
SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

REAL TIME STREAM PROCESSING FOR
INTERNET OF THINGS

M.Sc. THESIS

 Hina JAMIL

Department :

COMPUTER AND INFORMATION

ENGINEERING

Supervisor : Prof. Dr. Celal ÇEKEN

June 2018

DECLARATION

I, hereby declare that this project neither as a whole nor as a part there of has been

copied out from any source. It is further declared that I have developed this project

and the accompanied report entirely on the basis of my personal efforts made under

the sincere guidance of my supervisor. No portion of the work presented in this

report has been submitted in the support of any other University or Institute of

learning, if found we shall stand responsible.

Hina Jamil

 29.05.2018

i

ACKNOWLEDGEMENT

First of all, I want to thank YTB for giving me scholarship to study in Turkey.

Through this scholarship, I pursue my Master’s Degree at Sakarya University.

Additionally, I want to thank all the teachers at the department of Computer and

Information Technology, as well as the administrative staff for their support

throughout the Masters degree.

I would like to thank Dr Celal Çeken for supervising me during this thesis. Through

his guidance, I was able to complete my thesis. Thanks a lot.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT...i

TABLE OF CONTENT..ii

LIST OF FIGURES.. iv

LIST OF TABLES.. v

LIST OF SYMBOLS AND ABBREVIATIONS...vi

SUMMARY... vii

ÖZET...viii

CHAPTER 1.

INTRODUCTION... 1

CHAPTER 2.

LITERATURE REVIEW.. 3

CHAPTER 3.

TECHNOLOGIES USED... 6

 3.1. Apache Kafka.. 6

 3.1.1. Kafka core APIs... 6

 3.1.2. Kafka architecture..7

3.2. Apache Spark.. 8

 3.2.1. Spark architecture... 8

3.3. Apache Cassandra... 9

3.4. Apache Zeppelin... 9

iii

CHAPTER 4.

PROPOSED MODEL...11

 4.1. Use case...12

 4.2. Weather monitoring application... 13

 4.2.1. IoT data producer.. 13

 4.2.1.1 Maven dependencies.. 13

 4.2.1.2. Configurations of Kafka...14

 4.2.1.3. Generating and sending IoT data.................................... 14

 4.2.2. Data processor... 15

 4.2.2.1. Configuration and RDD creation................................... 15

 4.2.2.2. Data frames.. 16

 4.2.2.3. Saving to Cassandra... 17

 4.2.2.4. Machine learning algorithm..17

 4.2.2.4.1. Logistic regression.. 18

 4.2.2.4.2. Logistic regression on data frames................19

CHAPTER 5.

 RESULTS AND COMPARISON.. 20

 5.1. Machine learning algorithm results and comparison...............................21

 5.2. Delay comparison..22

CHAPTER 6.

CONCLUSION AND FUTURE WORK...24

REFERENCES...25

RESUME..27

iv

LIST OF FIGURES

Figure 3.1. Kafka APIs.. 6

Figure 3.2. Kafka architecture... 7

Figure 3.3. Spark architecture.. 8

Figure 4.1. Proposed model..11

Figure 4.2. Sequence diagram...12

Figure 4.3. Topic creation...13

Figure 4.4. Maven dependencies..13

Figure 4.5. Kafka configuration code...14

Figure 4.6. IoT data in Json format.. 15

Figure 4.7. Configuration of Spark...15

Figure 4.8. Data frame code..16

Figure 4.9. Logistic regression code...19

Figure 4.10. Logistic regression model..19

Figure 5.1. Graph of IoT data...20

Figure 5.2. Decisions made for stations..21

Figure 5.3. Predictions made for stations..21

Figure 5.4. Delay with 2 Spark threads...23

Figure 5.5. Delay with 3 Spark threads...23

v

LIST OF TABLES

Table 4.1. Data frames of IoT data...16

Table 5.1. Spark SQL query...20

Table 5.2. Accuracy of algorithm...22

vi

LIST OF SYMBOLS AND ABBREVIATIONS

IoT : Internet of Things

RFID : Radio-Frequency Identification

BLE : Bluetooth low energy

M2M : Machine to Machine

AC : Air Conditioner

AMPQ : Advanced Message Queuing Protocol

DBMS : Database Management System

DSMS : Data Stream Management System

FIFO : First In First Out

CEP : Complex Event Processing

SQL : Structured Query Language

API : Application Programming Interface

RDD : Resilient Distributed Dataset

CQL : Cassandra Query Language

vii

SUMMARY

Keywords: Iot, Big data, Real time stream processing, Apache Spark

With the increase in popularity of IoT among enterprises, the research and

development in the field of monitoring and analysing IoT data has been increased.

