer Curve

matched futures contracts. This information is also send to the Day-Ahead Market Operator
(OMEL4).
Finally, OMEL demands every GenCo to commit the quantity designed to futures contracts
through the Day-Ahead Market bidding of the physical units that form each UCP. This com-
mitment is done by a instrumental price offer.
An instrumental price offer consists in an offer with price equal to 0e/MWh. Due to the
algorithm the market operator uses to clear the Day-Ahead Market all offers with those charac-
teristics will be matched in the clearing process and remunerated at the spot price λd

i

That regulation implies the GenCo has to determine its unit commitment in order to be able
to cover those obligations and it has to determine its optimal offer taking into account those
instrumental price offers.

2.4 Day-ahead and futures incomes functions

2.4.1 Day-ahead incomes function for a price-taker

This work focus on the thermal units of a price-taker generation company, i.e. a GenCo with no
capability to alter market-clearing prices [3]. Therefore, the framework of this kind of GenCos
could be equated to a market with perfect competition. Perfect competition is defined as a
market structure in which there are large numbers of both buyers and sellers, all of them small,
so that all of them act as price-takers. And it is known that in a perfectly competitive market
a GenCo would maximize his profits by bidding his true marginal cost function [7].
The optimal offer curve for thermal unit t is the offer to the Day-Ahead Market that ensures a
matched generation pd

it with maximal benefit independently of the value of the clearing price λd
i .

As stated above, in the case of a price-taker GenCo, the function that meet this condition is the
marginal cost curve. If the cost function of the thermal unit t is represented by the quadratic
function cb

t + cl
tpit + cq

t (pit)2, then the optimal offer curve for this unit is:

λo
it(p

o
ti) =

{
0 if po

it ≤ P t

2cq
tp

o
it + cl

t if P t < po
it ≤ P t

(1)

Any offer of the GenCo must consist on pairs (po
it, λ

o
it(p

o
it)) belonging to the optimal offer

4Operador Mercado Ibérico de Enerǵıa. Polo Español - Spanish Iberian Market Operator
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curve (Fig. 2). By sending this offer to the Day-Ahead Market, the matched generation pd
it

corresponding to any clearing price λd
i will be:

pd
it(λ

d
i ) =





P t if p∗it(λ
d
i ) ≤ P t

p∗it(λ
d
i ) if P t ≤ p∗it(λ

d
i ) ≤ P t

P t if p∗it(λ
d
i ) ≥ P t

(2)

where
p∗it(λ

d
i ) =

(
λd

i − cl
t

)
/2cq

t . (3)

It is easy to see that, for any clearing price λd
i , expression 2 the value that maximizes the benefit

function:
Bit(pit) = λd

i pit −
(
cb
t + cl

tpit + cq
t (pit)2

)
(4)

taking into account the operational limits of the thermal unit.
The optimal offer curve problem for a price-taker GenCo is reduced to as many independent
stochastic unit commitment problems as thermal units has the utility. If the optimal unit
commitment shows that a given thermal unit must be on at interval i, then (1) represents the
optimal offer curve to be sent to the Day-Ahead Market. The total incomes for all the committed
unit, Toni , will be:

Id
i =

∑

∀t∈Toni

λd
i p

d
it

2.4.2 Day-ahead and futures incomes function for a price-taker

Nowadays, the generation companies participate in all available market mechanisms in order to
maximize their benefits. Suppose a GenCo that trades in both markets, the Derivatives and the
Day-Ahead one and that it has a futures contracts portfolio, F , with constant quantities and
prices, (λf

j , Lj)j ∈ F . All contracts are payed by differences, so the incomes from this portfolio
at interval i will be:

If
i =

∑

j∈F

(
λf

j − λd
i

)
Lj

As the MIBEL’s regulation describes, the energy Lj of the physical futures contract j must
be allocated through the units of the GenCo that participate in this contract, t ∈ Tj , and
delivered to the system through the instrumental price offer of each unit. This situation changes
the structure of the optimal offer curve. Let fitj be the generation of thermal t at interval i
allocated to the futures physical contracts j, that is:

∑

t|t∈Tj∩Toni

fitj = Lj ∀i ∈ I, ∀j ∈ J (5)

And let qit be the instrumental price offer which must not be lesser than the generation of
thermal t at interval i allocated to the set of physical contracts in which it participates, j ∈ Ft:

qit ≥
∑

j∈Ft

fitj (6)

Following the market rules, each generator sends the amount qit to the Day-Ahead Market
through an instrumental price offer. This led to the following redefinition of the optimal offer
curve (1) (Fig. 3):

λo
ti(p

o
it; qit) =

{
0 if po

it ≤ qit

2cq
tp

o
it + cl

t if qit < po
it ≤ P t

(7)
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Figure 3: Optimal Offer Curve with Physical Futures Contracts

The value of the matched energy depends now on the value of the market clearing price with
respect to the threshold price λ̃o

it:
λ̃o

it = 2cq
t qit + cl

t (8)

