
MODULAR AVIONICS FOR SEAMLESS RECONFIGURABLE UAS MISSIONS
Juan López, Pablo Royo, Cristina Barrado and Enric Pastor

Department of Computer Architecture, Technical University of Catalonia
08860 Castelldefels (Barcelona), Spain

Abstract

Integrated Modular Avionics (IMA)
architecture is a trend in current avionics that
employs a partitioned environment in which
different avionics functions share a unique
computing environment. UAS avionics, especially
in small UAS, are usually of less complexity than
not the present on airliners, however, in real
autonomous UAS, the onboard avionics should
control not only the flight and navigation but also
the mission and payload of the aircraft. This
involves more complex software as it should
implement “intelligent” or at least autonomous
behavior.

This need of both flexibility and complexity
management while keeping low costs in the UAS
avionics field requires new architectures to cope
with.

In this article, we describe a modular avionics
architecture based on services. The avionics
functionality is divided in distributed elements, the
services, which are interconnected by a
communication middleware. This article also
proposes a configuration and deployment
infrastructure and its related procedures that
complete our vision of UAS avionics.

Introduction
Unmanned Aerial Systems (UAS) are

becoming a valid option for many civil missions.
UAS are a low-cost alternative for some of the so
called “D-cube” applications, i.e. situations
identified as Dangerous, Dirty or Dull. Multiple
manufacturers and platforms are appearing in the
market; however most of them are currently
focused in one specific mission. Real acceptation of
UAS will only happen when the same aerial
platform can be used for different missions and it
can be easily adapted in case different payload
(airborne sensors or actuators) are needed. In
addition, to keep their costs low, UAS hardware and

avionics should be shared and reused between
different platforms.

Integrated Modular Avionics (IMA)
architecture is a trend in current avionics that
employs a partitioned environment in which
different avionics functions share a unique
computing environment. This sharing involves
weight and power savings since resources can be
used more efficiently. UAS avionics, especially in
small UAS, are usually of less complexity than not
the present on airliners… less instrumentation, less
engines, no need to monitor and control the
pressurization, etc. However, on the other hand, in
real autonomous UAS, the onboard avionics should
control the flight, navigation, mission and payload
of the aircraft. This involves more complex
software as it should implement “intelligent” or at
least autonomous behavior.

This need of both flexibility and complexity
management while keeping low costs in the UAS
avionics field requires new architectures to cope
with. We propose a modular architecture based on
services. The avionic system is composed of set of
distributed elements, known as services, which
operate on top of a middleware communication
framework. The services are collocated over the
different computational nodes that are connected by
a low-cost Ethernet network. This interconnection
scheme is very flexible and cost-effective.

To be operative, this architecture definition
and abstraction layer also need a definition of the
operations and procedures to convert a set of
“standardized” services into a flyable and
operational system. This article proposes a
configuration and deployment infrastructure and its
related procedures that complete our vision of UAS
avionics.

Avionics Architectures
Modern digital avionics are mainly

implemented as distributed computing

978-1-4244-2208-1/08/$25.00 ©2008 IEEE.
 1.A.3-1

architectures. Two different approaches are given:
federated and modular.

Federated avionics architectures appeared on
the early 80s. In this architecture, distribution is
understood as self-contained, independent
packaging of avionics functionalities. Federated
avionics have a univocal relation between
functionalities and resources: Every avionics
functionality is integrated into a back-box and none
resource is shared between avionics systems other
than the communication buses. A typical example
of federated avionics is a standalone Flight Control
Systems like AP04[1] or Piccolo[2].

Since 2001, with the developments of Boeing
787 and later Airbus A380, the civil distributed
avionics architectures are moving to the concept of
Integrated Modular Avionics (IMA) [3]. In the IMA
approach the avionics functionalities are distributed
into logical Partitions which may be allocated into a
same physical computing Module or into a different
one. A computing Module is a hardware board with
one or more micro-processors. All available
Modules, connected through avionics buses, are
highly integrated by a common software layer,
typically the ARINC 653 APEX[4].

Airbus calls IMA Modules as Modular
Avionics Units while Boeing names them Common
Core Systems. In general IMA Modules are Line
Replaceable Units (LRU) that follow the ARINC
600 physical standard. For their connectivity any
avionics bus can be used (ARINC 429, AFDX,
etc.).