Iot, being one of the major sources of big data is getting attention from data

engineers. The main challenge is real time stream processing of large amount of IoT

events. It includes data transfer, storing, processing and analyzing large scale of data

in real time. Billions of IoT devices generate huge amount of data that should be

analyzed for deriving intelligence in real time.

In this thesis, a unified solution for real time stream processing for IoT is proposed.

In the proposed method, sample IoT events of weather station data are generated

using Apache Kafka and published to a topic. This data is consumed by Apache

Spark consumer which converted it into RDDs. Using Spark SQL, data frames are

generated, on which different queries are applied to analyse the data. Data is saved to

Cassandra and Zeppelin notebook is used to visualize the data. Logistic Regression

algorithm is applied on a data set to make predictions in real time using machine

learning library in Spark. In the end, the whole method is speed up by altering

different metrics and reducing delay. Results show that this method provides a

complete solution to process large IoT data sets in real time.

viii

NESNELERİN İNTERNETİ İÇİN GERÇEK ZAMANLI AKIŞ

İŞLEME

ÖZET

Anahtar kelimeler: Nesnelerin İnterneti, Gerçek Zamanlı Akış İşleme, Apache Spark

Nesnelerin İnterneti 'nin işletmeler arasında popülerliğinin artmasıyla, izleme ve

analiz IoT verilerinin araştırılması ve geliştirilmesi artmıştır. Büyük veri

kaynaklarından biri olan Nesnelerin interneti, veri mühendislerinden dikkat çekiyor.

Asıl zorluk, büyük miktarda IoT olayının gerçek zamanlı akış işlemesidir. Veri

transferini, büyük ölçekli verileri gerçek zamanlı olarak depolamayı, işlemeyi ve

analiz etmeyi içerir. Milyarlarca IoT cihazı, istihbaratı gerçek zamanda elde etmek

için analiz edilmesi gereken çok miktarda veri üretir.

Bu tezde, IoT için gerçek zamanlı akış işlemek için birleştirilmiş bir çözüm

önerilmiştir. Önerilen yöntemde, hava istasyonu verilerinin IoT olayları Apache

Kafka kullanılarak üretilir ve bir konuya yayınlanır. Bu veriler Apache Spark

tüketicisi tarafından tüketilmekte ve RDD'ye dönüştürülmektedir. Spark SQL'i

kullanarak, verileri analiz etmek için farklı sorguların uygulandığı veri çerçeveleri

oluşturulur. Veriler Cassandra'ya kaydedilir ve Zeppelin notebook verileri

görselleştirmek için kullanılır. Spark'deki makine öğrenme kütüphanesini kullanarak

gerçek zamanlı tahminler yapmak için bir veri kümesine Lojistik Regresyon

algoritması uygulanır. Sonunda, tüm ölçüm farklı metrikleri değiştirerek ve

gecikmeyi azaltarak hızlanır. Sonuçlar, bu yöntemin gerçek zamanlı olarak büyük

IoT veri kümelerini işlemek için eksiksiz bir çözüm sunduğunu göstermektedir.

CHAPTER 1. INTRODUCTION

Today, different platforms are generating huge amount of data per milliseconds

which leads to a separate term referred as big data. Organizations are using big data

in decision making by analyzing and storing this massive amount of data. Normally,

big data is referred as 3V which means the data that is huge in volume generating

with high velocity and has varieties like text, image, video etc [1]. Entrepreneurs and

businesses have realized the importance of big data and are using the human

resources and technologies to get benefits from it. The main key to derive value from

big data is to analyze it. Analysis can be done on historical data known as batch

processing or real data know as real time processing. Social media platforms such as

Twitter and Facebook, online shopping sites like ebay, cloud platforms, and banking

sectors etc are the sources of big data. Along with them IoT (Internet of Things) is

one of the major sources of big data.

IoT is an emerging field in the recent years. It is a platform that has potential to turn

the world into a smart world. IoT is an ecosystem that includes physical devices such

as sensors connected to internet. It allows the monitoring of physical devices over

internet. It is a collection of objects or sensors that can sense the surroundings,

communicate with other devices using RFID, BLE or Z-wave etc and give response

to situations without human intervention. These objects can be located and controlled

from anywhere anytime. Apparently M2M technology will reach exponentially to 3.3

billion by 2021 [2]. IoT is playing major role in medical field, security, energy

efficiency, military and agriculture applications etc. Some of the major applications

of IoT are health monitoring, smart cities, traffic monitoring, wearable devices,

weather monitoring, and a lot more. AC of the room can be turned on for cooling

before entering the home. Mobile phones can trigger a signal if someone enters the

home while you are outside. Users can find available parking on their mobiles, using

2

traffic sensors. A child at school can be monitored using wearable devices

Along with great benefits it offers, there are numbers of challenges in the field of

IoT. One of them is real time stream processing of large amount of IoT events. In my

thesis, I have provided a method for real time stream processing of IoT. It will create

direct streams of IoT events and then process it in real time. Sample weather station

data is ued as a use case. Logistic Regression machine learning algorithm has been

applied on a data set to make decisions in real time. I have used Apache Kafka,

Apache Spark, Cassandra and zeppelin frameworks. Results show that this model

provides the complete solution to IoT data processing in real time with large amount

of data.

