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Sorting of colloidal particles of different sizes is of importance in the transport and
delivery of such particles in biological, materials science, and other technological contexts.
A successful methodology involves the flow of a mixture of particles over designer surfaces
presenting a periodic array of traps (optical tweezers) or microfabricated obstacles. The
trajectories of the particles over these surfaces deviate from the direction of flow as the
particles are attracted (traps) or repelled (obstacles) by the features of the landscape.
The deviation of the particles from that of the flow depends on particle size (or on some
other particle characteristic) and hence the particles can be sorted according to trajectory
direction. On the basis of extensive numerical simulations, we present a unified view of
these methodologies and discuss the effects of system parameters such as the magnitude
and direction of the flow on the sorting efficacy.
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1. Introduction

In the past few years there has been a veritable burst of effort and success in
technologies that lead to efficient and nondestructive sorting of mixtures of colloidal
particles, most of the interest in this capability arising in biological contexts. One
particular approach that has attracted a great deal of attention is that of separating
particles by having them flow over a surface modulated with traps and/or obstacles
whose spatial distribution causes an angular deviation of particles from the direction
of the flow.! 14 The magnitude and direction of the angular deviation depend on the
geometry of the surface and, most importantly, on some particle property such as
its size or index of refraction, thus making it possible to separate particles because
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they emerge at different angles. Trap landscapes have been generated with optical
tweezers,>® 14 and obstacle landscapes with microfabricated technology.? 1

The sorting efficiency of these devices depends on a number of details of the
experiment including surface structure and geometry, the flow speed of particles over
the surface, the particular particle characteristic used for the separation process,
interactions among particles, thermal fluctuations, etc., and a good deal of work
has gone into optimizing conditions in each of the experimental approaches such
as to improve the efficiency of sorting. This is, of course, the important course as
a basis for manufacturing devices for different applications. On the other hand, at
a proof-of-principle level it is important to remember the common aspects of the
various methodologies, and to keep in mind that it is useful to extract and organize
the generic features that lead to the desired sorting. This is the purpose of our
review.

While there are some analytic results in the literature,
theoretical understanding of the problem is based on numerical simulation re-

12,13,15 1most of the

sults.2 %1617 Qur presentation here also focuses on numerical results, and is or-
ganized as follows. In Sec. 2 we present the basic model, discuss the variables that
are most important for effective sorting, and present the various surfaces to be con-
sidered in this presentation. In Secs. 3 and 4 we display a variety of simulation
results for particle trajectories and for figures of merit that lead to optimal param-
eter choices for effective sorting. In Sec. 5 we consider the effects of temperature
and of parameters that have been kept constant in the remainder of the discussion.
Finally, we summarize our results in Sec. 6.

2. The Model

Our analysis is based on straightforward classical equations of motion to describe
the motion of a particle of mass m on a two-dimensional surface,

mi = 75%‘/(1‘73” — piE+ fr +§z(t)

mij = =g V(2,y) — py + fy + & (). (1)

The position of the particle is specified by the coordinates (x,y), and a dot denotes
a derivative with respect to time t. The modulation of the surface is described by a
periodic potential V' (z,y) of height or depth V{ and period A which for simplicity we
take to be equal in the & and y directions. A constant external force with Cartesian
components f, f, (magnitude fo = (f2 + fy2)1/ 2) acts on the particle. This force
might model, for instance, a constant velocity flow. The Stokes coefficient of friction
is u, and the thermal environment is captured by the mutually uncorrelated white
noises & (t) that obey the equilibrium fluctuation-dissipation relation at temperature
T’

(&)E; () = 2ukpTdi;0(t —t'). (2)
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These equations are simplified by rescaling via the transformations of variables

_z _¥ _Jht
TEx T TV (3)

and by introducing the scaled potential of unit height or depth ¥V = V/V;. In terms
of these quantities

. 0 :

Ty = _a_%v(rl.’ry) = Ve + Fy + Go(7),

. 0 :

Ty = ——V(’I“l-,’l“y) — iy + Fy + Cy(T)’ (4)
ory

where a dot now denotes a derivative with respect to 7, and where the scaled white
noise terms obey the fluctuation-dissipation relation

(Gi(r)G (7)) = 29T 6350(r — 7'). (5)

In addition to lattice geometry and potential function parameters, the problem is
defined by four independent (dimensionless scaled) parameters: the temperature 7,
the dissipation =, the magnitude Fy of the external force,

A
T Tl =T R M

T (6)
and the angle 6 between the external force and the z axis.