For any value λd
i ≤ λ̃o

it the matched energy is pdf
it = qit. When λd

i > λ̃o
it the matched energy

coincides with expression (2), that is:

pdf
it =

{
qit if λd

i ≤ λ̃o
it

pd
it if λd

i > λ̃o
it

(9)

Notice that λd
i and qit determines completely the amount of matched energy pdf

it through expres-
sions (8) and (9). Using the definitions of the matched generation (2) and threshold price value
(8), this matched generation with futures can be re-expressed as:

pdf
it =

{
qit if qit ≥ pd

it

pd
it otherwise

(10)

that sets the value of the matched energy as a non-differentiable function of the instrumental
price offer qit which is the real decision variable and it will be part of the decision variables of
the optimization model.
The incomes function for the Day-Ahead Market with futures contracts for all the committed
units at interval i, Idf

i , must take into account both the new expression of the matched energy
(9) and the revenues coming from the futures portfolio:

Idf
i =

∑

∀j∈F

(
λf

j − λd
i

)
Lj +

∑

∀t∈Toni

λd
i p

df
it

2.4.3 Day-ahead and futures benefit function for a price-taker

Let’s consider now that the Day-Ahead Market has been cleared, with a market price λd
i . For all

committed thermal unit t at time interval i (set Toni), the quadratic generation costs associated
with the matched energy (10) is:

Ci =
∑

∀t∈Toni

(
cb
t + cl

tp
df
it + cq

t (p
df
it )2

)
(11)
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and the overall benefit function is:

Bdf =
∑

∀i∈I

(
Idf
i − Ci

)
=

∑

∀i∈I


 ∑

∀j∈F

(
λf

j − λd
i

)
Lj +

∑

∀t∈Toni

λd
i p

df
it −

∑

∀t∈Toni

(
cb
t + cl

tp
df
it + cq

t (p
df
it )2

)

 =

=
∑

∀i∈I


 ∑

∀j∈F

(
λf

j − λd
i

)
Lj −

∑

∀t∈Toni

(
cb
t + (cl

t − λd
i )p

df
it + cq

t (p
df
it )2

)

 (12)

As it has been shown λd
i and qit determine completely the amount of matched energy pdf

it .
Therefore, expression (12) shows the dependency of the benefit function both on the market
clearing price λd

i and the instrumental price offer qit of the committed units. The market price
is a random variable at the moment when the decision process must be undertaken, this fact
will be analyzed in next sections.

2.5 Modeling the optimal bid for a price-taker GenCo

There exist different bidding structures depending on the markets rules. Usually, each unit has
to send an individual bid for each interval. This bid is compounded by a determined number of
blocks, each of them being a pair of (increasing) price and quantity.
As stated above, the main scope of this work is to build the GenCo’s optimal bid following the
MIBEL’s rules and taking into account its futures contracts. At it has been shown, the futures
contracts are included through the instrumental price bid. Thus, for each unit and interval, the
model will provide us the Day-Ahead Market bidding first block.
The bidding strategies we want to obtain are destined to price-taker GenCos. As we have
describe, a price-taker GenCo cannot change the market clearing price through its offers and it
would maximize his profits by bidding its true marginal cost function. In summary, the bidding
strategy we define for each unit and interval is:

i) To build the first bid block with instrumental price and quantity resulting from the opti-
mization problem.

ii) To divide the rest of the unit capacity into the number of intervals the market rules fixes
with price equal to the marginal cost.

2.6 Uncertainties modeling

The optimization model presented in this work is stochastic due to the presence of a random
variable, the Day-Ahead Market price. This random variable has the characteristics of a financial
time series (Fig. 4) and, in order to formulate a stochastic model, it has to be discretized on
a scenario tree. In particular, the optimization model presented in this work is a two-stage
stochastic problem and, for this kind of model, it is sufficient a set of individual scenarios.
This means the scenario tree will be a fan of scenarios λd,s = {λd,s

1 , . . . , λd,s
I } with probabilities

P s = P (λd,s) ∀s ∈ S, where S is the number of scenarios (Fig. 5). In this work, we have follow
the next steps in order to obtain the required scenario set:

i) To fit a time series model for the market-price,

ii) To discretize the random variable by simulating a large number of scenarios,
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iii) To reduce the set of scenarios preserving at maximum the characteristics of the simulated
tree

The details are described in section 5.2.

3 Problem formulation: first approach

In order to achieve the objective of this work, the model has to find the instrumental price bid
quantity for each interval and its economic dispatch. The solution has to maximize the expected
Day-Ahead Market profits taking into account the physical futures contract portfolio.

