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Abstract— Magnetorheological (MR) dampers are devices
that can be used for vibration reduction in structures. However,
to use these devices in an effective way, a precise modeling is
required. In this sense, in this paper we consider a modified pa-
rameter identification method of large scale magnetorheological
dampers which are represented using the normalized Bouc-Wen
model. The main benefit of the proposed identification model
is the accuracy of the parameter estimation. The validation of
the parameter identification method has been carried out using
a black-box model of an MR damper in a smart base-isolated
benchmark building. Magnetorheological (MR) dampers are
used in this numerical platform both as isolation bearings as
well as semiactive control devices.

[. INTRODUCTION

Magnetorheological (MR) dampers are devices that change
their mechanical properties when they are exposed to a mag-
netic field. The magnetorheological fluid of these actuators
is characterized by a great ability to vary, in a reversible way,
from a free-flowing linear viscous liquid to a semi-solid one
within milliseconds [1]. Moreover, MR dampers have a low
cost and can be controlled with a low voltage at the coils
[1]. All these features make MR dampers very attractive
and promising as actuators controlled by the voltage that
can be used in different engineering fields, such as dampers
and shock absorbers (pressure driven flow mode devices),
as well as clutches, brakes, chucking, and locking devices
(direct-shear mode devices) [5]. From a structural control
point of view, MR dampers are usually employed as actuators
operated by low voltages. In this respect, semi-active control
systems seem to combine the best compromise between
passive and active control: they offer the reliability of passive
devices together with the versatility and adaptability of active
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systems [13]. However, the first step in the design of a semi-
active control strategy is the development of an accurate
model of the MR device. It is worth noting that the system-
identification issue plays a key role in this control problem
[12]. High-accuracy models can be designed using two
different model families: semi-physical models [10], [13],
and black-box models [6], [16]. Some of the most known
semi-physical models to describe the hysteretic behaviour
of MR dampers are the Bingham model and its extended
versions, the Bouc-Wen model, the Dahl model, the modified
LuGre model and some other non-parametric models [11].
It is important to remark that these models are not linear-in-
parameters and, therefore, classical parameter identification
methods, such as the gradient or the mean square algorithms,
cannot be applied.

In this paper we present a modified parameter identifi-
cation method of large scale magnetorheological dampers
in a benchmark building platform [7]. Using a normalized
version of the Bouc-Wen model, Ikhouane et al. [4] present
an identification algorithm which is directly used for MR
dampers in shear-mode [11]. However, this methodology can
produce large parameter identification errors if the viscous
friction is much smaller than the dry friction [11]. To
cope with this drawback, a modified step was proposed
by Rodriguez et al. [11]. To make the process even more
accurate and general to apply on large-scale MR dampers,
a modified identification method is proposed in this work
by considering the extended form of the identified Bouc-
Wen model that takes into account three terms instead of just
two. The validation of this modified parameter identification
method has been carried out using a black-box model of an
MR damper in a smart base-isolated benchmark building.
The benchmark platform is then considered as a virtual
laboratory experiment. The numerical results show that the
proposed modified method is able to improve significantly
the accuracy of the parameter identification.

The paper is organized as follows. In Section II, the
normalized Bouc-Wen model is presented. Section II also
presents the key points of the modified identification method.
In Section III, the application of the proposed identification
method to a large-scale MR damper in a benchmark building
platform is considered. Finally, some concluding remarks are
stated in Section IV.

II. THE NORMALIZED BOUC-WEN MODEL

The normalized version of the Bouc-Wen model [11] is
an equivalent representation of the original Bouc-Wen model
[16]. The normalized Bouc-Wen model of MR dampers in



shear mode is then given by:

(&, w)(t) = £a(0)E(t) 4 £ (v)w(t), (D
w(t) = p(a(t) — ola(®)|lw(t)|" w(t)
+ (o = Da@)|w®)["), 2

where F'(&,w) is the output force of the MR damper, ()
and v are the velocity and voltage inputs, respectively. The
voltage input v is the applied voltage at the coil of the MR.
The system parameters are k;(v) > 0, £,(v) > 0, p > 0,
o >1/2, and n > 1. These parameters control the shape of
the hysteresis loop and their meaning can be found in [3].
The state w(t) has not a physical meaning so that it is not
accessible to measurements.

