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Optimal Bidding Strategies for Thermal and
Generic Programming Units in the Day-ahead

Electricity Market
F. Javier Heredia, Marcos J. Rider,Member, IEEE, and Cristina Corchero.

Abstract—This paper develops a stochastic programming
model that integrates the day-ahead optimal bidding problem
with the most recent regulation rules of the Iberian Electricity
Market (MIBEL) for bilateral contracts, with a special cons ider-
ation for the new mechanism to balance the competition of the
production market, namely virtual power plants auctions (VPP).
The model allows a price-taker generation company to decidethe
unit commitment of the thermal units, the economic dispatchof
the bilateral contracts between the thermal units and the generic
programming unit (GPU) and the optimal sale/purchase bids for
all units (thermal and generic) observing the MIBEL regulation.
The uncertainty of the spot prices is represented through scenario
sets built from the most recent real data using scenario reduction
techniques. The model was solved with real data from a Spanish
generation company and spot prices, and the results are reported
and analyzed.

Index Terms—Short-term electricity generation planning, vir-
tual power plants auctions, bilateral contracts, electricity spot
market, optimal bidding strategies, stochastic programming.

NOTATION

The notation used throughout the paper is reproduced below
for quick reference.
Sets:

I Set of intervals.
S Set of scenarios.
B Set of bilateral contracts.
T Set of thermal generation units.
MS

i Set of scenarios with conditioned accepted GPU’s
sale bid.

MP

i Set of scenarios with conditioned accepted GPU’s
purchase bid.

UT Set of initial condition of unit commitment binary
variables.

Constants:

P s Probability of scenarios.
cb
t Base procurement cost of unitt (e).

cl
t Linear procurement cost of unitt (e/MWh).

cq
t Quadratic procurement cost of unitt (e/MWh2).
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Digital Object Identifier

pD,s
it bilateral-free day-ahead matched energy, unitt, in-

terval i, scenarios (MW).
LB

ij Energy of the bilateral contractj at intervali (MW).
λB

ij Unit profit of the bilateral contractj at interval i
(e/MWh).

λS Unit profit of the sale bilateral contract after the day-
ahead market (e/MWh).

b
S

Maximum energy that can be sold through the bilat-
eral contract after the day-ahead market (MWh).

λP Unit cost of the purchase bilateral contract after the
day-ahead market (e/MWh).

b
P

Maximum energy that can be purchased through the
bilateral contract after the day-ahead market (MWh).

λV Virtual power plant exercise price (e/MWh).
pV Capacity of the virtual power plant (MW).
pt Maximum generation of unitt (MW).
p

t
Minimum generation of unitt (MW).

con
t Start-up cost of unitt (e).

coff
t Shut-down cost of unitt (e).

st0t Initial state of unitt (Hours).
ton
t Operational minimum in service time of unitt

(Hours).
tofft Operational minimum idle time of unitt (Hours).
λD,s

i Day-ahead (spot) market price at intervali, scenario
s (e/MWh).

Functions:

λO

it Optimal sale bid function of unitt at interval i
(e/MWh).

BT ,s bilateral-free benefit function

First stage continuous variables:

bT

itj Generation of unitt at interval i allocated to the
bilateral contractj (MW).

pV

i Virtual power plant capacity used at intervali (MW).
bG

ij Generic programming unit’s generation at intervali
allocated to the bilateral contractj (MW).

wS

i Auxiliary variable used in the definition of the sale
matched energy of the generic programming unit.

wP

i Auxiliary variable used in the definition of the pur-
chase matched energy of the generic programming
unit.

wR

i Auxiliary variable used in the definition of the
residual purchase matched energy of the generic
programming unit.

First stage binary variables:
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xV

i Equal to 1 if the VPP rights are exercised, 0 other-
wise.

uit Equal to 1 if the thermal unitt must be committed
at intervali, 0 otherwise.

ait Equal to 1 if the thermal unitt must be turned-on at
interval i, 0 otherwise.

eit Equal to 1 if the thermal unitt must be shut-down
at intervali, 0 otherwise.

yS

i Auxiliary variable used in the definition of the sale
matched energy of the generic programming unit.

yP

i Auxiliary variable used in the definition of the pur-
chase matched energy of the generic programming
unit.

yR

i Auxiliary variable used in the definition of the
residual purchase matched energy of the generic
programming unit.

Second stage continuous variables:
vs

it Auxiliary variables used in the definition of the mat-
ched energy of the thermal units at periodi, scenario
s.

bS,s
i Sale bilateral contract after the day-ahead market at

interval i and scenarios (MW).
bP ,s
i Purchase bilateral contract after the day-ahead mar-

ket at intervali and scenarios (MW).
ps

it Total thermal generation of unitt at interval i,
scenarios (MW).

pT ,s
it Matched energy of thermal unitt at interval i,

scenarios (MW).
pS,s

i Sale matched energy of the generic programming
unit at intervali, scenarios (MW).

pP ,s
i Purchase matched energy of the generic program-

ming unit at intervali and scenarios (MW).
pR,s

i Mandatory accepting-price purchase bid of the
generic programming unit at intervali, scenarios
(MW).

Second stage binary variables:

zs
it Auxiliary variables used in the definition of the

matched energy of the thermal units at intervali,
scenarios.

I. I NTRODUCTION

T HE new rules of the electrical energy production mar-
ket operation of the Iberian Electricity Market MIBEL

(mainland Spanish and Portuguese systems), for the daily
and intradaily market from June 2007 [1], introduces new
mechanisms to encourage the competition of the production
market (physical futures contracts, bilateral contracts and
virtual power plants capacity), and brings new challenges in
the modelling and optimization of the market operation.