Although in all of our simulations we implement the full equations of motion (4),
it should be noted that in the regime of interest in the sorting problem two simpli-
fications are appropriate. One is that the dissipation parameter = is large, i.e., the
system is overdamped, so that the second derivative term can be dropped entirely.
This is of great help in any analytical work.'® In all of our simulations we set v = 20.
The second is that sorting of particles is hindered by thermal fluctuations, and so
the technology is useful precisely in the regime where thermal effects are unimpor-
tant. Therefore the temperature (noise) contributions could also be dropped from
the equations. In other words, the problem in the parameter regimes of greatest
interest reduces to a pair of first order purely deterministic equations. However, by
retaining thermal fluctuations in our simulations we are able to show the extent to
which these fluctuations affect the results. Still, this discussion serves to focus on
the fact that the parameters of particular interest in this study are those that define
the potential, and the magnitude Fyy and direction 6 of the external force.

We begin by discussing the surface modulations, i.e., the potentials, that might
be interesting. Surfaces constructed with arrays of optical tweezers usually con-
sist of periodic arrays of identical localized traps or potential wells separated by
flat plateaus.®> ® (Interesting variations of this basic technology to further improve
performance are under active study.!?) In our earlier work® 7 we mimicked this
configuration with the potential (written in the original unscaled form)

A

Viey) = T yperent

(7)
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where g(x,y) is the periodic two-dimensional function

The parameter V) > 0 controls the depth of the traps, A controls the steepness of
these features, and B determines the relative size of a well with respect to the spatial
period A. In particular, larger values of B lead to shallower and narrower wells and
are therefore associated with larger particles, and subsequently we focus on the
effects of this parameter as a sorting indicator. With a very occasional exception,
throughout our simulations we set A = 5, and (although it does not matter in the
scaled representation) A = 4 and Vj = 1. A finite portion of this two-dimensional

g(x,y) = Alcos (2mxz/\) + cos (2my/\) — 2B].

potential is seen in the upper left panel of Fig. 1.

Fig. 1.
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Finite portions of typical two-dimensional potentials that lead to particle sorting. Upper
left panel: periodic arrangement of traps with B = 0.7. Upper right panel: periodic arrangement
of obstacles with B = 0.7. Lower panels: mixed arrangements of traps and obstacles. Lower left:

Byw = 0.5 and Bp = 0.9. Lower right: By = Bo = 0.5 and A = 2.

A second modulation consists of regularly placed objects or barriers.? 19 These
barriers can be shaped and inclined in different ways and placed on the surface in a
variety of geometric arrangements that can be manipulated to increase their sorting
efficiency, but a generic representation for numerical simulations can be achieved
by simply flipping the potential (7), V' — —V. The parameter Vj now controls the
height of the obstacles, and larger values of B lead to wider “corridors” between
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obstacles and are therefore associated with smaller particles. A finite portion of this
potential is seen in the upper right panel of Fig. 1.

While surfaces with traps and surfaces with obstacles have been studied rather
extensively, we add a third type of surface to our discussion that has not been
realized experimentally (and may or may not be of particular experimental inter-
est), but that helps to round out our understanding of the sorting capabilities of
modulated surfaces. This is a surface in which there are both obstacles and traps
periodically placed with respect to one another. For this purpose we simply gener-
alize the potential to contain both, with the possibility of different “sizes” B for the
wells and obstacles,

Viz,y) =17 e_—‘g/vom,y) 1T ngo(z,y)’ )

where
gw(z,y) = Acos (2mz/\) + cos (2my/\) — 2Bw] (10)
go(,y) = Alcos (2ma/A + ) + cos (2my/A + 1) — 2Bo). (11)

The lower panels in Fig. 1 show two cases of this potential. The purpose of including
the lower right case is to illustrate that one can choose parameters in the mixed
potential to mimic a purely cosinusiodal potential.

In the physical experiments of interest, a stream of particles is made to flow over
such a surface say starting at the origin of the = axis, with a particular direction of
flow that can be varied relative to the symmetry axes of the periodic lattice. Some
distance downstream, say at x = L,, the particles are collected and one observes
the angle at which they emerge relative to the angle of flow. If this emergence angle
is different for particles of different sizes (or some other particle characteristic), then
the particles can be sorted as they emerge. As noted earlier, the important variables
for sorting efficiency are the angle 6 between the flow direction and the symmetry
axis (x axis) of the lattice, the strength of the flow as reflected in the magnitude
Fpy, and the size of the particles as reflected in the potential parameter B.