The main differences between both
architectures are the possibility of sharing resources
between avionics systems and the avionics
interfaces. While federated avionics do not share
computing resources, IMA avionics share
computing resources and also displays, other
devices, and even busses. On the other side,
avionics interfaces on federated avionics are limited
to a number of hardware connectors, while in IMA
the interfaces are mainly software definitions, and a
large number of them may exist.

Icarus Service-Based Architecture
UAS avionics requires specially suited

architectures to cope with its low cost and high
flexibility requirements. We propose a modular

architecture based on services. The avionic system
is composed of a set of distributed elements, known
as services, which operate on top of Marea, a
middleware communication framework. The
services are collocated over the different
computational nodes that are connected by a low-
cost Ethernet network. This interconnection scheme
is very flexible and cost-effective.

Architecture
In contrast with typical IMA, the

computational nodes are not necessarily
homogeneous. Their design and capabilities will
depend on the functions to implement (resources)
and the mission objectives (hardware sensors and
actuators). See Figure 1.

Figure 1. Architecture Based on Heterogeneous
Nodes Interconnected by Ethernet Network

The UAS distributed architecture we propose
is a mixed approach of both federated and
integrated avionics architectures. We have
considered the avionics systems into two categories,
the critical avionics and the non critical avionics,
understanding critical as to be certified. For each
type of avionics system we decide to use the
federated or the IMA approach. The Flight Control
System (FCS) we use is a federated avionics
system, a black-box with full contained
functionality and the required certification level.
The FCS has two redundant processors fully
dedicated to control the flight. This system is
directly connected with a dedicated ground station
using also a dedicated radio channel for
communication. All the benefits of a federated

.
 1.A.3-2

avionics are given, in particular the clear
responsibility about flight.

However, we propose a modular approach for
the rest of the avionics. The mission management
and the related decision systems are less critical
avionics systems. They give the UAS autonomy and
intelligence on the use of the payload and even
interact with the FCS and modify the flight plan
while the UAS operator allows it. In case of failure,
the FCS and its independent radio link recovers the
control and allows the operator to safely guide the
UAS to base.

 In our proposal the IMA modules are
heterogeneous, and their integration is achieved
with Marea [5] a middleware software layer that
handles the communications of the avionics.

Services
Over this architecture of computational nodes

we deploy the different services that will implement
the UAS avionics functionalities. A hosted-function
in the IMA sense can be composed by several
services. Therefore, services have a finer
granularity than a hosted-function; this allows
sharing not only resources but also generated or
computed information.

This finer granularity also possibilities
redundancy at lower levels. For example in
Figure 2, altitude information is needed in lot of
different UAS avionics functionalities: navigation,
terrain avoidance, photo normalization, etc. A lot of
components also provide this information with
different levels of precision and ranges: GPS,
inertial measurement units, radio altimeter, etc.

Figure 2. Managing Altitude Service
Redundancy

The Icarus architecture allows that a service
uses the altitude provided by several other services.
The system automatically chooses the most accurate

source of altitude. In case of failure less sensible
providers of altitude are used transparently.

A service is a software application that
behaves as a producer of data and as a consumer of
data from other services present on the system. In
contrast to ARINC APEX, we do not define
partitions because the main focus of Marea is the
ease reconfiguration. Services are designed to be
outwardly descriptive so that they can be found via
discovery mechanisms. In this case, when some
service needs functionality that it is not provided by
itself, it asks the system for the required service. If
other available component of the system has this
capability, its location will be provided and finally
the client component will consume the service
using the interface of the provider component. All
services describe their interface by means of an
XML file. Of course there is a physical partition
given by the hardware nodes and in the next section
we explain how we do the allocation of services to
nodes using resource requirements annotations in
the service description.

Middleware and Communication Primitives
The services management and especially their

inter-communication is in charge of the Marea
middleware [5]. Marea handles the redundancy and
fall-back mechanisms and efficiently distributes
sensors and services data. It uses the multicast
capabilities of the Ethernet local network for
minimizing the cost of concurrently issuing data to
several services. Currently there is not priority
management in the service scheduling of Marea, but
in a near future we will introduce it using the APEX
approach for soft real-time.

The communication primitives that provides to
the services are capable to transparently locate and
attach to the provider services with no need of
knowing the final physical location of them. Four
communication primitives (Variable, Event,
Remote Invocation and File Transmission) give the
avionics developer a wide field of possibilities to
interconnect and to make interact services.

