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Abstract

A graph is walk-regular if the number of cycles of length ℓ rooted at a given vertex
is a constant through all the vertices. For a walk-regular graph G with d + 1 different
eigenvalues and spectrally maximum diameter D = d, we study the geometry of its
d-cliques, that is, the sets of vertices which are mutually at distance d. When these
vertices are projected onto an eigenspace of its adjacency matrix, we show that they
form a regular tetrahedron and we compute its parameters. Moreover, the results are
generalized to the case of k-walk-regular graphs, a family which includes both walk-
regular and distance-regular graphs, and their t-cliques or vertices at distance t from
each other.

1 Preliminaries

Distance-regular graphs with diameter D can be characterized by the invariance of the
number of walks of length ℓ ≥ t between vertices at a given distance t, 0 ≤ t ≤ D (see
e.g. Rowlinson [13] or Fiol[5]). Similarly, walk-regular graphs are characterized by the
fact that the number of closed walks of length ℓ ≥ 0 rooted at any given vertex u does
not depend on u. Thus, a distance-regular graph is also walk-regular, but the converse, in
general, is not true (see e.g. Godsil [10]).

In this paper, we first recall some characterizations and derive some basic results on
a walk-regular graph G. Afterwards, this background is used to study the geometry
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of the vertices which are mutually at distance d, where d + 1 is the number of different
eigenvalues in the spectrum of G. More precisely, when the coordinate vectors representing
such vertices of G are projected onto the eigenspace of any eigenvalue, we show that the
points obtained are the vertices of a regular tetrahedron and we compute their radius
(distance from the center to every vertex), edge length and angle formed by the vectors
going from the center to each vertex. Then, imposing that such parameters must be
nonnegative, some consequences on the eigenvalue multiplicities and the d-clique number,
which is the maximum number of vertices at distance d from each other, are derived.
Finally, these results are generalized for the so-called k-walk-regular graphs, which were
recently introduced by the authors in [3, 7] and their t-cliques, 1 ≤ t ≤ k. These graphs
are characterized by the invariance of the number of walks of length ℓ ≥ t between vertices
at a given distance t, 0 ≤ t ≤ t. Then, this family includes both walk-regular (k = 0) and
distance-regular (k = D) graphs.

1.1 Background

We begin with some notation and basic results. Throughout this paper, G = (V,E) denotes
a simple, connected graph, with order n = |V | and adjacency matrix A. The distance

between two vertices u, v is denoted by dist(u, v), so that the eccentricity of a vertex u is
ecc(u) = maxv∈V dist(u, v) and the diameter of the graph is D = D(G) = maxu∈V ecc(u).
The spectrum of G is

sp G = spA = {λm0

0 , λm1

1 , . . . , λmd

d },

where λ0 > λ1 > · · · > λd and the superscripts stand for the multiplicities mi = m(λi).
In particular, note that m0 = 1 (since G is connected) and m0 + m1 + · · · + md = n. It is
well-known that the diameter of G satisfies D ≤ d (see, for instance, Biggs [1]). Then, a
graph with D = d is said to have spectrally maximum diameter. For a given ordering of
the vertices, the vector space of linear combinations (with real coefficients) of the vertices
of G is identified with R

n, with canonical basis {eu : u ∈ V }. For every 0 ≤ h ≤ d,
the orthogonal projection of R

n onto the eigenspace Eh = Ker(A − λhI) are given by the
(Lagrange interpolation) polynomials of degree d

Ph =
1

φh

d
∏

i=0
i6=h

(x − λi) =
(−1)h

πh

d
∏

i=0
i6=h

(x − λi) (0 ≤ h ≤ d),

where φh =
∏d

i=0,i6=h(λh − λi) and πh = |φh| are “moment-like” parameters satisfying

d
∑

h=0

(−1)h

πh

p(λh) = 0 (1)

for any polynomial p of degree smaller than d (just observe that the coefficient of xd in both
terms of p(x) =

∑d
h=0 p(λh)Ph(x) must be zero). In particular, recall that H = nP0 is the

Hoffman polynomial, which characterizes the regularity of G by the condition H(A) = J ,
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the all-1 matrix (see Hoffman [12]). The matrices Eh = Ph(A) corresponding to these
orthogonal projections onto Eh are called the (principal) idempotents of A. Then, the
orthogonal decomposition of the unitary vector eu, representing vertex u, is:

eu = z0
u + z1

u + · · · + zd
u , where zh

u = Ph(A)eu = Eheu ∈ Eh.