Since the normalized Bouc-Wen representation described
in equations (1)-(2) is not a linear-in-parameter model,
classical parameter identification methods cannot be applied.
In this regard, a new parameter identification algorithm has
been proposed in [11], at the same time as it is based on the
identification method presented in ([4], p. 38). The method
is based on applying a periodic input velocity #(t) at a
constant voltage coil v and observing the periodic steady-
state force response of the MR damper. The details of this
method are omitted here and can be found in the Appendix.
Nonetheless, large relative errors in the identification process
can be observed when the MR damper has a friction force
small enough with respect to the dry friction [11]. To improve
the accuracy of this parameter identification, we use the
following extended Bouc-Wen model:

Fy(z,&,w)(t) = £z (v)2(t) + £ (0)E() + mww(t), ()

w(t) = p(a(t) — ala(®)|lw(t)|" " w(t)
+ (o = Da(®)]w®)]"), )

where the linear force k,(v)x has been added keeping its
voltage dependence as in the other parameters. At con-
stant voltage, the computation of the parameter k,(v) is
straightforward. For instance, we can consider the force-
displacement diagram of the MR damper under a large
enough sinusoidal displacement. With respect to this dia-
gram, the average inclination of the resulting ellipsoid is an
estimation of this parameter. As an example, consider the
numerical experiment of an MR damper driven with zero
coil command voltage. The force-displacement diagram of
this numerical experiment is shown in Figure 1 (top). The
estimated value of x,(0) is 83 kN. To estimate the rest of the
parameters, we use the knowledge of k. (0) and the following
modified dynamic:

Fy(z,w) = Fy(z,&,w) — ke (v)x(t)

= ki (0)2(t) + Ku(V)w(t), (5)
p(i(t) — ala(t)][w(t)" w(t)

+ (0 = Da(®)w(®)]"). (6)
Figure 1 (bottom) shows the typical form of the force-
velocity diagrams for both F} and F, dynamics. Fj is

produced by subtraction of the linear force k., (v)z from
the measured force F; (produced by the MR damper). In

w(t)

summary, an estimation of the Bouc-Wen parameters in
equations (3)-(4) can be obtained through the following
parameter identification algorithm:
» Step 1. Keep the coil voltage at a constant value;
» Step 2. Estimate the value of k, (this can be done
graphically);
» Step 3. Using model (5)-(6) and the identification
algorithm in [11], estimate the rest of the parameters.
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Fig. 1.  Force-displacement diagram for an MR damper with zero coil
command voltage (red) and estimation of kg (v) (black) (top). Force-
velocity diagram for both F (dashed) and F5 (solid) dynamics (bottom).

We remark that with the above algorithm we can obtain the
estimation of a complete set of Bouc-Wen model parameters
based on a reduced model (1)-(2) (or (5)-(6)). This way we
can avoid the extension algorithm given in [4] or in [11] to
model (3)-(4), which would be a hard work.

III. PARAMETER IDENTIFICATION OF MR
DAMPERS IN A BENCHMARK PLATFORM

The following section shows the model validation using a
fluctuating current and a varying displacement signal. More
precisely, the proposed identification algorithm is tested
using a black-box model of an MR damper in a smart base-
isolated benchmark building.



A. Smart base-isolated benchmark building

The smart base-isolated benchmark building [8] is em-
ployed as an interesting and more realistic example to further
investigate the effectiveness of the proposed design approach.
This benchmark problem is recognized by the American
Society of Civil Engineers (ASCE) Structural Control Com-
mittee as a state-of-the-art model developed to provide a
computational platform for numerical experiments of seismic
control attenuation [9], [14].

The benchmark structure is an eight-storey frame building
with steel-braces, 82.4 m long and 54.3 m wide, similar to
existing buildings in Los Angeles, California. Stories one to
six have an L-shaped plan while the higher floors have a
rectangular plan. The superstructure rests on a rigid concrete
base, which is isolated from the ground by an isolator layer,
and consists of linear beam, column and bracing elements
and rigid slabs. Below the base, the isolation layer consists of
a variety of 92 isolation bearings. The isolators are connected
between the drop panels and the footings below, as shown
in Figure 2.