Aiming to increase the proportion of electricity that is
purchased through bilateral contracts with a duration of several
months and intending to stimulate liquidity in forward elec-
tricity markets, the Royal Decree 1634/2006, dated December
29th, 2006 [3] imposes on Endesa and Iberdrola (the two
dominant utility companies in the Spanish electricity market)
to hold a series of five auctions offering virtual power plant
(VPP) capacity to any party who is a member of the MIBEL.

MW

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

First auction
Second auction
Third auction
Fourth auction
Fifth auction

Jul-SepJul-Sep Oct-DicOct-Dic Jan-Mar Jan-MarApr-Jun Apr-Jun
20072007 2008 2008 20082008 2009 2009

Figure 1. Five auctions of the VPP capacity of the Spanish peninsular
electricity market

Both Endesa and Iberdrola have a diversified portfolio of
contracts and power plants, increasing the security of their
supply and reducing their vulnerability to price uncertainties.
In 2006, the total installed capacity of both companies was
around 47 GW, being that the total installed capacity of the
Spanish electricity system was 78.3 GW. Fig. 1 shows the
volumes to be auctioned by Endesa and Iberdrola accordingly
with the Real Decree 1634/2006. Observe that the greatest
volumes of auctioned VPP capacity will be reached from April
to September 2008, with a total amount of 2000 MW [4].

Other experience of the application of VPP auctions can
be found in France, where the Electricité de France (EDF)
has made available, since September 2001, 5.4 GW of gener-
ation capacity in France to facilitate the liberalization of the
French electricity market [5]. On July 4, 2003, the Belgian
Competition Council approved various transactions leading to
the appointment of Electrabel Customer Solutions, a subsidiary
of Electrabel, as the default supplier for the customers of sev-
eral intermunicipal distribution companies, subject to certain
undertakings. As part of these undertakings, Electrabel has
agreed to offer, to actual or potential competitors, up to a
maximum of 1.2 GW of VPP capacity in Belgium [6]. On 19
September 2007, E.ON Sales & Trading GmbH (EST) offered
250 MW to the electricity market in Germany of the VPP
product in a first auction. EST will consider conducting further
auctions for one or more similar products on an annual basis
[7].

In Spain, the VPP capacity means that the buyer of this
product will have the capacity to generate MWh at his dis-
posal. The buyer can exercise the right to produce against an
exercise price, set in advance, by paying an option premium.
So, although Endesa and Iberdrola still own the power plants,
part of their production capacity will be at the disposal of the
buyers of VPP. There will be baseload and peakload contracts
with different strike prices that are defined a month before the
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Figure 2. The Spanish day-ahead price market and strike price for the base
and peak load VPP capacity (|First auction,†Second auction,‡Third auction,
♮Fourth auction)

auction. In each case contracts with a duration of 3, 6 and 12
months will be offered. It is planned that all products will
be offered simultaneously using an electronic auction. Fig.
2 shows the evolution of the day-ahead market priceλD

i of
day i (daily maximum, mean and minimum) from July 2007
to April 2008, and the three first pre-defined strike price for
base and peak load VPP capacity, respectively. The energy
resulting from the exercise of the VPP options can be used by
buyers both to contribute to the covering of the national and
international bilateral contracts prior to the day-ahead market
or to sell it to the day-ahead market. In this last case, the
unmatched VPP energy, if any, can be sold through national
bilateral contracts after the day-ahead market. These new
bilateral contracts after the day-ahead market are negotiated
previously between the agents and must not be confused with
the intradaily markets (see [1] and [8] for more information
about the AGC and balancing intradaily markets).

A. Literature Review

The VPP capacity auctions attempt to reduce the influence
of the dominant agents through financial tools in order to
increase the competition in the market. This kind of regulation
wants to converge in the perfect market which is integrated by
all price-taker operators. Because of those reasons and thefact
that it is very difficult to model the influence of a price-maker
operator in the clearing price, the majority of the publications
are focused on price-takers generation companies. General
considerations about the bidding process in these electricity
markets can be found in [9]–[11].

Several authors have proposed optimal bidding models in
the day-ahead market for thermal units under the price-taker
assumption, with or without bilateral contracts. The authors in
[12] present a mixed integer programming model to optimize
the production scheduling of a single unit with a simple
bidding strategy. The approximation of the step-wise bidding
curves by linear functions based on the marginal costs was
already considered in [13], although in a context without
bilateral contracts. In [14] the concept ofprice-power function,
which is similar to thematched energy functiondefined in this

paper, is used to derive the optimal offer curves of a hydro-
thermal system under the assumption that the spot prices for
the day-ahead and reserve markets behave as a Markov Chain.
The mixed-integer stochastic programming model presented
in [15] distinguishes between variables corresponding tobid
energyand those representing thematched energy, although
in a price-maker framework and without bilateral contracts.
A model very related in some aspects to the one presented
here is [16] where a stochastic unit commitment problem
with bilateral contract is solved maximizing the day-ahead
market benefit. Stochasticity in the spot prices is introduced
through a set of scenarios, giving rise to a two-stage stochastic
programming problem. In [17] the authors present a mixed
integer stochastic optimization model for scheduling thermal
units, the production plans are optimized in the presence of
stochastic market clearing prices. Nevertheless the models in
[16] and [17] did not propose any explicit modellization of the
optimal bidding. To our knowledge, there are no publications
which consider either the bilateral contracts after the day-
ahead market or the modelization of the VPP.

B. Contributions

This paper develops a stochastic mixed-integer quadratic
programming model for a price-taker generation company
(GenCo) to find the optimal bidding strategy of a pool of
thermal units and a VPP in the Spanish day-ahead electricity
market under the most recent MIBEL regulation regarding
the bilateral contracts rules. The energy of the VPP options
is integrated in the production system through the so called
generic programming unitwhich will be described in the next
section. The model allows a price-taker generation companyto
decide the unit commitment of its thermal units, the economic
dispatch of the bilateral contracts between the thermal and
generic units, and the optimal bid for both thermal and generic
units, observing the MIBEL regulation. The model was tested
with real data from a Spanish generation company and spot
market prices. It has been implemented with AMPL and solved
with CPLEX.