A Variable is a structured, and generally short,
information offered by one service in a publish-
subscribe way. This information may be sent at
regular intervals or when changes occur. An Event
is similar to a Variable but the middleware

.
 1.A.3-3

guarantees the reliability of the transmission.
Events are used to inform of occasional or
important facts to other services. Remote Invocation
is the classical way to model interactions between
distributed components. It mimics a procedure call
in non distributed environment. Finally a File
Transmission is a data transfer of continuous
information. This includes photography images,
video, configuration files or even program code.

A Marea communication primitive identifies
exchanged data rather than their providers or
consumers. This functioning principle is similar to
actual avionics buses such as ARINC 429. This bus
broadcasts transmitted data, with an extra
information (label), to all linked equipment and
only the ones who have recognized the label use
data. In that sense, Marea like ARINC 429 or
APEX ports allows allow to link producers and
receivers of data, without a priori knowledge of the
physical location of them.

Comparing Marea and ARINC APEX
communication primitives we observe that Marea
does not differentiate between intra and inter
partitions communications. Marea services can be
distributed on any node, thus their communications
are assumed to be always remote. It is a Marea
implementation issue to avoid network transmission
and use local inter process communication when
possible.

ARINC APEX mailbox intra-partition
communications like Buffers or Blackboards can be
offered in Marea as independent services. I.e. we
may create a service that subscribes to mailbox
data, stores it using the Buffer or the Blackboard
semantics and provides it on demand to any
consumer service using Remote Invocation. On the
other side, Variables and Events are similar to the
inter-partition communication mechanisms offered
by the ARINC APEX, in particular to the Sampling
and Queuing mode Channels.

In our vision, a service is an independent
producer and consumer of data, and the mesh
formed by the set of all the services completes
complete avionics functionality. In this sense, our
architecture is data-centric and the data diffusion
has to be very efficient.

UAS Service Abstraction Layer
To have an operative UAS executing on Marea

we need to implement several services (see
Figure 3). Since most of the missions will require a
number of them, we have defined the UAS Service
Abstraction Layer (USAL). This is a set of basic
service definitions that can be reused between
avionics systems. New services should implement
some of the interfaces defined in the UAS to be able
to interoperate with pre-existing services. USAL
defines the shared information types, their meaning
and behavior and some guidelines to make
“equivalent” services interchangeable.

Figure 3. USAL Services

USAL defines a set of services comprising not
only the flight and navigation functionalities of the
UAS avionics, but also the mission part. The USAL
services are grouped in the following categories:
Flight, Mission, Payload and Awareness [6].

For instance, using the previous example of the
altitude, the USAL will define the priorities for the
different altitudes provided by the different
components (GPS, inertial measurement units, radio
altimeter, etc.) depending of their precision or
ranges. The priority mechanism establishes a clear
protocol in case of failure of one altitude provider.

In Figure 4 we can see an excerpt of the XML
describing the Altimeter service. The <description>
tag contains a textual definition of both the services
and its primitives. Variables and events can declare
some additional characteristics. In this case we can
see that the altitude variable is expressed in meters,
its value is between 0 and 15000 meters and has a
refresh rate of 20Hz.

.
 1.A.3-4

<service name=”Altimeter”>
 <description>
 This service provides altitude data.
 </description>
 <interface>
 <variable name=”altitude”>
 <description>
 This variable contains the current altitude
 in meters over the sea level.
 </description>
 <unit>m</unit>
 <range min=”0” max=”15000”/>
 <rate default=”20Hz”/>
 <priority>1</priority>
 </variable>
 </interface>

Figure 4. Icarus Service Description XML

The underlying idea is to be able to implement
a high number of UAS missions only reconfiguring
the USAL services. The existence of the USAL, an
open-architecture avionics package specifically
designed for UAS, may alleviate the developments
costs by reducing them to a simple
parameterization.

Reconfiguration Process
The service oriented architecture and

abstraction layer presented in the previous sections
can be seen as a modular avionics architecture for
UAS. To be operative, this architecture definition
and abstraction layer also need a definition of the
operations and procedures to convert a set of
“standardized” services into a flyable and
operational system. This section will detail the
configuration and deployment infrastructure and its
related procedures that complete our vision of UAS
avionics.