Contribution of this study can be summarized as follows.

- Billions of IoT devices generate huge amount of data that should be analyzed

for deriving intelligence in real time.

- Processing of all large amounts of IoT data in real time is a big challenge.

- A unified solution for processing streams of IoT data in real time is proposed.

- It includes data transfer, storing, processing and analyzing data.

- Logistic Regression algorithm is applied in real time to make predictions.

- The results show that the proposed system can process large data sets in real

time.

So far chapter 1 includes introduction and background of the topic addressed. In

chapter 2 related works is presented. Chapter 3 includes description of technologies

used. Chapter 4 contains implementation of proposed model. Chapter 5 includes

results and analysis. In chapter 6, a conclusion has been described.

CHAPTER 2. LITERATURE REVIEW

In [3], a method to perform real time streaming for iot data is presented so that the

dynamic integration into the web using AMPQ can be supported. The performance of

smart city can be improved by delivering of large amount of data using this method.

The proposed system is evaluated based on data size and average exchanged message

time using summarized and raw sensor data.

 In [4], a new prototype NEPTUNE is proposed to achieve high throughput during

real time stream processing. The framework improves the CPU utilization by the use

of thread-pools and batch processing. Memory pressure is controlled by the efficient

reuse of objects. The performance is compared with apache storm and a higher

processing rate is achieved as compared to storm. In [5] a system is proposed to

enable data streams with adaptive processing, aggregation and federation, adding

semantic annotations to data in order to process large streams of iot data. It also

addresses the issues and solutions for ensuring reliable processing and smart adaption

in smart city system.

In [6], a survey of existing systems related to real time stream processing is presented

and related issues are addressed. Then a new framework called information flow of

things (IFoT) is suggested that perform real time stream processing in a distributed

manner among Iot devices. In [7], a middleware for IoT devices has been proposed

to process the data stream locally using resources of IoT devices in real time. It

divides the tasks into subtasks and each sub task is executed on multiple IoT devices

in a distributed manner. Real time analysis of data stream is performed. Raspberry

Pie has been used to implement prototype of system.

4

Some large companies like IBM Watson IoT, Microsoft Azure IoT Suite, AWS IoT

and Google Cloud IoT have provided cloud based frameworks for IoT [8]. Some

others like Kaa and macchina.io are open source and public solutions for IoT. In [9]

researchers have presented a framework that provides solution to high data rate,

different types of data and high volume of data for IoT by storing the data coming

from different IoT resources. The structured data is being stored using both

traditional DBMS and noSQL databases. Unstructured data is stored in a file system

using name conventions and timestamp related to connected device. However, there

can be high latency due to usage of file system which can be avoided.

As explained in [10], FIFO queues are represented in the form of graphs to show the

flow of data stream. It consists of operators that perform INPUT/OUTPUT

operations on those FIFO queues. Operators are actually transformers that transform

the streams into another stream. The transformer must contain the necessary function

to carry out transform function like initialization, activation and output rate etc. In

these methods, Data Stream Management System (DSMS) are used, that deals

directly with data streams. On each data arrival, DSMS updates its records unlike

DBMS that updates the data when query is applied.

In [11], a new concept of using “cognition” and “proximity” is proposed by the

researchers to use the most relevant device in order to solve the heterogeneity

problem of connected smart devices. For this, the IoT devices are considered as

virtual devices by introducing the concept of virtual sensors. A smart city application

has been used as a case study that further encompasses the wide range of IoT

applications. This framework helps in managing interested services and application

besides controlling the communication between smart objects. Cognition technique is

used to establish an interaction between virtual devices and real devices by using

optimization techniques. Whereas, proximity determines the selection of smart

object, that will be used to entertain particular IoT application.