The main contributions of this paper are:

• A new model for the optimal thermal bid function and
matched energy which takes into account the presence of
bilateral contratcs.

• The mathematical modelization of the generic program-
ming unit and the VPP.

• The modelization of the optimal bid functions and
matched energy of the generic programming unit.

• The inclusion in the optimization model of the bilateral
contracts after the day-ahead market.

• The consideration of the most recent regulations of the
MIBEL energy market.

This paper is organized as follows. Section II describes
the MIBEL’s energy production system around the day-ahead
market and the relevance of the generic programming unit. In
Section III the stochastic programming model for the optimal
bidding strategy is developed. In Section IV the market price
scenario generation procedure is described. In Section V a
detailed case study is presented and solved with the proposed
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stochastic programming model, reporting and analyzing the
computational results. Finally some relevant conclusionsare
drawn in Section VI.

II. MIBEL’ S ENERGY PRODUCTION SYSTEM

Fig. 3 depicts the MIBEL’s energy production system,
focused on the GenCo’s energy operation problem. Each arc
represents an energy transaction between the GenCo’s physical
and generic programming units and the pool as well as the
remaining MIBEL agents. There are four different kinds of
transactions: exercised VPP energy (VPP arc), buying/selling
bids to the pool (thick arcs), national and international bilateral
contracts before the day-ahead market (thin arcs) and national
bilateral contracts after the day-ahead market (dashed arcs). A
GenCo operating in the MIBEL has to decide all the optimal
energy allocations and bids pictured in Fig. 3, where the
continuous arcs correspond to decisions to be taken prior
to day D market clearing (9:35h and 10:00h of day D-1,
respectively, for the BC before the D-a market and bids) and
the dashed arcs correspond to decisions to be taken in a short
period (typically half an hour) just after the day D market
clearing.

A GenCo is represented in Fig. 3 by its physical production
units (hydro, thermal, combined cyle, pumping) and two non-
physical units: theDistribution Auction Generic Unitand the
Generic Programming Unit(GPU). The distribution auction
generic unit administers the bilateral contracts, under reg-
ulated tariffs, to the main distribution companies in Spain
and Portugal. The regulated tariff and the amount of the
bilateral contract are obtained by an auction. By law, a GenCo
holding such a bilateral contract must send an accepting price
purchase bid to the pool for the entire amount of the contract,
and, therefore, there is no room for optimization. For more
information on this kind of bilateral contract see [18]. The
generic programming unit (GPU) administers the exercised
energy of the VPP, and brings more flexibility to the GenCo
operations in the MIBEL. With the GPU the utility can:

• Integrate the VPP exercised energy into the energy pro-
duction system, both offering this energy to the pool
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Figure 4. Case study

through purchase bids or allocating it among the GenCo’s
portfolio of national and international bilateral contracts.

• Act as a purchase agent, both sending purchase bids
to the pool and acquiring energy through national and
international bilateral contracts.

After the market clearing the generation program of the
GPU must be allocated among the GenCo’s physical produc-
tion units and bilateral contracts, in such a way that the net
energy balance of the GPU must be zero. The existence of
national bilateral contracts after the day-ahead market prevents
violation of the aforementioned netting energy balance condi-
tion as a consequence of possible unmatched GPU’s sale or
purchase bids.

III. T HE STOCHASTIC PROGRAMMING MODEL

Fig. 4 represents the part of the whole MIBEL energy
production system (Fig. 3) considered in this study. This
system will be modeled based on the following assumptions:

• The GenCo is a price-taker operating in the MIBEL a set
T of thermal units (coal, nuclear, fuel) and a GPU.

• The thermal units inT have linear or convex quadratic
generation cost function, constant start-up/shut-down
costs and minimum generation/down time.

• The GPU is associated to a VPP with known capacity
(pV MWh) and exercise price (λV e/MWh).

• Both thermal units and GPU bid to thei ∈ I =
{1, 2, . . . , 24} hourly auctions of the day-ahead market.
The stochasticity of the spot priceλD

i , i ∈ I is repre-
sented by a set ofS scenarios.

• There is a portfolioB of bilateral contracts duties before
the day-ahead market with the rest of the MIBEL agents,
with known energy (LB

ij MWh) and price (λB

ije/MWh).
• There is an agreement for selling (purchase) bilateral

contracts after the day-ahead market up to a quantityb
S

MWh (b
P

MWh) at a priceλSe/MWh (λPe/MWh). We
assume that it is not possible to obtain net gain from those
contracts (λP > λS).

The objective of this study is to find how to optimally manage
the thermal unitsT and the GPU in order to take the maximum
benefit from the day-ahead market (the pool) while covering
the bilateral contracts agreements. This problem has been
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modelled in this work as a mixed integer quadratic two stage
stochastic optimization problem. Among the complete list of
variables of this model (see the Notation section), the main
information provided by the model (here and nowdecisions
or first stage variables) for each periodi ∈ I, are:

• For each thermal unitt ∈ T the unit commitment (uit),
the energy allocated to each bilateral contractbT

itj , ∀j ∈ B
and the optimal sale bids, expressed as a function ofbT

itj

(see section III-C).
• For the generic programming unit, the exercised VPP

energy (pV

i ), the energy allocated to the bilateral contracts
before the day-ahead market (bG

ij , ∀j ∈ B) and the
optimal sale/purchase bids, expressed in terms ofbG

ij and
pV

i (see section III-D).