3.1 Characteristics

Following MIBEL’s rules, if we are optimizing today we focus on tomorrow’s Day-Ahead Mar-
ket because we have to submit tomorrow’s bidding. So, the optimization horizon is 24 hourly
intervals, this set of intervals is denoted as I.
The proposed short-term bidding strategies are addressed to a price-taker GenCo. The genera-
tion units to be considered are the thermal units with participation in the auction process. The
relevant parameters of a thermal unit are:

- quadratic generation costs with linear and quadratic coefficients, cl
t and cq

t respectively,
for the tth unit: production cost in e/MWh

- maximum and minimum power capacity, P t and P t respectively, for the tth unit: maximum
and minimum power output that the unit can generate in MWh
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3.2 Production variables and operational constraints

The discussion in sections 2.4.2 and 2.4.3 established that the offer curve (7) is completely
determined by the amount of energy at instrumental price qit. At the scenario s, with clearing
price λd,s

i , the matched energy is given by expression (10):

pdf,s
it =

{
qit if qit ≥ pd,s

it

pd,s
it if otherwise

(13)

where

pd,s
it =





P t if p∗,s ≤ P t

p∗,sit if P t ≤ p∗,sit ≤ P t

P t if p∗,s ≥ P t

(14)

and p∗,sit =
(
λd,s

i − cl
t

)
/2cq

t , as it is defined in expression (3). Expression (13) sets the value of
the matched energy of thermal t at time interval i under scenario s but it does not have to be
explicitly introduced in the model because, as we will see in section 3.5, the optimal value of the
decision variable ps

it corresponds to pdf,s
it . In our stochastic programming model, this decision

variable will be a second stage one because it depends on the scenario since it is related with
the market clearing price.
Thus, the variable qit is the real decision variable of the model. In the final formulation, it will
be expressed in terms of the allocated energy to each individual physical futures contract, fitj ,
in order to obtain the economic dispatch of each contract:

qit ≥
∑

∀j∈Ft

fitj (15)

were Ft is the subset of contracts in which unit t participates (parameter). In the stochastic
model, those variables fitj are considered first stage variables, as they are needed to configure the
generation offer for tomorrow and they are independent of the market clearing price. Therefore,
the set of variables that models unit’s generation output is:

- fitj : generation of unit t ∈ Toni at interval i ∈ I allocated to the futures contract j ∈ Ft

- qit: instrumental (price acceptant) selling bidding of unit t ∈ Toni at interval i ∈ I.

- ps
it: matched energy of unit t ∈ Toni at interval i ∈ I scenario s ∈ S

Remember that variables ps
it and qit can be expressed in terms of fitj through (13) and (15).

The following four set of constraints are the operational ones. The first two set of constraints
control the production of the unit, i.e., the unit will not produce above or below operational lim-
its. Constraints (18) and (19) concern also to the operational limits and control the relationship
between both set of variables.

ps
it ≥ P t ∀i ∈ I ∀t ∈ Toni ∀s ∈ S (16)

ps
it ≤ P

t ∀i ∈ I ∀t ∈ Toni ∀s ∈ S (17)
qit ≥ P t ∀i ∈ I ∀t ∈ Toni ∀s ∈ S (18)
qit ≤ ps

it ∀i ∈ I ∀t ∈ Toni ∀s ∈ S (19)



Heredia, Corchero - DR 2008/11 - EIO, UPC 11

3.3 Futures contracts production variables and associated constraints

As it has been defined, qit represents the energy of futures contract j ∈ F allocated to unit
t ∈ Toni at interval i ∈ I. The following set of constraints model the futures contract production:

∑

t|t∈Tj∩Toni

fitj = Lj ∀i ∈ I ∀j ∈ F (20)

where Tj is the set of thermal units that participates in contract j and Lj is the quantity that
has to be settled for contract j.

3.4 Objective function

The solution has to maximize the expected Day-Ahead Market profits taking into account futures
contracts and they depend on the market price which is a random variable at the moment when
the decision process must be taken. As has been explained in section 2.6, this random variable is
modeled through a set of scenarios λd,s = {λd,s

1 , . . . , λd,s
I } with probabilities P s = P (λd,s) ∀s ∈ S,

where S is the number of scenarios.
Following section 2.4.3 the expression of the day-ahead and futures benefit function for scenario
s, Bdf,s, is:

Bdf,s =
∑

∀i∈I


 ∑

∀j∈F

(
λf

j − λd,s
i

)
Lj −

∑

∀t∈Toni

(
cb
t + (cl

t − λd,s
i )pdf,s

it + cq
t (p

df,s
it )2

)

 (21)

Taking the expected value along the S scenarios we obtain:

E[Bdf,s] =E


∑

∀i∈I


 ∑

∀j∈F

(
λf

j − λd,s
i

)
Lj −

∑

∀t∈Toni

(
cb
t + (cl

t − λd,s
i )pdf,s

it + cq
t (p

df,s
it )2

)




 =

= |I|
∑

∀j∈F

(
λf

j − E[λd,s
i ]

)
Lj −

∑

∀i∈I

∑

∀t∈Toni

ct
b (22)

−
∑

∀i∈I

∑

∀s∈S

P s


 ∑

∀t∈Toni

(cl
t − λd,s

i )pdf,s
it + cq

t (p
df,s
it )2




(23)