Figure 5 shows the configuration and
deployment process. This process begins with the
definition of the mission to accomplish and finishes
with the services required to achieve the mission
objectives. All the services are assigned to and
configured for the different computational nodes of
the UAS airframe.

Figure 5. Icarus Reconfiguration Workflow

Flight Plan & Mission Definition
The first step of the configuration process is

the definition of a flight plan and the mission
objectives: The flight of the UAS is important as far
as the visited way points are used for data
acquisition or for actuators activation in order to
obtain an autonomous UAS mission. In [7] the
process of dispatching a UAS for a mission is
presented.

For our purposes we obtain a Mission
Description File where the flight plan is included
with the necessary mission annotations. This file is
the starting point for our reconfiguration process.

Service List Generation
Within our infrastructure, the process of

configuring and deploying a new avionics system
over a UAS starts from a mission description and a
set of “standardized” services (the USAL). From
this mission description the needed services and the
aircraft and payload requirements are extracted (see
Figure 6.

Figure 6. Service List Generation

.
 1.A.3-5

Each service describes itself through the XML
Service Description File. This file includes at least
two sections with the external requirements of the
service: the <dependencies> section and the
<implementations> section. The <dependencies>
section lists other services which provide
information needed for this service. This way,
during the service extraction process, the list of
services is extended with all the dependent services.
In example, an Autopilot service which depens on a
FlightPlan service may have the following sections
as shown in Figure 7.

<dependencies>
 <service name=”FlightPlan”/>
 <variable name=”position”/>
 <variable name=”altitude”
 autoSubscribe=”true”/>
 <event name=”newWaypoint”/>
 <function name=”fireParachute”/>
 <file name=”aircraftPerformance”/>
 <variable name=”gps.position”/>
</dependencies>

Figure 7. Service Dependencies XML

In the example of Figure 7, we see that, in
addition to services, dependences identify also
some USAL data like the Variable “position”, or
the Event “newWayPoint”. These dependences do
not specifically indicate which services offer them
and it is responsibility of the Service Extractor to
obtain them. Other clear examples of dependences
are given for a Terrain Avoidance service which
needs the current altitude given by a DEM service.

The <implementations> section is used for
another type of dependence: the hardware. Imagine
a Camara service which clearly depends on a
camera device. Although the Camera service could
be executed in any UAS node, only those with
cameras connected will be available for a correct
deployment.

In the section listing of Figure 8, we observe a
service that requires two hardware components: a
camera and a FPGA, but also it shows dependences
on files and on computing resources.

 <implementations>
 <implementation name=”i386-dotnet”>
 <files>
 <file name=”fcsgw.dll”/>
 </files>
 <resources>
 <cpu name=”i386” cycles=”100”/>
 <ram size=”1M”/>
 <powerConsumption
 max=”2A” min=”0.1A” mean=”0.5A”/>
 <hw name=”camera”/>
 <hw name=”fpga”/>
 </resources>
 </implementation>

Figure 8. Service Resources XML

To conclude, this phase extracts the list of
services and hardware requirements from the
original services list and, by extension, from the
given UAS mission definition.

Hardware Discovery and Analysis
Once the complete list of services are extracted

we should check it and merge with the payload and
resources actually installed on the selected airframe.
We define the Aircraft Nodes Discovery &
Analysis System (ANDAS) as an Icarus
configuration service which connects to the aircraft
internal network and extracts the hardware and
payload available in the UAS (see Figure 9).

Figure 9. Nodes Discovery & Analysis

During the airframe startup each node runs an
initial service called Node Manager that it is on
charge of locating its own configuration. This
includes all the computing resources: CPUs,
memory, disks, etc. And it also includes the payload

.
 1.A.3-6

devices connected to the node. The resulting
information from all Node Managers is used to
generate a global file with the Aircraft and Payload
Description.

Service Distribution
The services have to be distributed over the

different computational nodes of the airframe,
checking that the required hardware for each
service is present in the assigned node. During the
distribution process the available and used
resources in each node (CPU cycles, RAM, etc.) are
computed and validated. Finally, a configuration is
generated specifying the services that need to be
assigned to each node. The objective is first to
obtain a valid distribution, and second, to obtain an
optimum configuration based on the load allocation.

Algorithms for optimum allocation on limited
resources are a huge area of research that extends
from economical problems (i.e. salesman problem)
to map coloring. We do not pretend to propose a
new allocation algorithm, but to apply existing ones
like genetic algorithms or backtracking.