A. Bilateral Contracts Constraints

The GenCo has agreed to physically provide the energy
amountsLB

ij at houri ∈ I of day D for each one of thej ∈ B
bilateral contracts with the rest of the MIBEL participants.
This energyLB

ij can be provided both by the real thermal
units T and the virtual GPU:

∑

t∈T

bT

itj + bG

ij = LB

ij

bT

itj ≥ 0 ∀t ∈ T

bG

ij ≥ 0



















∀i ∈ I
∀j ∈ B

(1)

B. Thermal unit commitment

Following [19], Eq. (2) is used to formulate the minimum
up and down times for thermal unitt

uit − u(i−1)t − eit + ait = 0 (a)

ait +

min{i+t
off
t ,|I|}

∑

j=i

eit ≤ 1 (b)

eit +

min{i+ton
t ,|I|}

∑

j=i+1

ait ≤ 1 (c)

uit, ait, eit∈{0, 1} ∩ UT



















































∀i ∈ I
∀t ∈ T

(2)

where Eq. (2a) and (2b) define the auxiliary binary variables
ait and eit to be ait = 1 iff u(i−1)t = 1 and uit = 0, and
eit = 1 iff u(i−1)t = 0 and uit = 1. Then, the minimum
in service (ton

t ) and iddle (tofft ) times are guaranteed by Eq.
(2b) and Eq. (2c) respectivley.UT represents the value of the
variablesuit, ait andeit set by the initial state of the thermal
units.

C. Optimal thermal bidding model

In the MIBEL, a simple day-ahead sale bid consists of
a step-wise non-decreasing curve defined with up to 10
price/power blocks. Similarly to [13], this step-wise salebid
will be approximated in our model through theoptimal thermal
bid function λO

it(p
O

it), a piece-wise discontinuous linear non-
decreasing function that gives the value of the optimal bid
price λO

it at which the thermal generationpO

it would be bid at

a) bit = 0 b) bit ≤ p
t

c) p
t
< bit < p

D,s
it d) p

D,s
it ≥ bit
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Figure 5. Representation of the optimal thermal bid function λO
it(p

O
it, b

T
it)

thei-th day-ahead auction. It can be shown [20] that under the
price-taker assumption and the MIBEL bid rules, the optimal
thermal bid function, i.e., the bid function that maximizesthe
day-ahead benefit function for any given valuebT

it, regardless
of the value of the clearing price, can be expressed as:

λO

it(p
O

it, b
T

it)=
{

0 if 0≤pO

it≤ [p
t
−bT

it]
+

2cq
t (p

O

it+bT

it)+cl
t if [p

t
−bT

it]
+ <pO

it≤pt−bT

it

∀i ∈ I , ∀t ∈ T

(3)

where [a − b]+ = max{0, a − b} and variablebT

it, the total
energy production of unitt assigned to the whole portfolio of
bilateral contracts, is defined as:

bT

it =
∑

j∈B

bT

itj ∀t ∈ T , ∀i ∈ I (4)

Expression (3) can be interpreted with the help of Fig. 5
which represents the optimal thermal bid function (thick line)
corresponding to four representative values of the bilateral
contracts energybT

it.
• Case a) this is the case whenbT

it = 0 (the commit-
ted thermal unitt doesn’t contribute to the bilateral
contract covering) and coincides with the classical self-
commitment problem treated by several authors ( [13],
[12]). In this case, it is well known that the optimal bid
strategy for a price-taker GenCo is to bid at the true
marginal cost of the unit. Assuming a quadratic thermal
generation costCT (pO

it) = cb
t + cl

tp
O

it + cq
t (p

O

it)
2, then

the optimal bidding policy consists of an instrumental
(λO

it = 0) sale bid up to the operational minimum limit
p

t
, to guarantee their acceptance, and the rest of the plant
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capacity at the marginal price2cq
tp

O

it+cl
t, the slope of the

cost functionCT (pO

it). If this sale bid is submitted to the
pool, thebilateral-free day-ahead matched energy under
scenarios, pD,s

it will be (see Fig. 5a):

pD,s
it =











p
t

if p∗,s
it ≤ p

t

pt if p∗,s
it ≥ pt

p∗,s
it otherwise

∀t ∈ T
∀i ∈ I
∀s ∈ S

(5)

where p∗,s
it =

(

λD,s
i − cl

t

)

/2cq
t is the unconstrained

maximum of the benefit function

BT ,s(pO

it) = λD,s
i pO

it − CT (pO

it) (6)

for a given thermalt, periodi and scenarios. Please note
that pD,s

it are constant parameters of the model.
• Cases b) and c)in both cases the energybT

it to be
allocated to the bilateral contracts is below the bilateral-
free day-ahead matched energypD,s

it , but strictly positive.
The MIBEL rules exclude this allocated energybT

it from
the sale bid of the thermal unit, giving rise to the optimal
bid curve associated with the second coordinate system
of Fig. 5 b) and c) (thick line), starting at a valuebT

it of
the original x-axis. In both cases the matched energy will
be the differencepD,s

it − bT

it

• Case d)In this last case the allocated energybT

it exceeds
the quantitypD,s

it . Looking at the optimal bid curve it
can be observed that the minimum price asked from
the marketλO

it(0, bT

it) = 2cq
t b

T

it + cl
t is greater than the

represented spot priceλD,s
i and, consequently, the sale

bid will remain unmatched.

The matched energy function under scenarios pT ,s
it associ-

ated with the optimal thermal bidding function (3) (also called
price-power functionin [14]) will be:

pT ,s
it (bT

it, uit)=

{

[pD,s
it − bT

it]
+ if uit = 1

0 if uit = 0

∀i ∈ I
∀t ∈ T
∀s ∈ S

(7)

Fig. 6 represents the functionpT ,s
it (bT

it, uit) (thick line), for
a fixed value of the spot priceλD,s

i . With the help of the
auxiliary variableszs

it (binary) andvs
it (continuous) (see Fig.