Terms in (22) are constants with respect to the decision variables and then, the objective function
f(x) reduces to the last terms of E[Bdf,s]:

f(p, q, g) =
∑

∀i∈I


 ∑

∀s∈S

P s


 ∑

∀t∈Toni

(cl
t − λd,s

i )pdf,s
it + cq

t (p
df,s
it )2





 (24)

This is the objective function to be minimized in our model.
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3.5 Complete formulation

The complete formulation can be recast as:

minimize
p,q,g

∑

∀i∈I

∑

∀t∈Toni

∑

s∈S

P s
[
(cl

t − λd,s
i )ps

it + cq
t (p

s
ti)

2
]

(25)

s.t. ∑

t|t∈Tj∩Toni

fitj = Lj ∀i ∈ I, ∀j ∈ J (26)

qit ≥
∑

j∈Ft

fitj ∀i ∈ I, ∀t ∈ Toni (27)

ps
it ∈ [P t, P t] ∀i ∈ I, ∀t ∈ Toni , ∀s ∈ S (28)

qit ∈ [P t, p
s
it] ∀i ∈ I, ∀t ∈ Toni , ∀s ∈ S (29)

fitj ≥ 0 ∀i ∈ I, ∀t ∈ Toni , ∀j ∈ J (30)

In order to show that problem (25-30) is coherent with the optimal offer curve model developed
in the previous sections, it is necessary to demonstrate that the optimal value of ps

it coincides
with the expression (13) of the matched energy at each scenario s. To see this equivalence,
the Karush-Kuhn-Tucker optimality conditions of problem (25-30) will be used. This problem
is separable by intervals. [11] We express the problem associated with the ith time interval in
standard form, together with the Lagrange multipliers λi and µi of each constraint:

minimize
pi,qi,fi

∑

∀t∈Toni

∑

s∈S

P s
[
(cl

t − λd,s
i )ps

it + cq
t (p

s
it)

2
]

(31)

s.t. ∑

t|t∈Tj∩Toni

fitj − Lj = 0 ∀j ∈ J (λij) (32)

∑

j∈Ft

fitj − qit ≤ 0 ∀t ∈ Toni (µfq
it ) (33)

ps
it − P t ≤ 0 ∀t ∈ Toni , ∀s ∈ S (µs

it) (34)
P t − qit ≤ 0 ∀t ∈ Toni (µ

it
) (35)

qit − ps
it ≤ 0 ∀t ∈ Toni , ∀s ∈ S (µpq,s

it ) (36)

− fitj ≤ 0 ∀t ∈ Toni , ∀j ∈ J (µf
itj) (37)

The Karush-Kuhn-Tucker first order optimality conditions of problem (31-37) are:
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P s
[(

ct
l − λd,s

i

)
+ 2ct

qp
s
it

]
+ µs

it − µpq,s
it = 0 ∀t ∈ Toni , ∀s ∈ S (38)

−µfq
it − µ

it
+

∑

∀s∈S

µpq,s
it = 0 ∀t ∈ Toni (39)

µfq
it + λit − µf

itj = 0 ∀t ∈ Toni , ∀j ∈ Ft (40)

µfq
it


∑

j∈Ft

fitj − qit


 = 0 ∀t ∈ Toni (41)

µs
it

(
ps

it − P t

)
= 0 ∀t ∈ Toni , ∀s ∈ S (42)

µ
it

(P t − qit) = 0 ∀t ∈ Toni (43)

µpq,s
it (qit − ps

it) = 0 ∀t ∈ Toni , ∀s ∈ S (44)

µf
itjfitj = 0 ∀t ∈ Toni , ∀j ∈ J (45)

µfq
it , µs

it, µ
it
, µpq,s

it , µf
itj ≥ 0 ∀t ∈ Toni , ∀j ∈ J, ∀s ∈ S (46)

It will be proved that at every solution of the above KKT system (38-46) the value of the primal
variables ps

it and qit satisfies the same relation as the matched energy (13):

ps
it ≡ pdf,s

it =

{
qit if qit ≥ pd,s

it

pd,s
it if otherwise

(47)

where pd,s
it given by expression (14).

The following expression of ps
it can be obtained from equation (38):

ps
it =

λd,s
i − ct

l

2ct
q

+
µpq,s

it − µs
it

2ct
qP

s
= p∗,sit +

µpq,s
it − µs

it

2ct
qP

s
(48)

To derive the relation (47), the solution of the KKT system will be studied in the following five
cases, among which any optimal solution must fall:

Case A , P t < qit = ps
it = P

t : When qit = P
t it is easy to see from expressions (13) and

(14) that pdf,s
it = qit, been then ps

it = pdf,s
it

Case B , P t ≤ qit < ps
it = P

t : Condition (44) gives µpq,s
it = 0 that, together with the non-

negativity of the lagrange multipliers µs
it and equation (48) gives P

t ≤ p∗,sit , been then
pd,s

it = P
t. As qit < pd,s

it = P
t then, equation (13) provides pdf,s

it = pd,s
it = P

t = ps
it

Case C , P t < qit = ps
it < P

t : In this case, condition (42) forces µs
it = 0 which, in combina-

tion with equation (48) and condition µpq,s
it ≥ 0 gives ps

it = qit ≥ p∗,sit . Then, it is clear
from (13) and (14) that qit ≥ pd,s

it and pdf,s
it = qit = ps

it

Case D , P t ≤ qit < ps
it < P

t : In this case, conditions (42) and (44) gives µs
it = µpq,s

it = 0
that, together with equation (48) gives ps

it = p∗,sit . Then, again from (13-14), pd,s
it = p∗,sit ,

qit < pd,s
it and pdf,s

it = pd,s
it = ps

it.