From this decomposition, we define the u-local multiplicity of eigenvalue λh as

mu(λh) = ‖zh
u‖

2 = 〈Eheu,Eheu〉 = 〈Eheu,eu〉 = (Eh)uu,

satisfying
∑d

h=0 mu(λh) = 1 and

∑

u∈V

mu(λh) = tr(Eh) = mh(0 ≤ h ≤ d), (2)

because sp Eh = {0n−mh , 1mh} (see Fiol and Garriga [6] for more details).

1.2 Spectral regularity and walk-regularity

We say that G is spectrally regular when, for any h = 0, 1, . . . , d, the u-local multiplicity of
λh does not depend on the vertex u. Then, Eq. (2) implies that each (standard) multiplicity
“splits” equitably among the n vertices, giving mu(λh) = mh

n
.

Let a
(ℓ)
u = (Aℓ)uu denotes the number of closed walks of length ℓ rooted at vertex u,

which can be computed in terms of the local multiplicities as

a(ℓ)
u =

d
∑

h=0

mu(λh)λℓ
h,

see again [6]. When the number a
(ℓ)
u only depends on ℓ, in which case we write a

(ℓ)
u = a(ℓ),

the graph G is called walk-regular (a concept introduced by Godsil and McKay in [11]).

Notice that, as a
(2)
u = δu, the degree of vertex u, every walk-regular graph is also regular.

Recall also that, if G has d + 1 distinct eigenvalues, then {I,A,A2, . . . ,Ad} is a basis
of the adjacency or Bose-Mesner algebra A(G) of matrices which are polynomials in A.

Therefore, the existence of the set of constants C = {a(0), a(1), . . . , a(d)}, such that a
(ℓ)
u =

a(ℓ) for every u ∈ V , suffices for assuring walk-regularity.

As it is well known, any distance-regular graph is also walk-regular, but the converse
is not true. Actually, as it is pointed out by Godsil [10], there are walk-regular graphs
which are neither vertex-transitive nor distance-regular.

In [3] we proved the following result, which characterizes walk-regular graphs:

Proposition 1.1 A connected graph G is spectrally regular if and only if it is walk-regular.

3



1.3 The crossed local multiplicities and the cosines

Here we study some results concerning some parameters of a geometric nature, as the
cosines, which will be used to prove our main result in the next section.

Consider the set Ph(V ) = {zh
u = Eheu : u ∈ V } of vectors in the mh-dimensional space

Eh. These sets are usually called eutactic stars and they have been extensively studied, for
instance, see Seidel [14], Rowlinson [13] and Cvetković, Rowlinson and Simić [2]. Then,
the spectral regularity of the graph is equivalent to state that, for every h = 0, 1, . . . , d,
such vectors define n points (not necessarily different) on the sphere with radius

√

mh/n.
Moreover, for any h = 1, 2, . . . , d, the “center of mass” of the set Ph(V ) is

∑

u∈V

zh
u = Eh

∑

u∈V

eu = Ehj = 0.

Fiol, Garriga and Yebra [8] defined the crossed (uv-)local multiplicities of λh, denoted
by muv(λh), as the uv-entries of the idempotents (u 6= v). Now in terms of the orthogonal
projection of the canonical vectors eu, the crossed local multiplicities are obtained by the
Euclidean scalar products

muv(λh) := (Eh)uv = 〈Eheu,ev〉 = 〈Eheu,Ehev〉 = 〈zh
u,zh

v 〉 (u, v ∈ V ).

The crossed local multiplicities can be used to compute the number of uv-walks of length
ℓ as

a(ℓ)
uv = (Aℓ)uv =

d
∑

h=0

muv(λh)λℓ
h. (3)

In the following result, we show a characterization for two vertices u, v to be at maxi-
mum distance d in a regular graph in terms of the crossed local multiplicities. In particular,
it is shown that such multiplicities do not depend on u, v.

Proposition 1.2 Let G = (V,E) be a regular graph with d+1 different eigenvalues. Then,

two vertices u, v ∈ V are at distance d if and only if their crossed uv-local multiplicities

are:

muv(λh) =
(−1)h

n

π0

πh

(0 ≤ h ≤ d). (4)

P roof. Suppose first that dist(u, v) = d. Then, we have:

muv(λh) = 〈zh
u,zh

v〉 = 〈Ph(A)eu, Ph(A)ev〉 = 〈Ph(A)eu,ev〉 =
(−1)h

πh

〈Adeu,ev〉

=
(−1)h

πh

〈
π0

n
H(A)eu,ev〉 =

(−1)h

πh

π0

n
(H(A))uv =

(−1)h

n

π0

πh

,
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where we have used that the coefficients of xd in the polynomials Ph and H = nP0 are
(−1)h

πh

and n
π0

, respectively.