6) the non-differentiable expression (7) can be shown to be
equivalent to the following mixed-integer linear system [20]:

pT ,s
it = pD,s

it uit + vs
it − bT

it

pD,s
it (zs

it+uit−1)≤bT

it

bT

it≤pD,s
it (1−zs

it)+pt(z
s
it+uit−1)

0≤pT ,s
it ≤pD,s

it (1−zs
it)≤pD,s

it uit

0≤vs
it≤(pt−pD,s

it )(zs
it+uit−1)

bT

it ∈ [0, pt]

zs
it∈{0, 1}























































∀i ∈ I
∀t ∈ T
∀s ∈ S

(8)

Finally, we define the second stage variablesps
it that represent

the total generation of thermal unitt at periodi conditioned
to scenarios, expressed as:

ps
it = pT ,s

it + bT

it (9)

0 1

vs
it

pT ,s
it

pT ,s
it

bT

it

pt

pD,s
it

pD,s
it

z
s
it
=

0

z
s
it
=

1

uit

Figure 6. The thermal unit matched energy functionp
T ,s
it for a fixed spot

price λ
D,s
i

D. Optimal Generic Programming Unit bidding model

In this section the optimal bidding and the matched energy
functions for a GPU will be derived. First, variablebG

i will
represent the total contribution of the GPU to the coverage of
the bilateral contracts before the day-ahead market:

bG

i =
∑

j∈B

bG

ij ∀i ∈ I (10)

Second, we assume thatpV

i , the exercised energy of the VPP,
depends on the value of the binary variablexV

i as follows:

pV

i = pV xV

i ∀i ∈ I (11)

Under this assumption, the expression of the optimal GPU bid
function can be developed analyzing the two casesxV

i = 0 and
xV

i = 1:

• xV

i = 0: VPP rights are not exercised, and then, the
energybG

i must be either acquired to the pool or provided
by the bilateral contracts after the day-ahead market at an
agreed priceλP , which is the maximum price we were
willing to pay to the pool for that amount of energy.
Therefore the optimal purchase bid (energy, price) pair
is:

(bG

i , λP ) if xV

i = 0 (12)

• xV

i = 1 : the VPP rights have been exercised and
the exercise price has been paid. Then, two different
situations must be considered:

– bG

i ≤ pV

i : after covering the energybG

i with the VPP,
there is an energy surplus of[pV

i − bG

i ] that can be
sold either to the pool, at unknown spot priceλD

i , or
to the bilateral contracts after the day-ahead market,
at known sale priceλS . Then, the energy surplus
should be offered to the pool at a price not less than
λS, being the optimal sale bid:

([pV

i − bG

i ], λS) if xV

i = 1 andbG

i ≤ pV

i (13)
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– bG

i > pV

i : analogously to the casexV

i = 0, in order
to fulfill the uncovered part of the bilateral contracts
duty the following optimal purchase bid must be
submitted:

([bG

i − pV

i ], λP ) if xV

i = 1 and bG

i > pV

i (14)

As a result of the precedent analysis, theoptimal sale and
purchase bid for the GPU(Eq. (12-14)) can be expressed in
the following compact form:

OSBi =
(

[pV

i − bG

i ]+, λS
)

(15)

OPBi =
(

[bG

i − pV ]+ + min{bG

i , pV − pV

i }, λ
P
)

(16)

It can be easily verified that for any given value of the first
stage variablesbG

i and pV

i , Eq. (15-16) correspond to the
optimal bidding rules developed in Eq. (12-14). Eq. (15-16)
can be used to derive the expressions of the matched energy
at each scenarios ∈ S, as functions of the first stage variables
pV

i andbG

i . First, consider the two following sets of scenarios:

MS

i :=
{

s ∈ S | λD,s
i ≥ λS

}

MP

i :=
{

s ∈ S | λD,s
i < λP

} ∀i ∈ I (17)

The set MS

i includes those scenarios where, at thei-th
day-ahead auction, the optimal sale bid (15), if any, will
be accepted. Then, after Eq. (15), thematched sale energy
function will be:

pS,s
i (bG

i , pV

i ) =

{

[pV

i −bG

i ]+ if s ∈ MS

i (a)
0 if s 6∈ MS

i (b)

∀i ∈ I , ∀s ∈ S (18)

Analogously the setMP

i includes those scenarios where, at the
i-th day-ahead auction, the optimal purchase bid (16), if any,
will be accepted. For convenience, the two terms of the total
matched purchase energy of Eq. (16) will be represented by
two separate matched functions, thematched purchase energy
function

pP ,s
i (bG

i , pV

i ) =

{

min{bG

i , pV − pV

i } if s ∈ MP

i (a)
0 if s 6∈ MP

i (b)

∀i ∈ I , ∀s ∈ S (19)

and theresidual matched purchase energy function

pR,s
i (bG

i ) =

{

[bG

i − pV ]+ if s ∈ MP

i (a)
0 if s 6∈ MP

i (b)

∀i ∈ I , ∀s ∈ S (20)

Observing Eq. (18,19,20) it becomes evident that actually,
the value of the matched sale energy will be the same for
any scenario inMS

i , and the same happens with the matched
purchase energies and the scenarios inMP

i . Nevertheless,
the supraindex “s” will be conserved for the sake of clarity
and to strengthen the fact that these are actually second-stage
variables, as there will be scenarios with non-zero matched
energies while in others those energies will be zero. Another
issue to mention is that, as we are assuming thatλS < λP ,
the intersection set:

MSP := MS

i ∩MP

i = {s ∈ S | λD,s
i ∈ [λS, λP ]} (21)

0

wS

i

pS,s
i

pS,s
i

bG

i

pV

i

LB

i

pV

pV

pV

y
S
i
=

0

y
S
i
=

1

xV

i =0

xV

i =1

Figure 7. The GPU matched sale energy function (18a) for s ∈ MS
i .