Case F , P t = qit = ps
it < P

t : Here we have µs
it = o (condition (42)) and then ps

it = P t ≥
p∗,sit . Then equations (13-14) sets pd,s

it = P t and pdf,s
it = qit = ps

it.
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Problem (25-30) is convex (cq
t ≥ 0) and then, any solution of the KKT system (38-46) is

a global minimum. Thus, the previous development shows that over any optimal solution of
problem (25-30) the value of the variable ps

it corresponds to the value of the matched energy,
pdf,s

it , at the i-th Day-Ahead Market, conditioned to scenario s.

4 Problem formulation: second approach

Once we have built and solved the model that maximize the expected Day-Ahead Market profits
taking into account the physical futures contracts portfolio, we can generalize it to the case in
which the unit commitment has to be also optimized.
This new approach is useful for many real situations, for example:

- if the unit commitment is fixed but it needs to be adjusted with most recent information
about the market

- to fix the unit commitment in a medium term approach taking into account the available
information of the market

- to do a medium term foresight of the unit commitment and the bidding strategies

In this work we will focus on the first case but it can be extended to the others with the
convenient changes in the number of intervals and the uncertainty information.

4.1 Characteristics

This second approach preserves all the characteristics of the first one (section 3.1). It is addressed
to a price-maker GenCo that participates in the MIBEL. The model is formulated for the thermal
units and the optimization horizon is 24 hourly intervals.
To the relevant parameters of the first model we incorporate the next ones:

- start-up, con
t , and shut-down, coff

t , costs for the tth unit: costs for the start-up and shut-
down process in e

- minimum operation and minimum idle time, minon
t and minoff

t respectively, for the tth

unit: minimum number of hours that the unit must remain in operation once it is started
up and minimum number of hours that the unit must remain idle once it has been shut
down before started up again, respectively.

4.2 Unit commitment variables and associated constraints

The formulation of the start-up and shut-down process follows [12]. Let uit ∈ {0, 1} be a binary
variable expressing the off-on operating status of the tth unit over the ith interval.
Values of uit and u(i+1)t must obey certain operating rules to take into account the constraints
of the minimum in service and idle time. It is necessary to introduce two extra binary variables
eit and ait for each uit.
Let eit ∈ 0, 1 be a start-up indicator for the tth unit. It is zero in all intervals where the tth unit
has not changed from u(i−1)t = 0 to uit = 1. Similarly, ait ∈ 0, 1 is a shut-down indicator for the
tth unit. It is zero in all intervals where the tth unit has not changed from u(i−1)t = 1 to uit = 0.
The following three set of constraints model uniquely the binary variables and the star-up and
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shut-down process:

uit + u(i−1)t − eit + ait = 0 ∀i ∈ I ∀t ∈ T (49)

eit +
min{i+ton

t ,|I|}∑

k=i

akt ≤ 1 ∀i ∈ I ∀t ∈ T (50)

ait +
min{i+toff

t ,|I|}∑

k=i+1

ekt ≤ 1 ∀i ∈ I ∀t ∈ T (51)

4.3 Production variables and operational constraints

The production variables (section 3.2) are identical in the first and in the second formulation
of the model. The operational constraints change slightly. The set of constraints (16-18) are
reformulated as below:

ps
it ≥ P tuit ∀i ∈ I ∀t ∈ T ∀s ∈ S (52)

ps
it ≤ P

t
uit ∀i ∈ I ∀t ∈ T ∀s ∈ S (53)

qit ≥ P tuit ∀i ∈ I ∀t ∈ T (54)

The futures contracts production variables and its associated constraints (section 3.3) are also
identical in both formulations of the model.