In general, the computational nodes of any
airframe will usually be the same; however payload
can be very different depending on the mission and
the restrictions of the platform (size, weight, cost).
The Service Distributor system can detect the
differences between nodes and assign the different
services to the correct node. For example in the case
of a service implementing the access layer of a
sensor (see Figure 10), the service will be obviously
attached to the node connected to the sensor. This
heterogeneity is a key difference with “classic”
IMA architectures.

Figure 10. Service Distribution

Services Deployment and Startup
The Node Manager service presented above

has still two more important function to offer: the
services deployment and their initiation (see
Figure 11). Using the Service Distribution output
file, which includes all the services to be loaded to
each node and all the additional data files needed,
the Node Manager checks if the service code is
allocated on the node and, if not, asks for it to an
external Deploy and Startup Manager service. File
distribution containing the service executable is
efficiently provided by the underlying middleware
using its multicast file transfer. If more than one
node needs the same service file then the
corresponding file can be sent simultaneously to
multiple nodes. Then each Node Manager is
responsible of starting all its services. Finally, the
Deploy and Startup Manager is notified about the
correct finalization and the UAS can proceed to pre-
flight check and flight. In case of failure, the
process is restarted back at some previous phase for
allowing the maintenance team to solve the detected
problems.

.
 1.A.3-7

Figure 11. Service Deployment & Startup

In Figure 12 it is shown the final result of an
standard UAS mission deployment. The UAS
disposes of three different computational nodes.
Over them, five services have been deployed:
Virtual Autopilot System, Flight Plan Manager,
Mission Control, Camera and Image Processing.
The services have been distributed over the nodes
without exhausting the nodes resources (CPU,
RAM and Storage).

Figure 12. Final Services Assignation

These proposed configuration and service
checking mechanisms allows that our avionics
architecture can be adapted very quickly and easily
to mission changes or completely new operations,
as most of the operative can be automated and the
subsystems reused among different missions.

Previous Work
Digital avionics, and specially integrated

modular avionics, has been an active research topic
the last years in both the industry and the academia.

GE Aviation has shared its large experience on
IMA on different papers:

Watkins & Walter [8] give some advices for a
successful transition from avionics federated
architectures into IMA: 1) work hard in the
Interface Control Document before any
implementation in order to define clearly the system
interfaces and 2) decide for an Open IMA system.

Littlefield & Viswanathan [9] go further in the
proposal of an Open IMA system and present a
notional architecture framework for IMA, the
GOIMA, based on GOA (Generic Open
Architecture [10]) to extend the opportunities of the
existing ARINC 653 open standard. In the GOIMA
three interfaces standardize the interaction between
the 4 levels defined from Physical up to
Applications: A Common Hardware Interface, a
Common Platform Abstraction Layer and an
Enhanced APEX interface that makes IMA
applications independent format the actual
Operating System. They claim that the extensive
use of standards in other industries like automotive
and telecom has promoted reusability (COTS
components), reliability and decreased product
development cycle times. In this paper the IMA
hardware is assumed to be heterogeneous, and level
2 creates an abstraction layer for them (they call it
PAL -Platform Abstractions Layer-) in the same
way we have done with the autopilot and the VAS.

Garside & Pighetti [11] present the IMA
integration challenges and contrast them with the
previous avionics integration approach: Before
IMA, integration was a hardware task mainly
devoted to wire sensors and systems and it was
done by the airplane manufacturer; now the
responsibilities of the many avionics suppliers and
the IMA platform provider have not always clear
limits for the airplane manufacturer. The authors
propose the creation of a new engineering role for
IMA integration, as an independent third party that
will extensively use simulation and testing tools.

IMA has moved avionics development from
the hardware world into the software one. From this
perspective [12] proposes a modeling formalism to
design IMA components. Their approach is a
top/down model where UML is first used to form
the basic building blocks of the avionics metamodel
and the bottom layer is dedicated to domain specific
technologies. For the top layer they use the freely

.
 1.A.3-8

available tool GME (Generic Modelling
Environment [13]) which is entirely object-oriented
and has an IMA library facility. The bottom layer
uses the XML files generated previously to generate
the application description using the SIGNAL data-
flow language [14].