0

wP

i

pP ,s
i

pP ,s
i

bG

i

pV

i

LB

i

pV

pV

pV

y
P
i
=

0

y
P
i
=

1

xV

i =0

xV

i =1

Figure 8. The GPU matched purchase energy function (19a) for s ∈ MP
i .

could be nonempty. This fact doesn’t reveal any inconsistency
of the model, because Eq. (18,19,20) are formulated in a
way that, for anys ∈ MSP , only the matched sale energy
pS,s

i or the total matched purchase energypP ,s
i + pR,s

i can be
greater than zero, but never both simultaneously. Then, for
those scenarios inMSP , only a sale bid or a purchase bid
will be submitted, depending on the value of the variablesbG

i

andpV

i .

The non-differential functions (18,19,20) can be conve-
niently incorporated into the optimization model through an
equivalent mixed-linear modelization. Eq. (18), which ex-
presses the matched sale energypS,s

i as a function of variables
pV

i and bG

i (see Fig. 7 for a graphical representation of this
function) can be incorporated into the optimization model
through the equivalent set of linear constraints (22), using the
auxiliary variableswS

i (continuous) andyS

i (binary):
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0
wR

i

pR,s
i

pR,s
i

bG

i

LB

i

LB

i

LB

i −pV

pV

yR

i = 0 yR

i = 1

Figure 9. The GPU residual matched purchase energy function(20a) for
s ∈ MP

i .

pS,s
i = 0 ∀s 6∈ MS

i

pS,s
i = pV

i + wS

i − bG

i ∀s ∈ MS

i

0 ≤ pS,s
i ≤ pV (1−yS

i ) ≤ pV

i ∀s ∈ MS

i

pV (yS

i −1) + pV

i ≤ bG

i

bG

i ≤ pV (1−yS

i ) + LB

i yS

i

0≤wS

i ≤(LB

i −pV )yS

i +pV −pV

i

yS

i ∈ {0, 1}























































∀i ∈ I (22)

where

LB

i =
∑

∀j∈B

LB

ij ∀i ∈ I (23)

Analogously, the matched purchase energy function (19),
represented graphically in Fig. 8, can be formulated as the
system of linear constraints (24), with the help of the auxiliary
variableswP

i (continuous) andyP

i (binary).

pP ,s
i = 0 ∀s 6∈ MP

i

pP ,s
i = bG

i − wP

i ∀s ∈ MP

i

pV yP

i ≤ pP ,s
i ≤ pV − pV

i ∀s ∈ MP

i

pV yP

i ≤bG

i

bG

i ≤pV (1−yP

i )+LB

i (yP

i +xV

i )−pV

i

0≤wP

i ≤(LB

i −pV )yP

i +LB

i xV

i

yP

i ∈ {0, 1}























































∀i ∈ I (24)

Finally, the residual matched purchase energy function (20),
represented in Fig. 9, is introduced in the model through the
following set of linear constraints:

pR,s
i = 0 ∀s 6∈ MP

i

pR,s
i = bG

i + wR

i − pV ∀s ∈ MP

i

0 ≤ pR,s
i ≤ LB

i yR

i ∀s ∈ MP

i

pV yR

i ≤ bG

i

bG

i ≤ pV (1 − yR

i ) + LB

i yR

i

0 ≤ wR

i ≤ pV (1 − yR

i )

yR

i ∈ {0, 1}























































∀i ∈ I (25)

where, once again,wP

i (continuous) andyP

i (binary) are
introduced as auxiliary variables.

E. GPU’s net energy balance

Any GPU operating in the MIBEL must satisfy at each
hour i ∈ I that the net energy balance of the GPU must be
zero, with the help, if necessary, of the bilateral contracts after
the day-ahead market (see section III). Following this rulewe
assume that, for each scenarios ∈ S, energiesbP ,s

i and bS,s
i

are purchased and sold through these new bilateral contracts
up to a given maximum quantity at known pricesλP andλS

(remember thatλS < λP ) respectively. Then the GPU’s net
energy balance constraints for each houri and scenarios are:

pV

i + pP ,s
i + pR,s

i + bP ,s
i = pS,s

i + bS,s
i + bG

i

0 ≤ bP ,s
i ≤ b

P

0 ≤ bS,s
i ≤ b

S















∀s ∈ S
∀i ∈ I

(26)

F. Objetive function

The expected value of the benefit functionB can be
expressed as:

EλD [B(u, a, e, p, pT , pV , pS, pP , pR, bS, bP ; λD)] =
∑

∀i∈I

∑

∀j∈B

λB

ijL
B

ij (27)

−
∑

∀i∈I

∑

∀t∈T

[

con
t eit + coff

t ait + cb
tuit

]

−
∑

∀i∈I

λVpV

i (28)

+
∑

∀i∈I

∑

∀t∈T

∑

∀s∈S

P s
[

λD,s
i pT ,s

it −cl
tp

s
it−cq

t (p
s
it)

2
]

(29)

+
∑

∀i∈I

∑

∀s∈S

P s
[

λD,s
i (pS,s

i −pP,s
i −pR,s

i )
]

(30)

+
∑

∀i∈I

∑

∀s∈S

P s
[

λSbS,s
i −λP bP ,s

i

]

(31)

The term (27) represents the total income of the bilateral
contracts before the day-ahead market (constant) and can be
ignored in the optimization. The term (28) does not depend on
the realization of the random variableλD,s

i , and corresponds
to the on/off fixed cost of the unit commitment and the
exercise cost of the VPP energy. The expressions (29-31)
are respectively the expected value of the benefit coming
from the day-ahead market’s bids of the thermal units (29) ,
from the day-ahead market’s bids of the generic programming
unit (30) and from the bilateral contracts after the day-ahead
market (31). All the functions appearing in (28-31) are linear
excepting the generation costs of the thermal units (29), which
are concave quadratic (cq

t ≥ 0, see Table II).
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G. Final model

The final model developped in the previous sections is:






















































































max EλD [B(u, a, e, p, pT , pV , pS, pP , pR, bS, bP ; λD)]
s.t. :

Eq. (1) Bilateral contractsB covering
Eq. (2) Unit commitment const.
Eq. (4) Thermal’sbT

it def.
Eq. (8) Thermal’s matched energypT ,s

it def.
Eq. (9) Thermal’s total generationps

it def.
Eq. (10) GPU’s bG

i def.
Eq. (11) VPP’s energy nominationpV

i def.
Eq. (22) GPU’s matched sale energypS,s

i def.
Eq. (24) GPU’s matched purchase energypP ,s

i def.
Eq. (25) GPU’s residual matched energypR,s

i def.
Eq. (26) GPU’s net energy balance const.