4.4 Objective function

The objective function of the second formulation is analogous to the one developed in section
3.4. The differences are that, first, if the thermal unit t is starting-up (eit = 1) or shutting-
down (ait = 1), then the fixed costs ct

on and ct
off must be included respectively, and, second,

the constant generation cost cb
t must be considered. The objective function f(x) for the second

formulation is:

f(p, q, g, u, a, e) =
∑

∀i∈I

∑

∀t∈T

(
con
t eit + coff

t ait + cb
tuit +

∑

s∈S

P s
[
(cl

t − λd,s
i )ps

it + cq
t (p

s
ti)

2
])

(55)

4.5 Complete formulation

The complete problem can be recast as:
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minimize
p,q,g,a,e,u

∑

∀i∈I

∑

∀t∈T

(
con
t eit + coff

t ait + cb
tuit +

∑

s∈S

P s
[
(cl

t − λd,s
i )ps

it + cq
t (p

s
ti)

2
])

(56)

s.t.

qit ≥
∑

j∈Ft

fitj ∀i ∈ I, ∀t ∈ T (57)

∑

t∈Uj

fitj = Lj ∀i ∈ I, ∀j ∈ J (58)

uit + u(i−1)t − eit + ait = 0 ∀i ∈ I, ∀t ∈ T (59)

eit +
min{i+ton

t ,|I|}∑

k=i

akt ≤ 1 ∀i ∈ I, ∀t ∈ T (60)

ait +
min{i+toff

t ,|I|}∑

k=i+1

ekt ≤ 1 ∀i ∈ I, ∀t ∈ T (61)

ps
it ≥ P tuit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (62)

ps
it ≤ P

t
uit ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (63)

qit ≥ P tuit ∀i ∈ I, ∀t ∈ T (64)
qit ≤ ps

it ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (65)
fitj ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀j ∈ J (66)
uit, ait, eit ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (67)

It is easy to see that any solution of problem (56-66) satisfies the optimal bidding definition (13).
First, note that for any given value of the binary variables ũ, ã and ẽ, problem (56-66) reduces to
(25-30), with Toni := {t|ũit = 1}. Now consider the optimal solution x∗ = [p∗, q∗, f∗; a∗, e∗, u∗]
to problem (56-66). Then, as the optimal values [p∗, q∗, f∗] corresponds to the solution of the
equivalent problem (25-30) associated to [a∗, e∗, u∗], then p∗ and q∗ should satisfy the optimal
bidding definition(13).

5 Case study

In this section is presented first the data sources and the scenario tree construction needed
to solve the problem. Then, the computational tests carried out with this data and tree are
described.
The model has been implemented in AMPL [6] and solved with CPLEX [4] (with default options)
using a SunFire X2200 with two processors dual core AMD Opteron 2222 at 3 GHz and 32 Gb
of RAM memory.

5.1 Data sources

The sources for all data used in the case studies are described below. All the data of this work
is public and it is either directly available in the web pages indicated or it has been calculated
using some other public data.

- Market data:
The main important market data needed for this work is the Day-Ahead Market price, it
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t cb
t cl

t cq
t p

t
pt st0t con

t coff
t ton

t toff
t

e e/MWh e/MWh2 MW MW hr e e h h
1 151.08 40.37 0.015 160.0 350.0 +3 412.80 412.80 3 3
2 554.21 36.50 0.023 250.0 563.2 +3 803.75 803.75 3 3
3 97.56 43.88 0.000 80.0 284.2 –3 244.80 244.80 3 3
4 327.02 28.85 0.036 160.0 370.7 +3 438.40 438.40 3 3
5 64.97 45.80 0.000 30.0 65.0 +3 100.20 100.20 3 3
6 366.08 -13.72 0.274 60.0 166.4 +3 188.40 188.40 3 3
7 197.93 36.91 0.020 160.0 364.1 +3 419.20 419.20 3 3
8 66.46 55.74 0.000 110.0 313.6 –3 1298.88 1298.88 3 3
9 66.46 55.74 0.000 110.0 313.6 –3 1298.88 1298.88 3 3
10 372.14 105.08 0.000 90.0 350.0 –3 1315.44 1315.44 3 3

Table 1: Operational characteristics of the thermal Units

is available at OMEL’s site (www.omel.es) since January 1998 until today. In this work
we use the data from January 1st, 2004 to October 23th, 2006.
Since information about specific futures contracts between companies is confidential, it
is useful to know the quantities and clearing price of the products with the day of study
within its delivery period. This data is available at OMIP’s site (www.omip.pt) and it is
used to define some examples of futures contracts.

- Generation Company data:
The information about the units in study belongs to a Generation Company that bids
daily in the Day-Ahead Market and also participates in the Derivatives Market. Most of
the information about the generation units is available at the CNE’s site (www.cne.es)5.
We have included ten thermal units of this GenCo, two of them are fuel-gas units, one is
a fuel-oil unit and the other seven are coal units.

5.2 Scenario set construction

The detail of the steps described in section 2.6 used to build the scenario set are described
bellow.

i) Time series model:
The first step is fit the model that best describes the random variable. As most competi-
tive electricity market prices, the Spanish Day-Ahead Market price presents the following
characteristics: high frequency, nonconstant mean and variance, multiple seasonality, cal-
endar effect, high volatility and high presence of picks [13].
Following previous works [1], the market price has been characterized by an auto-regressive
integrated moving average model. We work with the log scale of the price in order to avoid
the nonconstant variance, specifically:

ln(λd) ∼ ARIMA(5, 0, 2)(8, 0, 1)24(3, 0, 3)168

The model is fitted based on the data from 2004 until the day before the day in study.
The coefficients are estimated by maximum likelihood estimation.