Having discussed the models to be analyzed, we now focus on the particle trajec-
tories in these various potential landscapes and the dependences of these trajectories
and the resulting sorting capabilities on the important parameters. For this purpose
we need to specify the observables to be calculated in our numerical simulations.
Most are related to the mean particle velocity (v) as a function of these parame-
ters. More specifically, for any given potential, our numerical simulations yield the
Cartesian components of the average velocity,

(v;) = lim (ra(r) (12)

)
T—00 T

from which we construct the components parallel and perpendicular to the force F,

(v)) = (ve) cos @ + (vy) sinb, (vi) = —(vg) sinf + (v,) cosé. (13)
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The magnitude of the deviation of the direction of the average particle velocity from
that of the force can be characterized by either of the angles « (called the deflection
angle) or ¥ = « + 6 (called the velocity angle), defined as

no = (vr) an :@
ta (o)) tan ¥ = A (14)

3. Trajectories: Dependence on 6

Fig. 2. Left panel: typical particle trajectories on a lattice of traps for forces applied at different
angles represented by the dotted lines. Right panel: same for a lattice of obstacles. Potential
parameters are those of the upper panels in Fig. 1. Other parameters: Fy = 10, 7 = 10~%, and
tand = 0.2 (a), 0.4 (b), 0.6 (c), and 0.8 (d).

Typical trajectories that illustrate the crux of the story are shown in Fig. 2. The
left panel shows a lattice of traps (the same as in the upper left panel in Fig. 1) and
a series of particle trajectories associated with different flow directions as indicated
by the small letters on the side of the panel. The right panel shows a lattice of
obstacles (the same as in the upper right panel of Fig. 1) and the trajectories in
this lattice. The figures clearly show the geometrical source of the deviations of the
particle trajectories from the flow. In the surface with traps, as particles move on
the surface they are attracted to the nearest traps. Every time a particle moves close
to a trap, there is a small pull away from the flow and toward the trap, leading to a
net angular displacement between the two directions. In the surface with obstacles,
the particles are repulsed by the nearest barriers. Every time a particle moves close
to one, it must avoid it and as a result it is pushed away from the flow, again
leading to a net angular displacement. Thus, in a sense, the deviation mechanism
is “opposite” in the two potentials. There are, however, noteworthy points that are
explored in more detail subsequently:

(1) While details of the trajectories in the two cases are different, the signs of
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the deflection angles o are the same even though one involves attractive and
the other repulsive forces. While this may sound somewhat counterintuitive, the
figure clarifies the process, cf. cases (a) and (d). For both potentials, a is positive
for case (a) and negative for case (d). This result is supported analytically in
Eq. (19) in Gleeson et al.,'> where a perturbative analysis valid for large forces
and temperatures explicitly shows the particle velocities to be independent of
the sign of the potential.

(2) The range of angles covered by the emerging particles associated with a given
range of flow angles may be narrowed in both geometries. Thus, for example, in
both geometries all flows between direction (b) and (c) emerge within the much
narrowed cone indicated in the figures. Again, the details are different (e.g. the
emergence cone is much narrower for the wells than for the obstacles in this
particular example), but the overall behavior is the same.
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Fig. 3. Left panel: plateaus in the absolute velocity angle for a surface with traps with B = 0.5
(solid), 0.7 (dashed), and 0.9 (dotted). Other parameters: Fo = 10 and 7 = 10~%. Right panel:
comparison of plateaus for B = 0.7 and 7 = 0 for wells (solid), obstacles (dotted) and mixed
potential with By = Bo = 0.7 (dashed). The mixed lattice supports a much wider middle
plateau and narrower end plateaus than the other two lattices.