Another technique that performs condition based detection of events, determine by

data streams [10], [12] is called Complex Event Processing (CEP) in which

5

Publisher/subscriber systems have been used to employ characteristics based event

processing including interest selection and attributes. However such systems become

complex when there are multiple sensors. Sensor networks, information and business

management, network monitoring and control systems are some of the areas where

CEP has been used extensively. Java, R and Python are the languages supported by

CEP however, SQL based CEP are mostly used. There are many platforms available

for stream processing; some of them are SAP Sybase Event Stream Processor, IBM

Infosphere Stream [13], Yahoo!S4, SQL Stream Blaze, Microsoft Stream Insight,

TIBCO Business Events, Amazon AWS IoT, Apache Storm [14] and Apache Spark

[15].

Machine learning has become an important feature in IoT platforms to perform

analysis and obtain decisions in real time. Many of the platforms mentioned before,

supports real time or on-line machine learning methods. For example, spark has its

own built in Machine Library (ML) or Mlib and AWS has Amazon Machine

Learning to apply machine learning algorithms on streams of data for analysis in real

time.

CHAPTER 3. TECHNOLOGIES USED

In this section, there is a thorough description of the technologies or platforms used

in the project. These are Apache Kafka, Apache Spark, Cassandra and Zeppelin.

3.1. Apache Kafka

Apache Kafka [16], a distributed open source streaming platform was developed at

LinkedIn by Apache Software Foundation in 2011. Initially it was a messaging queue

system, which later evolves into a complete streaming platform. It is written in Scala

and Java. It provides low latency, fault-tolerant, high throughput publish and

subscribe pipelines to handle data in real time. This makes it highly popular among

enterprises that deal in stream processing. Kafka Connects provides connection with

external systems as well.

 3.1.1. Kafka Core APIs

Figure 3.1. Kafka APIs [16]

7

In Figure 3.1. Kafka’s four APIs has been shown. These are as follows.

- Producer API

It publishes the record to a topic.

- Consumer API

It subscribes to a topic and consumes records from that topic to

process.

- Streams API

It allows applications to consume and produce input and output

streams from the topics.

- Connector API

 It allows connecting to external systems such as database.

3.1.2. Kafka Architecture

A typical Kafka framework consists of producers, a server in Kafka cluster called

broker and a consumer as shown in Figure 3.2.

Figure 3.2. Kafka Architecture [17]

Kafka cluster consist of brokers which are actually the servers. The topics are

partitioned among different nodes of a cluster. Different processes called producers

publishes the data to a topic. Data is distributed to the different partitions of a topic.

The messages are recognized by their offsets in the partition. The data from the topic

is read by the processes called consumers for further processing.

8

3.2. Apache Spark

Apache Spark [15] is an open source big data processing and analytic engine based

on cloud computing. It was initially developed by Berkeley’s Lab, but later taken by

Apache Software Foundation. It has become a popular big data tool among different

kinds of industries e.g. Yahoo, Netflix, and eBay etc. It supports Scala, Java, R and

Python languages. It is 100 times faster than Hadoop which uses mapReduce model.

Spark introduces the concept of Resilient Distributed Dataset (RDD). RDDs are

distributed among cluster to perform parallel processing. This is the core concept in

Spark’s fast processing. Different data formats can be converted into RDDs

including Json strings, text files and SQL databases. Spark splits the application into

multiple tasks that are distributed among different processes called executors.

Number of executors may vary depending upon the requirement.

3.2.1. Spark Architecture

 FigureF

Figure 3.3. Spark Architecture [15]

Figure 3.3 shows that Spark ecosystem consists of following parts.

- Spark SQL

Spark SQL introduced the concept of data frames that provides SQL

language support for quering data. It support semi structured and

structured data.

9

- Spark Streaming

It allows analyzing and processing both batch data and real time

streams of data.

- Mlib

Machine learning library allows using machine learning algorithms on

data for predictions and making decisions.

- GraphX

It allows to build, transfer and process graph data.

- Spark Core

All above functions are built on the top of spark core. It provides in

memory processing to support wide range of application.

3.3. Apache Cassandra

Apache Cassandra [18] is an open source database system that has its own query

language called Cassandra Query Language (CQL). It supports fault tolerance, high

availability and scalability that make it a perfect choice for critical data. Many large

companies including Netflix, Reddit, GitHub and eBay etc are using Cassandra for

their large data sets. It is a cluster based platform in which the data is distributed

among different nodes of cluster. Every node in the cluster is identical and there is no

master node. Replication of data is supported among multiple nodes for fault

tolerance. New machines can be added to a cluster making it more scalable. Data is

organized in tables as a key-value pair. The primary key of the table is the partition

key, which has a value as columns. The tables can be added, deleted and changed at

run time.