5Comisión Nacional de Enerǵıa - Spanish Energy Systems Regulator
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Figure 6: Simulations

ii) Scenario generation:
The next step in the scenario set construction is the discretization of the random variable
in order to introduce it in the optimization problem. One of the most usual mechanism for
this discretization is the simulation of prices scenarios for the day in study [10]. Following
this, once the model has been fitted we have generated 300 simulated scenarios for the 24
hours of the day in study (Fig. 6).

iii) Scenario reduction:
The last step of this process is to reduce the dimensionality of the optimization problem.
A set of decision variables is required for each scenario, so the reduction of the number
of scenarios will ease the computational resolution. Following the algorithm described in
[8], the set of scenarios has been reduced preserving at maximum the characteristics of the
simulated set.

5.3 Computational results

A set of computational tests has been performed in order to validate the described models and
its results are presented below. The results reported correspond to the second formulation as it
is a generalization of the first one. We obtain identical results for the first formulation if we fix
the unit commitment to its second formulation’s optimal value.
All available real data is used. The computational tests have been done changing the quantity
of energy allocated to physical futures contracts and the status of the units at first interval in
order to study their influence in the results. As expected, the status of the units at first interval
only affects the unit commitment. After testing some of them, the starting status of the units
is fixed as all open and allowing them to be closed at the first interval in order to give more
freedom to the unit commitment.
In stochastic programming models, the number of scenarios is a critical decision. We deal with
this problem increasing the number of scenarios until the stabilization of the objective function
optimal value. The original tree has 300 scenarios that have been reduced to sets of 150, 100,
75, 50, 40, 30, 20 and 10 scenarios following the steps described in 5.2. In table 2 the main
parameters of each test are summarized: percentage of the total available energy allocated in
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Figure 7: Expected benefits for each reduced set of scenarios

futures contracts (%P ), number of scenarios (S), number of binary variables (b.v.), number
of continuous variables (c.v.), CPU time in seconds (CPU(s)) and the value of the expected
benefits (minus the objective function). It is shown the increasing CPU time according to
the increase of the number of scenarios because of the proportional relationship between them
and the number of continuous variables (the number of binary variables is independent of the
number of scenarios). It can be seen also the convergence of the value of the objective function
when the number of scenarios grows (Fig. 7) and the convergence of the optimal value of the
decision variables (Fig. 8). Approximately, from 75 scenarios both values converge and the
computational time is acceptable, therefore this will be the number of scenarios for the next
tests.

|S| c.v. CPU(s) E(benefits)(e) ||∆(e)/∆(s)||
10 3.360 13 1.350.830
20 5.760 55 1.085.240 6.323,57
30 8.160 112 1.093.900 151,93
40 10.560 216 1.081.010 123,94
50 12.960 444 1.107.110 114,47
75 18.960 2.100 1.087.860 11,62
100 24.960 3.319 1.089.280 1,16
150 36.960 4.244 1.084.880 4,76

|I| = 24; |T | = 10; %P = 40; b.v.= 720

Table 2: Results for different number of scenarios

The quantity allocated to futures contracts is confidential and we have no real data for the
units in study. The set of computational tests presented is based on the percentage of the total
available energy that the GENCO has allocated in futures contracts. For this case study, we
include the 10 available units in one or more of the 3 UCPs created, each of them corresponding
to one futures contract. In table 3 are summarized the main parameters of the computational
test for each percentage of the available energy studied: 5%, 40% and 75%. Computational time
has no relation with the quantity allocated since it does not change the number of variables. The
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Figure 8: Difference between the value of the first stage variables for the complete set of scenarios
and each reduced one

value of the expected benefits is different for each case, notice that when we force to produce
the 75% of the available energy for the settlement of the physical futures contracts the GENCO
makes a loss.

%P E(benefits)
5 1.823.170
40 1.107.110
75 -2.800.460

|I| = 24; |T | = 10; |S| = 75;
c.v. = 720; b.v. = 12960

Table 3: Results for different quantity allocated to futures contracts

Figure 9 shows the optimal offer of one of the units in study for each percentage of energy
allocated to the futures contracts. The plot represents the offer function that the GENCO has
to submit to the MIBEL operator: step-wise curve with ten steps, each of them corresponding
to a pair (energy, price) always with increasing prices. The first step corresponds to the offer at
instrumental price (0e) and the following steps follow the marginal curve. Notice that for the
first case (blue line) the unit has no energy allocated to futures contracts so the instrumental
offer’s quantity is the minimum operational limit (160MW) because, as the unit is committed,
the matched energy has to be at minimum this quantity. For the other two cases the energy
allocated to futures contracts is 186MW (green line) and 256MW (red line). From now on results
the percentage of available energy used for physical futures contracts will be fix at 40%.
Next we present the main results of the model: the economic dispatch of the futures contracts,
the unit commitment of the units and the bidding curve for each unit. Figure 10 shows the
instrumental price bid for each unit and interval, this bid is either the quantity allocated to
futures contracts or the minimum operational limit of the unit. It is also represented the unit
commitment since if the unit is not producing the minimum operational limit it means the unit
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Figure 9: Optimal offer for unit 1 at interval 12