Early in the history of this subject perhaps the most dramatic (and surely not as
clearly understood as it became later) observation was the occurrence of so-called
“kinetically locked-in transport”.?3 When the velocity angle ¥ is plotted against the
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force direction @, a pronounced series of plateaus along which ¥ is independent of 6
are seen [cf. Fig. 4 of Korda et al.?]. These plateaus are reproduced in our numerical
simulations, %17 and they occur for all the potentials discussed here. Examples are
shown in Fig. 3. The plateaus are extreme manifestations of the point made in
item 2 above. A fairly straightforward geometrical calculation of the conditions for
these terraces at zero temperature is possible if we think of the surface as an array of
cylindrical obstacles and/or traps of radius ro. For instance, for an obstacle surface
we construct the trajectories assuming that the particles go around the obstacles
and move on along the line tangent to the cylinder and parallel to the direction of the
force. In this case, if we take rg = 0.9 we readily find a plateu at ¥ = 0 that extends
over the range tan 6 € [0, 0.23], one at ¥ = 0.5 for the range tan § € [0.38,0.63], and a
third at ¥ = 1 for tan 6 € [0.72, 1]. The right panel of Fig. 3 shows that the angles ¥
of the plateaus are insensitive to lattice geometry, and that the wells and obstacles
give the same plateau widths whereas the mixed lattice leads to some narrower and
some wider terraces. For instance, at the force angle tan § = 0.5 all three geometries
have the particles following the angle tan ¥ = 0.5 but at the force angle tan 6§ = 0.75
the wells and the obstacle surface trajectories lie along tan ¥ = 1 whereas those of
the mixed lattice lie along tan ¥ = 0.5. For the cylindrical obstacle geometry we
also find minor terraces located at tan ¥ = 1/4, 1/3, 2/3, 5/3, and 3/4.

Fig. 4. Deflection angle vs force direction. Left panel: obstacles with B = 0.5 (solid), B = 0.7
(dashed) and B = 0.9 (dotted). Right panel: mixed potential with By, = 0.5 and Bo = 0.9 (solid),
Bw = 0.7 and Bp = 0.7 (dashed), By = 0.9 and Bo = 0.5 (dotted). Other parameters: Fy = 10,
7 =0.01.
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Fig. 5. Deflection angle vs particle size parameter B for tan 8 = 0.24. Left panel: wells and F' = 10
(solid), F' = 12 (dashed). Right panel: obstacles and F' = 4 (solid), F' = 10 (dashed). For all cases
7 =0.01.

A clear view of the sorting capabilities of the modulated surfaces is apparent if
instead of the € dependence of the velocity angle ¥ we focus on the 6 dependence of
the deflection angle .. Typical results for obstacles and mixed surface modulations
are shown in Fig. 4. The results for wells (not shown) are essentially the same as for
obstacles. Here we see clearly that sorting is possible because the deflection angle for
a given force direction and magnitude depends on the size of the particles. The figure
makes it clear that for each geometry one can in fact choose 6 so as to optimize
the sorting of particles of given sizes. For example, in the case of obstacles (left
panel) sorting of particles corresponding to B = 0.5 (solid) and B = 0.7 (dashed)
is optimized at a force angle tan§ ~ 0.24, while B = 0.7 and B = 0.9 (dotted) are
most effectively sorted if one chooses tan § ~ 0.15. Note the similarities between the
surfaces with only obstacles (or only wells) and with wells and obstacles of different
sizes as well as the considerable difference in the behavior of the mixed surface with
equal and unequal B values for tanf > 0.5. Overall, while the detailed values of
the angles and of the sorting efficiency depend on the surface modulation, the same
ideas are applicable in all cases.

In Fig. 5 we show the deviation angle as a function of the particle size parameter
B for a surface with wells and one with obstacles, each for two different forces (see
Fig. 2C in Huang et al.?). In both cases a greater deviation angle for a given particle
size is observed for lower forces. On the other hand, if a given deviation angle is
sought, one must decrease the force for larger particles in the case of wells but one
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must increase the force for larger particles in the case of obstacles.

4. Trajectories: dependence on Fj

We have described and illustrated the dependence of the trajectories of particles
of different sizes on the direction of the external force, and have ascertained that
one can choose the external force direction so as to optimize the sorting of particles
of given different sizes. The detailed optimization depends on the specific surface
modulation, but the fact that any periodic modulation can lead to sorting is clear.
Next we direct our attention to the dependence of the particle trajectories on the
magnitude of the external force.

0.25 1

02—

0.15—

tan |p]

01—

0.05—

10 15 20

Fig. 6. Left (wells) and central (obstacles) panels: deflection angles a for B = 0.5 (squares) and
B = 0.7 (triangles) for a force direction tan 6§ = 0.24. The circles show the difference between the
two deflection angles. Right panel: Difference in deflection angles for particles on a mixed surface
(Bw = 0.5 and By = 0.7, Bo = 1.4— By) at two different force directions, tan 6§ = 0.24 (circles)
and tan @ = 0.8 (squares). The larger angle is very effective for sorting; the difference in deflection
angles exhibits no maximum within the range of forces of our simulations. Note that the optimal
force at the angle tanf ~ 0.24 is nearly the same for the three types of surfaces. In all cases
7 =0.01.