3.4. Apache Zeppelin

Zeppelin [19] is an online multipurpose notebook that enables user friendly data

analysis by representing data into graphs, charts and tables. It is an analytical tool

that supports data visualization. Zeppelin has an interactive interface that eases the

task of developing, managing, processing, sharing and visualizing data. There is a

10

plug-in called Zeppelin Interpreter that uses a specific data processor tool or a

language. It supports different interpreters including Spark, Cassandra, python, Flink

etc. It also provides the facility to download, print or send the report of your insights.

Zeppelin supports multi users on a cluster and can be run in personal mode as well.

CHAPTER 4. PROPOSED MODEL

The proposed model is applied on a use case of “Weather Station” data. Sample IoT

data of 1000 weather stations is generated with Kafka producer and sent to Spark

consumer. Spark performs transferring, processing and querying on IoT data using

spark SQL and spark streaming. It also applies machine learning algorithms on a

dataset to make decisions using Spark ML. Spark saves the data in Cassandra

database. With CQL, queries are applied on the data. The data from Cassandra table

is accessed in Zeppelin which provides visual representation and analysis. The whole

method is speed up using more than one broker in Kafka and increased number of

work nodes in Spark. Figure 4.1 shows the proposed model.

Figure 4.1. Proposed model

IoT

Data

Sources

Spark

 SQL

Spark

Mlib

Spark

Streaming

Zeppelin

12

4.1. Use Case

Weather monitoring is a very useful application of IoT. Weather of different places is

sensed by sensors like temperature sensor, rain sensor, humidity sensors etc and sent

to online platforms which keep us updated about today’s and tomorrow’s weather

condition. Consider the weather data is arriving from all the cities of a country and

we want to find the city with hottest or lowest temperature in real time. The proposed

model is applied on a sample IoT data from different weather stations to get these

results. To make this example more useful, machine learning algorithm is applied to

decide if the weather is suitable for outdoor games or not.

 Generate sample Weather
 Station data

 Creation of data frames

 Consumes data from topic Query data

 Saving data to Cassandra

 Data visualization

 Request data

Figure 4.2. Sequence diagram

Sequence diagram of a use case is shown in Figure 4.2. Sequence diagram describes

the flow of project. It shows the interaction between objects that work together. It is

also known as event diagram as it describes the functionality of scenario with time.

Kafka Zeppelin Cassandra Spark

13

4.2. Weather Monitoring Application

The project is divided into two modules which are separate Maven projects build in

Scala that can run independently. The first module is data Iot Data Producer that will

generate Iot data events and send to second module which is data processing. Data

processing module will collect process and save the data.

4.2.1. IoT Data Producer

IoT Data Producer is a Kafka producer build in Scala that generates sample IoT data

and publish it to a topic. First we need to create a topic on Kafka describing the topic

name, zookeeper server address, replication factor that describes the number of

servers on which the topic will be replicated and number of partitions as shown in

Figure 4.3.

Figure 4.3. Topic creation

4.2.1.1 Maven Dependencies

Figure 4.4. Maven dependencies

14

As shown in Figure 4.4., a maven project is created and apache spark, spark-

streaming and Kafka dependencies are added to a pom.xml file of the project. Maven

helps in building projects by storing libraries in a cache, which are downloaded from

repositories.

4.2.1.2. Configurations of Kafka

First zookeeper and Kafka servers should start on console in the background. Kafka

and zookeeper configuration properties are added.

Figure 4.5. Kafka configuration code

In Figure 4.5. bootstrap.servers provides the list of initial hosts that are the addresses

of Kafka servers in a cluster. “Key.serializer” and “value.serializer” define the

instructions to convert key and value objects into bytes.

4.2.1.3. Generating and Sending IoT data

A new object of Kafka producer is created. Case class is used to define the schema of

weather data. It includes the value of station id, temperature, and pressure and rain

probability. The object of case class is converted into Json format and data is

published to the topic using send() function.

 var first= new data(id,date,temp,press)

 val jsonString = Json.toJson(first).toString

 val record = new ProducerRecord(TOPIC, "key", jsonString)

 producer.send(record)

15

The data being send in Json format is shown in Figure 4.6.

 {"id":"ZcVoK","dates":"2018-05-16 19:54:28","temp":38,"press":45,"rain_prob":41}

{"id":"WfE8d","dates":"2018-05-16 19:54:30","temp":36,"press":53,"rain_prob":28}

{"id":"wBPae","dates":"2018-05-16 19:54:31","temp":36,"press":61,"rain_prob":23}

{"id":"5coxE","dates":"2018-05-16 19:54:31","temp":57,"press":46,"rain_prob":47}

{"id":"OSBvS","dates":"2018-05-16 19:54:31","temp":26,"press":37,"rain_prob":89}

Figure 4.6. IoT data in Json format.