B. Model validation

Figure 3 shows the response of the MR damper in
the benchmark building platform to a periodic wave
displacement excitation at zero coil voltage. It is noticeable
that the shape of these signals are very close to that observed
experimentally in [11].
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Fig. 2. Elevation view with devices

Following the parameter identification algorithm given in
Section II , the resulting values are depicted in Figure 4 for
several coil voltages, where parameters are plotted versus
voltage along with the best coloration curve computed for
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Fig. 3. Response of the MR damper in the benchmark building platform.

each of them. Accordingly the identified parameters are:
Kz (V) = kg (7
k3 (V) = Kg.q + Kq bV ®)

Ky + Ky 0115, v <03

K’wa + Rw4[SiH(W)
K (V) = + s sin(‘ﬁ(g%sm), 0.3<v<0.7
Rawg + Kaw, U
Fhpg U3 + Ky V?, 0.7<v
©))

p(v) = pa + ppexp(—14v) (10)
n(v) = ng + np exp(—13v) (11)
o(v) = o4 + op exp(—14v) (12)

The parameters in equations (7)-(12) can be easily computed
using least-squares fitting algorithms, as can be seen in Table
L

The identification models presented in the literature usu-
ally have good accuracy when they consider a constant
voltage. Because of the role of MR dampers as a semi-active
devices in structural control systems, the final identified
model has to be checked under a simulated condition using,
for instance, an earthquake record and the corresponding
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Fig. 4. Results of the parameter identification algorithm.

varying command voltage. To do this, our identified model
has to be compared with the corresponding black-box model
of MR damper in the benchmark building platform, under
exactly the same situation. To measure the discrepancy
between the two models, the 1-norm error (¢) is used [11]:

|1Esr — Fiallx
= - 13
Fonls (3
T
Il = / F(0)]dt, (14)

where Fpps is the output force of the black-box model
(benchmark building platform) and Fj; is the resulting force
of the identified MR damper based on the Bouc-Wen model.
The length in time of each earthquake is denoted by 7.
The 1-norm is a measure that reflects the average size of
a signal and thus it is a good tool for computing the dis-
crepancy between these two models. Based on this 1-norm,
if the computed value of the damping force is far from the
reference value, the value of € will be large. On the contrary,
if it is small, the identified model can calculate forces which
are very close to the real ones. Table II presents the model
errors for several earthquakes (FFP — X and FP —Y are
the estimation errors in the x-force and y-force directions).

TABLE I
RESULTS FOR PARAMETER IDENTIFICATION

parameter value
ky 207
ks kz.q 89.64
* ki b 292
kwy 55.38
kuws 2270
kws 619.85
kuwy 387.34
kw ws 18.42
kuwg -87.52
kwy, 2665
kwg  -3054.7
kuwg 1545.4
Pa 648.95
p b -3.86
Na 1.44
i "7b 0.02
o Oa 0.76
op 0.009

A sample earthquake record and the corresponding signal
voltage during the control process is presented in Figure
5. It is interesting to compare the resulting model errors in
Table II with the resulting model errors when the parameter
identification is performed with the model in equations (1)-
(2) (see Table III). By analysing and comparing these two
tables, the proposed parameter identification algorithm is
clearly more accurate than the original method. Figure 6
shows the damper force using our model (3)-(4) and (7)-(12)
with the identified parameters for the case when a sinusoidal
displacement input is applied at a constant amplitude and
varying its frequency, for a constant voltage of 0.1 V.

TABLE II
ERROR NORM (g) FOR THE PROPOSED PARAMETER
IDENTIFICATION

[ [ Newhal [ Symar | BiCento | Rinaldi | Kobe | Jiji | Erzinkan

FP-X 6.47 % 5.67 % 7.78 % 712 % 6.52 % 3.61 % 4.88 %

FP-Y 3.84 % 8.44 % 7.90 % 5.67 % 7.85 % 4.02 % 535%
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Fig. 5. El Centro, ground acceleration (top) and corresponding command
voltage (bottom).