(32)
Taking into account the parameters and sets defined in Eqs.
(5), (17) and (23). The resulting deterministic equivalentof the
proposed two-stage stochastic problem is a mixed continuous-
binary linearly constrained concave quadratic maximization
problem that can be solved efficiently with the help of standard
optimization software, as will be illustrated in Section V.

IV. T HE MARKET PRICE SCENARIO GENERATION

The two-stage stochastic model (32) requires a character-
ization of the market price through a set of scenarios, also
known asscenario fan. Many scenario generation methods
are available, see [23] or [24] for a review of them.

The creation of new bilateral contracts and the application
of VPP auctions started up at June 2007. As the behavior of
the prices depends on the market rules, a complete set of 261
equiprobable scenarios has been obtained using all available
market prices from June 2007 [24].

Given that the size and computational cost of the stochastic
programming models depends on the number of scenarios,
some scenario reduction techniques have to be applied in
order to reduce the original set of scenarios into a smaller but
representative one. We apply the scenario reduction algorithm
explained in [25], which determines a subset of the initial
scenario set and assigns new probabilities to the preserved
scenarios.

In our model, a scenario is a set of 24 hourly market prices.
The original number of scenarios was 261. The reduction
technique is applied resulting in subsets of 10, 25, 50, 75,
100, 150, 200 and 250 scenarios. Fig. 10 shows how the
optimal objective function value changes as the number of
scenarios increases. It also contains (right axis) the difference
in percentage between expected benefits of the complete group
of 261 scenarios and each reduced set (∆E[Benefits](%)).
Observe how from 75 scenarios any additional increase of the
number of scenarios improves the expected benefits by less
than 0.09% while the CPU time increases more than 15 times
(from 442s with 75 scenarios to 6554s with 100 scenarios).
As a consequence, model (32) will be tested by a fan with
75 scenarios for which the objective function value becomes
stable and the computational time cost remains acceptable.
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Figure 10. Expected benefit value and difference between theexpected
benefit of the complete set and each reduced one, as function of the number
of scenarios

Table I
STOCHASTICPROGRAMMING INDICATORS

Monday, April 28, 2008

RP 901.164e

EEV 848.528e

VSS 52.636e

In Table I the stochastic programming indicators needed to
evaluate the goodness of the stochastic approximation [26]
are reported. VSS, the measure of the advantage of using
the stochastic programming model instead of the deterministic
one, shows that it is possible to increase the expected benefits
by 52.636e (6.02%) by using the stochastic optimal solution.

V. TEST AND RESULTS

The model (32) has been tested with real data from a
Spanish generation company and market prices [2] and the
results are reported in this section. The day under study is
Monday, May 05, 2008. As explained in the previous sections,
a fan with 75 scenarios has been used to represent the spot
price stochasticity. The characteristics of the thermal units,
bilateral contracts and VPP capacity are shown in Tables II,
III and IV, respectively. The model (32) has been implemented
in AMPL [21] and solved with CPLEX [22] (called with
default options) using a SunFire X2200 with two dual core
AMD Opteron 2222 processors at 3 GHz and 32 Gb of RAM
memory.

A set of computational tests has been performed to evaluate
the influence of the GPU and VPP in the GenCo’s optimal
bidding strategy in the MIBEL. For this reason, the proposed
stochastic programming model was tested for three different
cases: (a) a GenCo with GPU and VPP capacity; (b) a
GenCo with GPU but without VPP capacity; and (c) a GenCo
without GPU (see Table V for a summary of the optimization
problem’s dimensions and solutions). The worst expected
profit is obtained in case (c), where the thermal units are the
only responsibility for fulfilling the BCs before the day-ahead
market. Case (b) obtains a greater expected profit than case (c),
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Table II
OPERATIONAL CHARACTERISTICS OF THETHERMAL UNITS

t cb
t cl

t c
q
t p

t
pt st0t con

t c
off
t ton

t t
off
t

e e/MWh e/MWh2 MW MW hr e e hr hr

1 151.08 40.37 0.015 160.0 350.0 +3 412.80 412.80 3 3

2 554.21 36.50 0.023 250.0 563.2 +3 803.75 803.75 3 3

3 97.56 43.88 0.000 80.0 284.2 –3 244.80 244.80 3 3

4 327.02 28.85 0.036 160.0 370.7 +3 438.40 438.40 3 3

5 64.97 45.80 0.000 30.0 65.0 +3 100.20 100.20 3 3

6 366.08 -13.72 0.274 60.0 166.4 +3 188.40 188.40 3 3

7 197.93 36.91 0.020 160.0 364.1 +3 419.20 419.20 3 3

8 66.46 55.74 0.000 110.0 313.6 –3 1298.88 1298.88 3 3

9 66.46 55.74 0.000 110.0 313.6 –3 1298.88 1298.88 3 3

10 372.14 105.08 0.000 90.0 350.0 –3 1315.44 1315.44 3 3

Table III
CHARACTERISTICS OF THEBILATERAL CONTRACTS

j LB
1...24j λB

1...24j

MW e/MWh

1 1100 52

2 400 63

due to the possibility of being able to buy cheaper energy from
the pool to cover the BCs and to avoid the use of expensive
thermal units. The greatest expected profit is obtained in case
(a) where the VPP capacity is used to sell in the day-ahead
market and to cover part of the BCs, using the same advantages
of case (b).

