F. Suñol and R. González-Cinca Universitat Politècnica de Catalunya

International Astronautical Congress September 30th, 2008

F. Suñol and R. González-Cinca

IAC 2008, Slide 1/25

## Outline

### 1 Introduction

- Objectives and motivation
- Previous knowledge
- 2 Experimental setup• Schematics
- On ground results
  - Jet structure
  - Bubble coalescence



Introduction

## Introduction

-Introduction

└─Objectives and motivation

## Objectives

Objective: to study the structure of two colliding bubble jets in different gravity environments by:

- Changing the impact angle between jets.
- Using different separation distances between injectors.
- Varying bubble sizes and velocities.



-Introduction

└─Objectives and motivation

## Objectives

Objective: to study the structure of two colliding bubble jets in different gravity environments by:

- Changing the impact angle between jets.
- Using different separation distances between injectors.
- Varying bubble sizes and velocities.

-Introduction

└─Objectives and motivation

### Motivation

Two-phase flows with homogenized small bubbles have a wide range of applications:

- Thermal management.
- Transport and combustion processes.
- Life sciences (bioreactors, drug delivery, vesicle rupture).
- Material sciences.



Introduction

Previous knowledge

### Injection of bubbles in $\mu g$

In normal gravity...



http://www.jupiterimages.com/

... the buoyancy force is the responsible for breaking the bubble interface.

In microgravity...



http://www.ieec.fcr.es/

 $\hfill \ldots \hfill there is no buoyancy force: \\ \Rightarrow \hfill Difficult control of size and \\ frequency!$ 

Introduction

Previous knowledge

### Injection of bubbles in $\mu g$

In normal gravity...



http://www.jupiterimages.com/

... the buoyancy force is the responsible for breaking the bubble interface.

In microgravity...



http://www.ieec.fcr.es/

... there is no buoyancy force:  $\Rightarrow$  Difficult control of size and frequency!

Which methods are used to create bubbles in zero gravity?

Introduction

Previous knowledge

### Coflow and crossflow configurations

Coflow



The Gas-Liquid interface tends to keep spherical shape. When the air zone is growing up, the liquid breaks the interface.

### Crossflow



The liquid forces the bubble to high lateral stresses that can break the Gas-Liquid interface.

Introduction

Previous knowledge

### Bubble injector

The injection device is based on a crossflow configuration inside a capillary T-junction.



J. Carrera et al. *"Generation of a monodisperse microbubble jet in microgravity"*, AIAA Journal 46, 2010-2019 (2008).

- Bubble size is fixed essentially by capillary diameter.
- Control of bubble frequency formation, by varying liquid (Q<sub>l</sub>) and gas (Q<sub>g</sub>) flow rates.
- Insensitive to gravity level for low Bond numbers

$$Bo = \frac{\Delta\rho \, g \, d_c^2}{\sigma} \ll 1$$

Introduction

Previous knowledge

### Bubble injector

The injection device is based on a crossflow configuration inside a capillary T-junction.



J. Carrera et al. "Generation of a monodisperse microbubble jet in microgravity", AIAA Journal 46, 2010-2019 (2008).

- Bubble size is fixed essentially by capillary diameter.
- Control of bubble frequency formation, by varying liquid (Q<sub>l</sub>) and gas (Q<sub>g</sub>) flow rates.
- Insensitive to gravity level for low Bond numbers

$$Bo = \frac{\Delta\rho \, g \, d_c^2}{\sigma} \ll 1$$

Experimental setup

# Experimental setup

- Experimental setup
  - Schematics

### Sketch of the experimental setup



- Electric connections
- Gas tubes
- Liquid tubes
- Gas+Liquid tubes

- 1. Liquid reservoir
- 2. Gas/Liquid filters
- 3. Liquid pump
- 4. Liquid flow meter
- 5. DC power supply
- 6. High speed camera
- 7. Test cavity
- 8. Illumination source
- 9. Bubble injectors
- 10. Residual tank
- 11. Gas pressure bottle
- 12. Pressure controller and gas flow meter
- 13. Choked orifice
- 14. Computer

Experimental setup

Schematics

### Experimental setup







Liquid pump, gas flow meter, pressure controller and liquid tanks.

On ground results

# On ground results

#### └─On ground results

### Definitions

• Momentum flux J

$$J = 2\pi\rho \int_0^\infty r v_x^2 dr = \text{constant},$$

$$J = J_G + J_L = \frac{4}{\pi d_c^2} \left( \rho_g Q_g^2 + \rho_l Q_l^2 \right)$$



- Separation distance between injectors (s).
- Impact angle between jets ( $\varphi$ ).



└─On ground results

└─ Jet structure

### **Bubble velocities**



• Decrease in velocity in the central zone  $\rightarrow$  Interaction.

$$\frac{v_x}{v_{out}} \approx \frac{a}{b+x/s}, \quad v_{out} = 159 \pm 16 \text{ cm/s}.$$

F. Suñol and R. González-Cinca

IAC 2008, Slide 16/25

- └─On ground results
  - └─ Jet structure

### Turbulence and buoyancy regions



- $\delta(\ell)$  nearly linear behavior.
- Increase in slope at high values of ℓ
   → Interaction.



- └─On ground results
  - L Jet structure

### Bubble upstream x probability



- 1000 frames at  $\varphi = 0^{\circ}$  and h = 3 cm.
- More dispersion at high values of *J*.

$$J = 22 \text{ g cm/s}^2.$$

$$J = 54 \text{ g cm/s}^2.$$



└─On ground results

Bubble coalescence

### Mean bubble diameters



• Larger bubbles are due to injector performance and coalescence.

└─On ground results

Bubble coalescence

### Coalescence events



- Coalescence events in  $\Delta t = 0.2 \text{ s}$  at  $\varphi = 30^{\circ}$  and  $J = 54 \text{ g cm/s}^2$ .
- Large number of coalescences near the outlet of the injector.

F. Suñol and R. González-Cinca

IAC 2008, Slide 20/25

└─On ground results

Bubble coalescence

### Coalescence probability



•  $P_{coal}$  decrease with J since  $d_B$  is smaller.

Conclusions and future work

## Conclusions and future work

#### Conclusions and future work

### Conclusions:

- An experimental setup for the study of bubble jets collisions has been designed.
- Preliminary on ground results on collective and individual behavior have been obtained.
- On ground experimental results are appropriated to be compared with those obtained in microgravity conditions.

#### Conclusions and future work

### Current and future work at the INTA drop tower:

- Variations in separation distances between injectors, and impact angles.
- Use of different kind of fluids (surface tension, fuels, ...).
- Changes in injector's diameter.



## Thank you for your attention!