4.2.2. Data Processor

In Data Processor section, spark will consume or read the data from the Kafka’s topic

and generate streams of data using spark streaming. It processes the data, apply

queries and save the data in Cassandra table. It also applies machine learning

algorithm on data in real time.

4.2.2.1. Configuration and RDD creation:

Figure 4.7. Configuration of Spark

According to Figure 4.7., in the configuration code “local [2]” describes that two

threads have started on a local machine for this job. Variable “Ssc” is an object of

streaming context and “localhost: 2181” is an address of zookeeper. Map function

will consume the data from Kafka topic and show the data in key value pair as Rdd.

Streams of data will be displayed on console after every 10 seconds. Function “map

16

(_._2)” will consider the second tuple of key pair value which means it will consider

the value part and ignores the key.

4.2.2.2. Data Frames

Using SparkSQL the data can be converted in to data frames which are more advance

form of RDD. Data frames are easy to process as they are similar to a table in

database. SQL queries can also be applied on data frames. Following code shows the

creation of data frames.

Figure 4.8. Data frame code

According to Figure 4.8. for using sparkSQL, first need to create an object of

SQLcontext. To use all the functions of SQLcontext, sqlcontext.implicits._ is

imported. “sqlcontext.read.json(rdd)” will convert the Json Rdd into data frames

which are shown in Table 4.1. where data is shown in the form of tables. Each value

of Rdd is represented by a column in a Table.

Dates Id Press Rain_prob Temp

2018-05-16 21:56:48 A5v06 62 64 24

2018-05-16 21:56:48 Q6Y0f 30 58 36

2018-05-16 21:56:49 E21gX 15 28 1

2018-05-16 21:56:49 acTJx 53 30 35

2018-05-16 21:56:49 6s00X 17 26 21

2018-05-16 21:56:49 Ze84J 51 79 39

2018-05-16 21:56:49 hGdzc 24 69 30

Table 4.1. Data frames of IoT data

17

In Table 4.1., the weather station data is shown in the form of table. It includes the

date and time of each event, unique id for each station, temperature, air pressure and

rain probability values from each station.

4.2.2.3. Saving to Cassandra

First the table is created in Cassandra database whose structure should be similar to

the schema of data frame.

First keyspace is created which defines data replication on nodes in a cluster.

“Simple Strategy” means that there is a simple replication for a cluster.

“Replication_factor” depends on the number of nodes used. Table is created in

Cassandra as follow.

CREATE TABLE weather_st (station_id varchar PRIMARY KEY, dates varchar,

temp int, press int, rain_prob int);

After creating table, the data will be send and save to Cassandra using Spark-

Cassandra connector.

dfi.write.format("org.apache.spark.sql.cassandra").options(Map("table"-

>"weather_st","keyspace"->"data")).save()

In this way, the data frames will be directly save to Cassandra using Spark-Cassandra

connector.

4.2.2.4. Machine Learning Algorithm

Machine learning (ML) has become the priority for businesses that helps them in

decision making. It has also become a major part in IoT and big data frameworks.

Applying ML algorithms on IoT data streams in real time, helps in taking action at

the right time. Spark has built in ml library that can be applied directly to data

18

frames. It includes methods of classification and regression, clustering, collaborative

filtering etc that can be applied depending on the requirement of application.

As mentioned before, I have considered a scenario in which decision will be made

for outdoor sports. If the temperature will be greater than 25 degrees and rain

probability will be more than 50%, the condition for outdoor sports is bad. Otherwise

it is good. As this scenario is a selection between two conditions, classification

algorithm is the most suitable one. Logistic Regression has been applied to a data set

which will determine the output. The algorithm is first trained with sample data.

4.2.2.4.1. Logistic Regression

Logistic regression [20] is a classification model designed for a set of binary

variable. These binary variables represents two conditions such as sick/healthy,

good/bad, pass/fail or alive/dead. The conditions are normally labelled as “0” and

“1”. It is a predictive analysis method that describes the relation between one

dependent and one or more independent variables. It is used to find the probability

of occurrence of an event based on predictors. Logistic function is defined in

Equation 3.1.

𝑙𝑛 (
𝑃𝑖

1−𝑃𝑖
) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 (3.1)

Where P is the probability of event, ln is natural algorithm, β0 is the intercept, βi are

the regression coefficients multiplied by xi explanatory variables. After applying

exponential on both sides, equation becomes as follows.