The optimal management of the GPU in case (a) can be
analyzed with the help of Fig. 11 and 12. Fig. 11 shows the
aggregated economic dispatch of the two BCs (1.500MWh)
by the thermal units (bT

i , white bars) and the GPU (bG

i ,
black bars), together with the exercised VPP energypV

i (small
circles). Fig. 12 shows the optimal GPU’s sale bid (OSBi,
positive values) and purchase bid (OPBi, negative values) for
both cases (a) and (b) (black and white bars respectively).
Observing both graphs along the whole 24h optimization
horizon, it is clear that the GPU exhibits a differentiated
behaviour depending on the time period considered:

• In time periodsi ∈ {5, 6, 7}, the GenCo doesn’t exercise

Table IV
CHARACTERISTIC OF THEVPP CAPACITY AND THE BC’S AFTER

DAY-AHEAD MARKET

pV λV λS b
S

λB b
B

MW e/MWh e/MWh MW e/MWh MW

800 38 20 200 100 200

Table V
OPTIMIZATION CHARACTERISTICS OF THESTUDY CASES

Case Constraints Real Binary E(Benefits) CPU

variables variables e s

(a) 134034 56002 18816 901.164 442

(b) 128503 52364 18792 665.530 214

(c) 119399 46895 18720 610.264 142
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Figure 11. Aggregated economic dispatch of the two BCs between the
thermal units and the GPU for study case (a). Exercised VPP energy is also
shown.

its VPP rights (pV

i = 0). For those time periods, all the
energybG

i allocated to the BCs must be purchased to the
day-ahead market (purchase bids, black negative bars in
Fig. 12) or from the BCs after the day ahead market.
For the rest of the time periods the GenCo does exercise
completely its VPP rights (pV

i = pV

i ).
• There is only one time period (i = 16) where the

exercised energy coincides with the energy allocated to
the BCs (bG

16 = pV

16).
• For periodsi ∈ {3, 4, 8, 21} the allocated energy exceeds

the exercised one (bG

i > pV

i ). The surplus energybG

i −pV

i

must be obtained either from the day-ahead market (see
the purchase bids for those time periods, black negative
bars in Fig. 12) or from the BCs after the day ahead
market.

• For periodsi ∈ {1, 2, 9−15, 17−20, 22−24}, only part
of the exercised VPP energy is used to satisfy the BCs,
and the rest is submitted to the day-ahead market (sale
bids for those time periods, black positive bars in Fig.
12)

Case (b) corresponds to those GenCos operating in the
MIBEL which are not allowed to acquire any VPP capacity
rights in order to prevent these GenCos from becoming price-
makers. Under the assumptions of model (32), such a GenCo
can use the GPU to purchase energy from the day-ahead
market at its best convenience, resulting in an optimality
purchase bid pattern that is depicted by the white bars in Fig.
12. The energy of the optimal purchase bid coincides in this
case with the contribution of the GPU to the BCs at each time
period,bG

i .
Finally, the optimal thermal unit’s bidding is analyzed. The

thick line in Fig. 13 shows the optimal thermal bid function
λO

it(p
O

it, b
T∗
it ) of three thermal units (3, 4 and 6) for all case

studies in each interval. Remember thatbT

i is the energy
allocated to the BCs, in such a way that the submitted bidding
comprises energies betweenbT

i andpt. The symbolbT
∗ is used

to point out the BCs contribution for the remaining hours not
shown explicitly in each sub-figure. Observing Fig. 13 it is
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Figure 13. Bidding curve of thermal programming units 3, 4 and 6 for all study cases.
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Figure 12. Sold and bought optimal bidding of the generic programming
unit for the study cases (a) and (b).

clear that the presence of the GPU and VPP capacity allows
the thermal units to submit more energy to the pool. See, for
instance, the extreme case of thermal unit 3: without GPU
(case (c)) the generation of this unit is exclusively dedicated
to the BCs (bT

i,3 = p3 ∀i), while with GPU and VPP capacity
(case (a)) all the production output between the operation
limits are submitted to the pool (bT

i,3 = p
3
∀i). The rest of the

thermal units exhibit a similar behaviour. Observe also how
the availability of the GPU allows the bidding of the thermal
unit 6 to adapt itself to the different periods in contrast tocase

(c), where the bidding is almost identical in all time periods.
In general, Fig. 13 shows that the optimal thermal unit’s
bidding is affected significatively when a GPU is considered,
changing drastically the optimal bidding in a non-trivial way
that increases the opportunity of the GenCo to take benefits
from the pool.

VI. CONCLUSIONS

This paper provides a procedure for a price-taker generation
company operating under the most recent regulations of the
MIBEL Iberic Electricity Market to optimally manage a pool
of thermal units and a generic programming unit. The pro-
posed technique is built within the versatile decision frame-
work provided by the stochastic programming methodology.
A two-stage stochastic mixed quadratic programming problem
is proposed to decide the optimal unit commitment of the
thermal units, the optimal economic dispatch of the bilateral
contracts between the thermal and generic programming units
and the optimal bid for thermal and generic programming units
observing the MIBEL regulation. The objective of the producer
is to maximize the expected profit from its involvement in
the spot market, bilateral contracts and virtual power plant
capacity. The set of scenarios representing the uncertainty of
the spot prices is built applying reduction techniques to the
tree obtained from real data of the MIBEL system. The model
was implemented and solved with commercial optimization
packages and tested with real data of a Spanish generation
company and market prices. The results of the computational
experiments are reported and analyzed.
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