It is clear from the outset that there must be a range of forces that is most useful
for sorting. If the external force is too weak, the particles will become trapped in
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potential wells or will not be able to get around obstacles. If the force is too strong,
the particles will essentially ignore the traps or obstacles and will simply follow the
force. The range of forces for successful sorting lies between these two extremes,
and, for appropriately chosen force directions, it is in fact possible to select an
optimal force to achieve most efficient separation. This is shown in Fig. 6. On the
vertical axes 3 stands for either the deviation angle « for particles of a given size,
or for the difference in deviation angles for particles of two sizes. This difference,
which one seeks to optimize, is related to a commonly used “figure of merit” for
sorting [see Fig. 3 of McDonald et al.”]. The force directions in the figure have been
chosen on the basis of Fig. 4. We note one interesting result that points to some
important differences among the surfaces due to geometry, and it is the fact that
at a large angle (here tanf = 0.8) it is possible to sort particles very effectively at
small external forces provided we have a mixed geometry. The other geometries do
not exhibit this effectiveness at small forces.

0.05 0.04
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Fig. 7. y-position arrival distributions for three sets of 2000 particles, for F' = 10 and 7 = 0.01,
collected at Ly = 5000. Upper left (wells) and lower left (obstacles): B = 0.5, 0.7, and 0.9 (left
to right), tand = 0.24. Upper right: mixed lattice with By = 0.5, 0.7, and 0.9 (left to right),
Bo = 1.4 — By, and tan 6 = 0.24. Lower right: same mixed lattice but tan 6 = 0.8.
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While the difference in deflection angles is a crucial measure of the sorting ca-
pability of a modulated surface, one should also take into account the dispersion of
the particles as they reach the end of the system. If this dispersion is too large, e.g.,
if the particle distribution were to be too broad around the deflection angle so that
the distributions of different mean deflection angles overlap, then a measure based
only on these averages may not be sufficient for a good selection process. In Fig. 7
we show the distributions associated with the deflection angle results in Fig. 6. The
vertical axes show the distributions. That the particles of different sizes for wells and
for obstacles emerge at different angles when the external force angle is tan 6§ = 0.24
not only agrees with the results of Fig. 6, but also with those of Fig. 4. However,
this angle is not of use to separate B = 0.5 from 0.9 in the mixed case, in agreement
with the right panel of Fig. 4. However, tanf = 0.8 is a good separation angle for all
three particle sizes in the mixed case. Clearly, for all cases illustrated in this figure
the mean deflection angles do provide a good indicator for sorting. These results
provide a useful additional measure for comparison with experiments.!® Given a set
of particles of two different sizes, the resolution R is calculated from the y-position
distributions for the two types of particles (collected at a fixed z-position) as

R AY ’

201 + 209
where AY is the peak separation and 20; are the bandwiths. Resolvable distributions
are associated with values of R 2> 1.'® The resolution for the deflection angles and
associated distributions shown in Figs. 6 and 7 are shown in Fig. 8. The maxima
in the resolution curves indicate the optimal force for sorting of particles of those

(15)

particular sizes and force directions.

5. Other Variations

There are two quantities that we have essentially kept fixed in our presentation (or
varied very little), namely, the temperature and the potential parameter A. In this
section we briefly review some consequences of varying these quantities.

Raising the temperature necessarily blurs the sorting mechanism. We illustrate
this obvious result in a variety of ways using the measures that we have introduced
in previous sections. First, consider the plateaus in the absolute velocity angle as a
function of the direction of the external force, as illustrated in Fig. 3. Raising the
temperature blurs these sharp terraces, as shown in the left panel of Fig. 9. The
y-distribution of particles upon arrival at a particular L., as illustrated in the right
panel of Fig. 7, of course depends on temperature and also blurs with increasing
temperature. An example is shown in the right panel of Fig. 9. The lowest 7 case
here is the same as the leftmost panel of Fig. 7. The associated progression of the
resolution is shown in Fig. 10.