Conversely, if (4) holds and ℓ < d, Eq. (3) gives

a(ℓ)
uv =

d
∑

h=0

(−1)h

n

π0

πh

λℓ
h = 0,

where we have used (1). Therefore, dist(u, v) = d as claimed. 2

Let γh
u,v = γ(zh

u,zh
v ) denote the angle between the two vectors zh

u, zh
v . In terms of our

local multiplicities, the cosines of these angles are:

cos γh
u,v =

〈zh
u,zh

v〉

‖zh
u‖ ‖zh

v‖
=

muv(λh)
√

mu(λh)mv(λh)
.

These cosines were already considered by Godsil [9, 10] when G is a distance-regular graph.

In particular, if G is spectrally regular, we get:

cos γh
u,v =

(−1)h

mh

π0

πh

(0 ≤ h ≤ d), (5)

so that mh ≥ π0

πh
for any 0 ≤ h ≤ d.

2 The Geometry of d-Cliques in Walk-Regular Graphs

In this section, we assume that the graph G = (V,E), with spG = {λm0

0 , λm1

1 , . . . , λmd

d },
is spectrally regular and it has spectrally maximum diameter. Let U ⊂ V be a subset of
r vertices which are at distance d from each other. Let Ph(U) = {zh

u = Eheu : u ∈ U} be
its projection set onto the eigenspace Eh = Ker(A − λhI) ⊂ R

n with dimension mh and
let

cr =
1

r

∑

u∈U

zh
u =

1

r
wh (6)

be the barycenter of the points in Ph(U). For each h = 0, 1, . . . , d, we are here interested
in studying the geometry of the points in Ph(U). In the next result, we show that such
points are the vertices of a tetrahedron whose parameters depend on r, n and the spectrum
of G (see Fig. 1 for the case r = 3).

Theorem 2.1 Let G be a walk-regular graph with sp G = {λm0

0 , λm1

1 , . . . , λmd

d } and spec-

trally maximum diameter d. Let U ⊂ V be a set of r vertices which are mutually at

distance d. Then, the set of projected points Ph(U) = {zh
u : u ∈ U} are the vertices of a

regular tetrahedron with center cr at distance (from the origin)

S =

√

1
rn

(

mh + (−1)h(r − 1) π0

πh

)

, (7)
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Figure 1: The projection of r = 3 vertices of a d-clique.

radius (distance from the center to every vertex)

R =

√

r−1
rn

(

mh − (−1)h π0

πh

)

, (8)

and edge length

L =

√

2
n

(

mh − (−1)h π0

πh

)

. (9)

Moreover, the angle β formed by the vectors going from the center cr to each vertex zh
u

satisfies cos β = −1
r−1 .

P roof. Computing ‖wh‖2 = ‖
∑d

h=1 zh
u‖

2, we obtain

‖wh‖2 =
∑

u,v∈U

〈zh
u,zh

v 〉 =
∑

u

‖zh
u‖

2 +
∑

u 6=v

〈zh
u,zh

v〉 =
∑

u

mh

n
+

∑

u 6=v

(−1)h

n

π0

πh

= r
mh

n
+ r(r − 1)

(−1)h

n

π0

πh

=
r

n

(

mh + (−1)h(r − 1)
π0

πh

)

.

Then, by (6),

S2 = ‖cr‖
2 =

1

r2
‖wh‖2 =

1

rn

(

mh + (−1)h(r − 1)
π0

πh

)

. (10)

This yields the value of S in (7).

6



Moreover, we have

〈zh
u − cr, cr〉 =

1

r

∑

u,v∈U

〈zh
u,zh

v 〉 − ‖cr‖
2

=
1

r

1

n

(

mh + (−1)h(r − 1)
π0

πh

)

−
1

rn

(

mh + (−1)h(r − 1)
π0

πh

)

= 0. (11)

So, the set of points Ph(U) is in the hyperplane containing the point cr and orthogonal
to the vector from the origin point to cr (see Fig. 1). Then, from this orthogonality, we
have that the square radius is

R2 = ‖zh
u − cr‖

2 = ‖zh
u‖

2 − ‖cr‖
2 =

mh

n
−

1

rn

(

mh + (r − 1)(−1)h
π0

πh

)

=
r − 1

rn

(

mh − (−1)h
π0

πh

)

. (12)

Then, the points in Ph(U) are on the surface of the sphere with center cr and radius R
given by (8).