 (
𝑃𝑖

1−𝑃𝑖
) = 𝑒𝑏0+𝑏𝑖𝑥𝑖 (3.2)

19

4.2.2.4.1.2. Logistic Regression on data frames

Figure 4.9. Logistic regression code

Figure 4.9. shows the code of Logistic regression. In this code, first the columns that

will determine the value of prediction is selected which in this case are temperature

and rain_probability. Feature vector is created from these columns and input and

output column name is selected. Create a label column based on decision column

with transform method. These transformations are the pipelines that will give us the

required data frame on which the logistic regression model will be applied. Next,

split the data, use 70% for training the model with historical data and 30% to test the

data without labels. The model is trained using elastic net regularization. Predictions

are made using test data. The whole method is shown in Figure 4.10.

 Transform Transform fit

 Transform

Figure 4.10. Logistic Regression Model

Features

and Labels
Features Model Data

Frame

Accuracy Predictions

CHAPTER 5. RESULTS AND COMPARISON

In this section results have been shown that are derived from the proposed model.

First of all queries applied to the data frames in real time using SparkSQL. For

example, to select and show stations where temperature value is greater than 30. The

result is shown below in Table 5.1.

ID Temp

Q6YOf 36

acTJx 35

Ze84J 39

asRjX 42

fMZps 35

kycbd 31

LiVQw 41

Table 5.1. Spark SQL query

Zeppelin notebook is used to analyse data in visual form. With Cassandra interpreter,

the data that is saved from spark to Cassandra is retrieved by applying queries and

result is shown in graphical form as shown in Figure 5.1.

Figure 5.1. Graph of IoT data

21

In Figure 5.1 the bar chart is shown with the weather station ids along with the values

of temperature, pressure and rain_probability represented by dark blue, orange and

light blue bars respectively.

5.1. Machine Learning Algorithm Results and comparison

By applying Logistic Regression on a data set to find if the weather condition for

outdoor sports is good or not, following results have achieved.

 Figure 5.2. Decisions made for stations

Figure 5.3. Predictions made for stations

22

Figure 5.2 shows the decisions made for each station that if the weather is suitable

for outdoor sports or not. Value ‘1’ shows the weather is good and ‘0’ shows the

weather is not good. This decision is based on the condition that if the temperature

value is more than 30 degrees and the rain_probability is more than 50%, the weather

is not good and decision will be 0. Otherwise decision will be 1. In Figure 5.3., the

predictions made on test data using Logistic Regression has been shown. A

comparison between above graphs shows the predictions are 74 % similar to

decisions. After applying this algorithm on series of data following accuracy values

have been achieved.

Accuracy 0.944 94,4%

Accuracy 0.833 83,3%

Accuracy 0.792 79,2%

Accuracy 0.971 97,1%

Accuracy 0.841 84,1%

Table 5.2. Accuracy of algorithm

Table 5.2. shows the accuracy of algorithm and results. Average value of accuracy is

87.62 which make the algorithm, a suitable choice for this scenario.

5.2. Delay Comparison

Initially only single Kafka broker is used with the two threads in spark. The main

purpose of this model is to process large amount of data in a minimum time. In order

to reduce the delay, the number of Kafka brokers is increased to 3, with the

replication factor of topic is 3. In this way, if one broker stops working, the data can

still be read and write because the topic is replicated among three brokers. The

number of topic partition is also increased to 3. The number of threads in spark is

increased to 3 in order to speed up the streaming and processing. A comparison of

delay has been made between both scenarios that are shown in figure 5.4. and 5.5.

23

Figure 5.4. Delay with 2 Spark threads

Figure 5.5. Delay with 3 Spark threads

A significant reduction in delay can be observed by comparing Figure 5.4. and

Figure 5.5. Average Delay with 1 topic partition and 2 Spark threads is 10 seconds

853 ms while delay with 3 topic partitions and 3 Spark thread is 5 seconds 470 ms.

CHAPTER 6. CONCLUSION AND FUTURE WORK

In this thesis, a method is proposed for real time stream processing for IoT. In this

method, Kafka producer generates sample IoT data and publish it to topic. Spark

acting as a consumer, subscribe to that topic and retrieve the data sent from kafka

producer. Spark performs transferring, processing and querying on IoT data using

spark SQL and spark streaming. Decisions are made in a particular scenario by

applying machine learning algorithms on a dataset using Spark ML. Spark sends the

data in Cassandra database. With CQL, queries are applied on the data. The data

from Cassandra table is accessed in Zeppelin using Cassandra interpreter. Zeppelin

supports data visualization in form of graphs and tables. The whole method is speed

up using more than one Kafka broker and by increasing number of threads in Spark.

Thus, this model provides the complete solution to IoT data processing in real time

with large amount of data.