Finally, the one remaining parameter that we have not varied in this discussion is
the parameter A in the surface modulation potential. As noted earlier, this parame-
ter allows us to control the steepness of the wells and/or obstacles and therefore the
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Fig. 8. Resolution as a function of the magnitude of the external force for particles of two different
sizes at 7 = 0.01. Left (wells) and middle (obstacles) panel: B = 0.5 and 0.7 (circles), B = 0.7 and
0.9 (squares), and tan 6 = 0.24. Right panel: mixed lattice with By = 0.5 and 0.7, Bo = 1.4— By,
and tan 6 = 0.24 (solid circles), tan @ = 0.8 (open circles).

size of the flat regions connecting them. In the mixed potential case, we indicated
that a judicious choice of A allows us to mimic even a purely cosinusoidal potential
within the family of potentials Egs. (9)-(11). In Fig. 11 we show the deflection angle
« as a function of the direction of the external force for a mixed lattice with various
values of A, other parameters being held fixed. The figure shows that A can have
a considerable effect on the detailed sorting behavior of the system, and that it is
indeed possible to use our potential to mimic the behavior of the purely cosinusoidal

potential
W 21x 21y
Vix,y) = 5 {cos < 3 > + cos < 3 ﬂ . (16)

Elsewhere we have investigated sorting in purely harmonic potentials, both sym-
metric and asymmetric (A, # A,), and have established that deviation angles in
these potentials are larger than in those with only wells or only obstacles, all other
parameters being the same.'” Here we have extended the model to include wells and
obstacles as in a purely harmonic potential, but with the ability to further calibrate
the heights, depths, and widths of the wells and obstacles.
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Fig. 9. Left panel: effect of thermal fluctuations on the terraces in the absolute angle as a function
of the direction of the external force. In this example the lattice is one of obstacles with B = 0.7
and T = 10~% (solid, same as shown in upper right panel of Fig. 3), T = 0.01 (dashed), and
T = 0.1 (dotted). The terraces are essentially gone at the highest temperature. Right panel: y-
position arrival distributions for three sets of 2000 particles corresponding to B = 0.5,0.7 and 0.9
(from left to right) in an array of wells. Particles are collected at L; = 5000. Upper: 7 = 0.01.
Middle: 7 = 0.03. Lower: 7 = 0.1. Other parameters are: Fp = 10 and tan = 0.24.

6. Conclusions

When mixtures of particles are made to flow over periodic modulated surfaces under
appropriate conditions, the particles emerge at different angles that depend on some
particle characteristic such as size. Mixtures can therefore be sorted in this way. In
an experiment the particle characteristics of a mixture are of course fixed, and so
one seeks the direction and magnitude of the flow and the lattice geometry that will
optimize the sorting process. We have presented an extensive panorama of numerical
results for particle sorting by size using surfaces consisting of periodic distributions
of traps and of periodic distributions of obstacles (both of which have been realized
310,14 "and of trap and obstacle mixtures. We
have discussed the dependence of particle trajectories on the various parameters and

experimentally for colloid separation

on the temperature, and have demonstrated that parameters can be chosen so as to
optimize the sorting efficiency. While the detailed outcome depends on the surface
geometry, the sorting capability is a general feature of any periodic modulation.
Embellishments of the models are of course plentifully possible. One could con-
sider lattices of different symmetries (which we have done earlier for purely cosinu-
soidal lattices!'”). The surface structures could be more elaborate than the circular
ones considered here. For instance, experiments have been carried out with rect-
angular obstacles? and inclined obstacles'® as well as with optical line tweezers
(“optical travelators”).!* It would be desirable to develop analytic approaches be-
yond the perturbative ones that we have presented elsewhere.'® Finally, it would be
interesting to understand the flow of particles over random surfaces. Our analytic
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Fig. 10. Resolution associated with the distributions shown in Fig. 9 for wells as a function
of the force at tan@ = 0.24 for particles of two different sizes corresponding to B = 0.5 and
B =0.7. 7 = 0.01 (circles), 7 = 0.03 (triangles), and 7 = 0.1 (squares). R 2 1 is experimentally
resolvable.!8
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Fig. 11. Deflection angle versus field direction for Fy = 10, 7 = 0.01, By = Bp = 0.5 and
parameter A = 1 (dot-dashed), A = 2 (solid) and A = 5 (dotted). In addition, results for the
harmonic periodic potential (16) are also shown (dashed) for the same values of Fy and 7.

work!® (within the limits of perturbation theory) indicates that sorting over such
surfaces is possible if they are not isotropic.
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