Let us now see that the points in Ph(U) are mutually at the same distance. Indeed,
the square norm

L2 = ‖zh
u − zh

v‖
2 = ‖zh

u‖
2 + ‖zh

v‖
2 − 2〈zh

u,zh
v 〉 = 2

mh

n
− 2

(−1)h

n

π0

πh

=
2

n

(

mh − (−1)h
π0

πh

)

(13)

is independent of the vertices and, if r ≥ 3, every three points zh
u,zh

v ,zh
w determine an

equilateral triangle. So, the points in Ph(U) are the vertices of a regular tetrahedron with
center cr, radius R and side L as claimed in (9).

Note that, from (12) and (13), we get that the ratio between the edge length and the

radius is L
R

=
√

2r
r−1 , which is known for a regular tetrahedron with r vertices. Finally, the

value of cos β, is also a known result and it can be proved in our context. Indeed, let us
consider the angle β, which is formed by the vectors zh

u − cr and zh
v − cr. First, by using

(12), we get:

〈zh
u − cr,z

h
v − cr〉 = R2 cos β =

r − 1

rn

(

mh − (−1)h
π0

πh

)

cos β.

Moreover, by using (11) and (10), we also have

〈zh
u − cr,z

h
v − cr〉 = 〈zh

u − cr,z
h
v 〉 =

(−1)h

n

π0

πh

− 〈cr,z
h
v 〉

=
(−1)h

n

π0

πh

− 〈cr,z
h
v − cr〉 − ‖cr‖

2

=
(−1)h

n

π0

πh

−
1

rn

(

mh + (−1)h(r − 1)
π0

πh

)

= −
1

rn

(

mh − (−1)h
π0

πh

)

.
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Then, from the above expressions, we obtain cos β = − 1
r−1 , and this completes the proof.

2

A straightforward, but interesting, consequence of our theorem is the following result
obtained by considering the parity of h (note that, for odd h, the bound of the multiplicity
given below is, in general, an improvement of that obtained from (5)):

Corollary 2.2 Let G = (V,E) be a walk-regular graph with spectrum sp G =
{λm0

0 , λm1

1 , . . . , λmd

d } with a set U ⊂ V of r vertices which are at distance d from each

other. Then, the eigenvalue multiplicities satisfy the bounds:

mh ≥
π0

πh

if h is even, (14)

mh ≥ (r − 1)
π0

πh

if h is odd. (15)

Moreover, equality in (14) is attained if and only if the tetrahedron with vertices Ph(U)
collapses into a point (L = R = 0), while equality in (15) is attained if the corresponding

tetrahedron is centered at the origin (S = 0).

P roof. If h is even, Theorem 2.1 gives:

S =

√

1
rn

(

mh + (r − 1) π0

πh

)

, R =

√

r−1
rn

(

mh − π0

πh

)

≥ 0, L =

√

2
n

(

mh − π0

πh

)

≥ 0,

whence any of the two last inequalities yields (14), and equalities are attained (R = L = 0)
if and only if mh = π0

πh

. In this case, the tetrahedron collapses into a single point cr at the
minimum possible distance (from the origin)

S =
√

1
n

π0

πh
=

√

mh

n
= ‖zh

u‖,

for any u, as expected.

However, if h is odd, Theorem 2.1 gives:

S =

√

1
rn

(

mh − (r − 1) π0

πh

)

≥ 0, R =

√

r−1
rn

(

mh + π0

πh

)

, L =

√

2
n

(

mh + π0

πh

)

,

whence the first inequality yields (15), and equality is attained (S = 0) if and only if
mh = (r− 1) π0

πh

. Then, in this case, the tetrahedron is centered at the origin and have the
minimum possible dimensions

R =
√

r−1
n

π0

πh
=

√

mh

n
= ‖zh

u‖,

for any u, as expected, and

L =
√

2r
n

π0

πh
=

√

mh

n

√

2r
r−1 = R

√

2r
r−1 .

2

In fact, the above two extreme cases are attained for antipodal distance-regular graphs
because of the following characterization given by Fiol in [4]:
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Proposition 2.3 A distance-regular graph G with spectrum spG = {λm0

0 , λm1

1 , . . . , λmd

d }
is r-antipodal (r ≥ 2) if and only if its eigenvalue multiplicities satisfy:

mh =
π0

πh

(h even),

mh = (r − 1)
π0

πh

(h odd).