is off.In figure 11 it is represented the economic dispatch of each futures contract, that means,
how the contract is settled among the different units of each UCP. Three kind of physical futures
contracts have been considered, 200MWh in weekly contracts, 500MWh in monthly contracts
and 500MWh in yearly contracts. Finally, the main objective of the study, to obtain the optimal
bid curves for all the units of the producer. Figure 12 shows the optimal bid curves for each
committed thermal unit at hour 12. The first interval is always the 0 price bid and the next
ones correspond to the marginal cost curve. The thermal units 3, 5 and 9 have a straight line
as offer curve because they have linear production cost function instead of a quadratic one.

6 Conclusions

We have developed a mixed-integer stochastic programming model for the short-term thermal
optimal bidding problem in the Day-Ahead Market of a price-taker Generation Company oper-
ating also in the Derivatives Physical Electricity Markets. The optimal solution of our model
determines the unit commitment of the thermal units, the optimal instrumental price bidding
strategy for the generation company and the economic dispatch of the committed futures con-
tracts for each hour so as to maximize the benefits arising from the Day-Ahead Market while
satisfying thermal operational constraints. The model meets the new regulation of the MIBEL.
There has been presented two approaches of the optimal bidding problem, in the first one the
unit commitment is took as input data and only the optimal bid and the economic dispatch of
the futures contracts is decided meanwhile in the second approach also the unit commitment is
a decision to optimize. For both models, there has been shown through Karush-Kuhn-Tucker
conditions that the optimal value of the decision variables corresponds to the theoretical optimal
bidding curve for a price-taker producer.
The computational tests done with real data of the thermal units of a price-taker producer
operating in the MIBEL have validated the model and they provide suitable results.
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Figure 12: Bidding curve for hour 12

7 Glossary of symbols

ait binary variable, fix the state of unit t during interval i

Bdf Day-Ahead and Futures Market benefit function

Bit(pit) Day-Ahead Market benefit function of unit t at interval i

Ci generation costs at interval i

cb
t cost function intercept of unit t

cl
t cost function lineal coefficient of unit t

coff
t shut-down cost of unit t

con
t start-up cost of unit t

cq
t cost function quadratic coefficient of unit t

eit binary variables, fix the state of the unit t during interval i

F set of futures contracts

Ft set of futures contracts in which unit t participates

gitj energy of contract j allocated to unit t at interval i

I set of intervals
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i (subindex) indication of ith interval

Id
i Day-Ahead Market incomes

Idf
i Day-Ahead and Futures Market incomes

If
i Futures Market incomes

j (subindex) indication of jth contract

Lj amount of energy of contract j

λij Lagrangian multipliers of the set of constraints (32)

λd
i Day-Ahead Market price at interval i

λd,s = {λds
1 , . . . , λds

I } Day-Ahead Market price scenario s

λf
j price of futures contract j

λo
ti(p

o
ti) optimal offer curve

λo
ti(p

o
ti; qit) optimal offer curve with physical futures contracts

λ̃o
ti threshold price

minoff
t operational minimum shut-down time of unit t

minon
t operational minimum start-up time of unit t

µ
it

Lagrangian multipliers of the set of constraints (35)

µf
itj Lagrangian multipliers of the set of constraints (37)

µfq
it Lagrangian multipliers of the set of constraints (33)

µpq,s
it Lagrangian multipliers of the set of constraints (36)

µs
it Lagrangian multipliers of the set of constraints (34)

P s = P (λds) probability of scenario s

P t operational minimum limit of unit t

P t operational maximum limit of unit t

pit energy for free-bidding in the Day-Ahead Market for unit t at interval i

pd
it matched energy at Day-Ahead Market of unit t at interval i

pd,s
it matched energy at Day-Ahead Market of unit t at interval i scenario s

pdf
it matched energy at Day-Ahead Market including futures contracts of unit t at interval i

pdf,s
it matched energy at Day-Ahead Market including futures contracts of unit t at interval i

scenario s

ps
it energy for free-bidding in the Day-Ahead Market for unit t at interval i scenario s
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po
it energy bided to the Day-Ahead Market for unit t at interval i

p∗it(λ
d
i ) marginal offer curve for unit t at interval i

qit energy of futures contracts allocated to unit t at interval i

S set of Day-Ahead Market price scenarios

s (subindex) indication of sth price scenario

T set of thermal units

t (subindex) indication of tth unit

Tj set of thermal units that participates in contract j

Toni set of committed units at interval i

ut
i binary variables, fix the state of the unit t, ∀i ∈ I2,∀t ∈ T

Units: costs and prices are in e/MWh and energy terms in MW.
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