In future, the same model will be applied using different frameworks and comparing

with the proposed one in order to get the fastest solution. The method will be applied

to a larger set of data. The application will be made smarter and more prediction

based decisions will be made by using machine learning algorithms.

REFERENCES

[1] Watson, H.J., 2014. Tutorial: Big data analytics: Concepts, technologies, and

applications. CAIS, 34, p.65.

[2] Cisco, V.N.I., 2016. Global Mobile Data Traffic Forecast Update, 2015–2020

White Paper. Document ID, 958959758.

[3] Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F. and Barnaghi, P.,

2014, September. A knowledge-based approach for real-time iot data stream

annotation and processing. In Internet of Things (iThings), 2014 IEEE

International Conference on, and Green Computing and Communications

(GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom),

IEEE (pp. 215-222). IEEE.

[4] Buddhika, T. and Pallickara, S., 2016, May. Neptune: Real time stream

processing for internet of things and sensing environments. In Parallel and

Distributed Processing Symposium, 2016 IEEE International (pp. 1143-

1152). IEEE.

[5] Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea,

S., Kjærgaard, B., Kuemper, D., Nechifor, S. and Puiu, D., 2014. Real time

iot stream processing and large-scale data analytics for smart city

applications. In poster session, European Conference on Networks and

Communications.

[6] Yasumoto, K., Yamaguchi, H. and Shigeno, H., 2016. Survey of real-time

processing technologies of iot data streams. Journal of Information

Processing, 24(2), pp.195-202.

[7] Nakamura, Y., Suwa, H., Arakawa, Y., Yamaguchi, H. and Yasumoto, K.,

2016, June. Design and Implementation of Middleware for IoT Devices

toward Real-Time Flow Processing. In Distributed Computing Systems

Workshops (ICDCSW), 2016 IEEE 36th International Conference on (pp.

162-167). IEEE.

[8] Ralhan, P. (2000). Web.njit.edu. Retrieved 2 May 2017, from

https://web.njit.edu/~turoff/coursenotes/CIS732/samplepro/prototyping.doc,

Access Date: 10.12.2017.

https://web.njit.edu/~turoff/coursenotes/CIS732/samplepro/prototyping.doc

[9] Jiang, L., Da Xu, L., Cai, H., Jiang, Z., Bu, F. and Xu, B., 2014. An IoT-

oriented data storage framework in cloud computing platform. IEEE.

[10] Hirzel, M., Soulé, R., Schneider, S., Gedik, B. and Grimm, R., 2014. A

catalog of stream processing optimizations. ACM Computing Surveys

(CSUR), 46(4), p.46.

[11] Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V.,

Poulios, G., Demestichas, P., Somov, A., Biswas, A.R. and Moessner, K.,

2013. Enabling smart cities through a cognitive management framework for

the internet of things. IEEE communications magazine, 51(6), pp.102-111.

[12] Cugola, G. and Margara, A., 2012. Processing flows of information: From

data stream to complex event processing. ACM Computing Surveys

(CSUR), 44(3), p.15.

[13] Gedik, B. and Andrade, H., 2012. A model‐ based framework for building

extensible, high performance stream processing middleware and

programming language for IBM InfoSphere Streams. Software: Practice and

Experience, 42(11), pp.1363-1391.

[14] Storm project available from https://storm-project.net/, Access Date:

5.08.2017.

[15] Apache Spark available from https://spark.apache.org/, Access Date:

10.08.2017.

[16] Apache Kafka project available from http://kafka.apache.org/, Access Date:

13.09.2017.

[17] Dunning, T. and Friedman, E., 2016. Streaming architecture: new designs

using Apache Kafka and MapR streams. " O'Reilly Media, Inc.".

[18] Apache Cassandra available from http://cassandra.apache.org/, Access Date:

7.3.2018.

[19] Apache Zeppelin available from https://zeppelin.apache.org/, Access Date:

14.4.2018

[20] Logistic regression from https://www.statisticssolutions.com/what-is-logistic-

regression/, Access Date: 22.4.2018.

https://storm-project.net/
https://spark.apache.org/
http://kafka.apache.org/
http://cassandra.apache.org/
https://www.statisticssolutions.com/what-is-logistic-regression/
https://www.statisticssolutions.com/what-is-logistic-regression/

RESUME

Hina Jamil, was born on 24.08.1992 in Pakistan. She has completed her primary,

secondary and College education from Wah Cantt, Pakistan. In 2010, she started her

bachelor’s in Telecommunication and Networks from Comsats University and

graduated from there in 2014. In 2014, she started working as a research associate in

Comsats University. In 2015, she went to Turkey and completed one year Turkish

language course. Currently, she is doing Masters in Computer and Information

Engineering from Sakarya University, Turkey.