Let ωd ≡ ωd(G) be the d-clique number of G, that is, the maximum number of vertices
which are at distance d from each other. Note that, for a graph G, the property of having
spectrally maximum diameter is equivalent to have ωd ≥ 2. Notice also that from (15) the
d-clique number of a spectrally regular graph G satisfy the bound

ωd ≤ 1 + min
1≤h≤d

h odd

{

mh
πh

π0

}

, (16)

a result proved in [3]. Moreover, since in a mh-dimensional space the maximum number
of points mutually at a given distance is mh + 1, by Theorem 2.1, we have

ωd ≤ 1 + min
1≤h≤d

{

mh

∣

∣

∣ mh 6= π0

πh
if h is even

}

. (17)

3 The Geometry of t-Cliques in k-Walk-Regular Graphs

The above results can be easily extended to the case of k-walk-regular graphs and t-
cliques. A connected graph G with diameter D is said to be k-walk-regular for some
integer k, 0 ≤ k ≤ D, if the number of walks of length ℓ between vertices u and v only
depends on t = dist(u, v), provided that t ≤ k. In particular, 0-walk-regular graphs
are walk-regular, whereas D-walk-regular graphs are distance-regular. Some properties
and characterizations of k-walk-regular graphs were given by the authors in [3], where it
was also proved that a graph G is k-walk-regular if and only if, for any h = 0, 1, . . . , d,
its crossed uv-local multiplicities of λh only depend on t = dist(u, v), for t ≤ k. More
precisely,

muv(λh) =
mh

n

pt(λh)

pt(λ0)
, (18)

where {ph}0≤h≤d are the so-called predistance polynomials, which are orthogonal with
respect to the scalar product

〈p, q〉 =
1

n
tr(p(A)q(A)) =

1

n

d
∑

h=0

mhp(λh)q(λh)

and they satisfy dgr(ph) = h and the normalization condition ‖ph‖
2 = ph(λ0) for any

h, 0 ≤ h ≤ d. (This makes sense as always ph(λ0) > 0.) For more details about such
polynomials see Fiol and Garriga [6].
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In this context, the invariance of the crossed local multiplicities allows us to study the
geometry of t-cliques, which are the sets of vertices mutually at distance t, for 1 ≤ t ≤ k.
Note that a 1-clique is simply a clique (or complete subgraph).

Theorem 3.1 Let G be a k-walk-regular graph with sp G = {λm0

0 , λm1

1 , . . . , λmd

d }. Let

U ⊂ V be a set of r vertices which are mutually at distance t, for some 1 ≤ t ≤ k. Then,

the set of projected points Ph(U) = {zh
u : u ∈ U} are the vertices of a regular tetrahedron

with center cr at distance S from the origin, radius R and edge length L given by:

S =

√

mh

rn

(

1 + (r − 1)pt(λh)
pt(λ0)

)

,

R =

√

r−1
r

mh

n

(

1 − pt(λh)
pt(λ0)

)

,

L =

√

2mh

n

(

1 − pt(λh)
pt(λ0)

)

.

The proof of this result is as in Theorem 2.1 by using (18) instead of (4).

Note that now the tetrahedron collapses into a point if and only if pt(λh) = pt(λ0)

whereas it is centered at the origin if and only if pt(λh) = −pt(λ0)
r−1 = pt(λ0) cos β.

With respect to the t-clique number ωt, that is, the maximum number of vertices which
are mutually at distance t, we find analogous results to (16) and (17):

ωt ≤ 1 + min
1≤h≤d

{

pt(λ0)
|pt(λh)| | pt(λh) < 0

}

, (19)

ωt ≤ 1 + min
1≤h≤d

{mh | pt(λh) 6= pt(λ0)} . (20)

Notice that in both cases the conditions on the values of pt(λh) and pt(λ0) assure that the
projection is a proper tetrahedron. In particular, if t = 1, we have p1 = x and Eqs. (19)
and (20) give the following upper bounds for the clique number of a k-walk-regular graph
(k ≥ 1):

ω1 ≤ 1 + min
1≤h≤d

{

λ0

|λh|

}

= 1 − λ0

λd

,

ω1 ≤ 1 + min
1≤h≤d

{mh}.

The first bound was proved by Delsarte for distance-regular graphs and, more generally,
by Hoffman for regular graphs (see, for instance, Godsil [10]). Both bounds are attained,
for example, if G = Kr,r,m...,r, the m-partite complete graph, with spectrum spKr,r,m...,r =
{

(m − 1)r, 0m(r−1),−rm−1
}

and clique number ω1 = m.
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