TABLE III
ERROR NORM (¢) FOR THE METHOD PROPOSED BY RODRIGUEZ

ET AL., 2008
l [ Newhall [ Sylmar [ El Centro [ Rinaldi [ Kobe [ Jiji [ Erzinkan
FP-X 16.15 % 18.06 % 22.89 % 17.55% 18.22 % 14.16 % 1491 %
FP-Y 15.83 % 24.14 % 19.68 % 18.48 % 2472 % 20.09 % 18.80 %

400

300

200

100

Damper Force (kN)

-100

200

-300

-400.
0.2

Velocity (m/s)

Displacement (m)

Fig. 6. 3D vision of damper force.

IV. CONCLUSION

Magnetorheological (MR) dampers are devices that can
be used for vibration reduction in structures. However, to
use these devices in an effective way, a precise modeling
is required. In this sense, in this paper we have considered
a modified parameter identification method of large scale
magnetorheological dampers which are represented using
the normalized Bouc-Wen model. The main benefit of the
proposed identification model is the accuracy of the parame-
ter estimation. The validation of the parameter identification
method has been carried out using a black-box model of
an MR damper in a smart base-isolated benchmark building.
Magnetorheological (MR) dampers are used in this numerical
platform both as isolation bearings as well as semiactive
control devices.

APPENDIX

The normalized version of the Bouc-Wen model [4] is an
equivalent representation of the original Bouc-Wen model
[16]. This normalized model has less number of parameters
thus eliminating the over-parameterizations present in the
original model. The parameter identification in [11] departs
from the next shear-mode Bouc-Wen model:

F(&)(t) = ra(0)a(t) + fw(0) () (15)
w(t) = p(&(t) — ola(®)|lw(t)|" w(t)
+ (o = D) |lwt)[") (16)

where kK, > 0, Ky > 0, p > 0,0 > 1/2, and n > 1.
For parameter identification, we have to apply a T-periodic
input Z(t) (see Figure 2) to the Bouc-Wen system under
constant voltage v. The identification method is based on
some instrumental functions which has to deal with the
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Fig. 7. Comparison of the MR damper force for the model with the

proposed parameter identification (top) and for the model with the parameter
identification method proposed by Rodriguez et al., 2008 (bottom) (red) and
the response of the original black-box model (black) under Kobe ground
motion (FP-y).
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hysteretic system. Basically, and because these functions are
invertible, they described a limit cycle of the Bouc-Wen
model when it is periodically excited [11], i.e. under a T-
periodic input signal (), the output force of the Bouc-Wen
model goes asymptotically to a periodic limit function, called
F(t), which corresponds to periodic hysteretic behavior
in the internal state, called w(t). The whole identification
process can be summarized as follows.

The parameter r; is first determined using the plastic
region of the hysteresis loop by a linear regression for each



constant voltage:
F(7) = ke (0)2(7) + K (v).

To continue with parametric estimation, a function 6 is
computed as:

dx(T)
dr
which has a unique zero, i.e, there exists a time instant
7. € [0,T7], and a corresponding value z, = x(7.) €
[Xmin, Xmax), such that the function 6 is zero. Because 6

is known, then 2, is also known. Define the quantity

Then, the parameter n is determined as:

(#2),_
log |:(d;(z))m L*zia
de Ja=w,,

n= 7 (19)
log (79”:””*2)
T=2

where x,.o > x4 > x, are design parameters. Define

0(x*2)n
Then, the parameters x,, and p are computed as follows:

0(x(7)) = F(x(1)) — Ka , Tel0, T, An

(18)

a

w = e s 21
K b 2D
a
p=2 22)
K
The function w(x) can be computed as:
0(x)
= — 23
@ == 23
Finally, the remaining parameter ¢ is determined as:
G
o=z |—""~L——+1 (24)
2| (w(rs))
where .3 is a design parameter such that z,3 < x,.
]
Xmaz
1

0 T+ T ml mi' + T (m+1)I

Fig. 9. A sample T-wave periodic signal
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