Conclusions
Seamless reconfigurable UAS are essential to

make autonomous unmanned a reality for
commercial missions. In the same way that in
general avionics the publication of IMA standards
represented a turning point for the flexibility of the
avionics development, we have proposed Icarus, an
IMA based architecture for UAS mission.

In the proposed architecture the avionics
functionalities are called services and they are
distributed over a network system with
heterogeneous computational nodes. The IMA
partition concept, which was mainly devoted to
certification issues, is here used for an ease
reconfiguration of the UAS. We do not address
UAS avionics certification, which mainly includes
to the autopilot on board and their security
mechanisms. Our target is the mission related
functionalities, which we consider “non-critical”
tasks. Since small UAS introduce strict limits on
power and weight of these avionics, we propose a
clear process to achieve a full operative UAS
rapidly.

This process, which starts with the definition
of a UAS mission, consists on cascade phases and
tools. These phases automatically extract the
mission requirements (the list of services and
hardware); verify them for the selected UAS; and
finally distribute the services upon the aircraft
resources. We have also included two additional
operative phases: the services deployment and the
services startup. Again they are part of the
automation tools provided by the Marea
middleware, which is the software layer of the
distributed architecture proposed.

References
[1] UAV Navigation AP04
autopilot http://www.uavnavigation.com/uavprod/u
avprod_01.htm

h.com

[2] B. Vaglienti, R. Hoag, M. Niculescu, Piccolo
System User’s Guide. Cloud Cap
Technologies, http://cloudcaptec , 2005

[3] Cary R. Spitzer. Avionics Development and
Implementation, Chapter 6. 2007. Digital Avionics
Handbook, Second ed. CRC Press 20.

[4] ARINC Specification 653, Avionics Application
Software Standard Interface, Published by ARINC,
2551 Riva Road, Annapolis, MD 21401.
http://www.arinc.com

[5] J. López, P. Royo, E. Pastor, C. Barrado, E.
Santamaria. A Middleware architecture for
unmanned aircraft avionics, Proceedings of the 8th
ACM/IFIP/USENIX international conference on
Middleware, Newport Beach, California, 2007.

[6] P. Royo, J. Lopez, C. Barrado, E. Pastor.
Service Abstraction Layer for UAV Flexible
Application Development. 46th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NE, 2008.

[7] X. Prats, E. Pastor, P. Royo and J. Lopez. Flight
Dispatching for Unmanned Aerial Vehicles. AIAA
Guidance, Navigation and Control Conference and
Exhibit, Honolulu, HI, 2008.

[8] C.B. Watkins, R. Walter. Oct 2007.
Transitioning from federated avionics architecture
to integrates modular avionics. 26th Digital
Avionics Systems Conference (DASC).

[9] J. Littlefield, R. Viswanathan. Advancing open
standards in Integrated Modular Avionics: An
industry analysis. IEEE/AIAA 26th Digital
Avionics Systems Conference, 2007. DASC '07.
Dallas, TX, Oct. 2007

[10] Generic Open Architecture (GOA)
Framework. http://www.sae.org. Document
Number: AS4893.

[11] R. Garside, F.J. Pighetti. Integrating Modular
Avionics: A new role emerges. IEEE/AIAA 26th
Digital Avionics System

s Conference, DASC '07.

006.

Dallas, TX, Oct. 2007.

[12] A. Gamati, C. Brunette, R. Delamare, T.
Gautier, J. Talpin. A Modeling Paradigm for
Integrated Modular Avionics Design. 32nd
EUROMICRO Conference on Software
Engineering and Advanced Applications, 2

.
 1.A.3-9

http://www.uavnavigation.com/uavprod/uavprod_01.htm
http://www.uavnavigation.com/uavprod/uavprod_01.htm
http://cloudcaptech.com/
http://www.arinc.com/
http://www.sae.org/

.
 1.A.3-10

rogramming real-time applications with
SIGNAL. Proceedings of the IEEE, Vol 79, N. 9,
Set 1991.

[13] J. Davis. GME: the generic modeling
environment. ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages
and Applications archive. Anaheim, CA, 2003.

[14] P. LeGuernic, T. Gautier, M. Le Borgne, C.
Le Maire. P

Acknowledgments
This work has been partially funded by
Ministry of Education of Spain under grant
number TIN2007-63927.

27th Digital Avionics Systems Conference

October 26-30, 2008

	Abstract
	Introduction
	Avionics Architectures
	Previous Work
	=============
	Table of Contents

